

Head First: Design Patterns

Eric Freeman

Elisabeth Robson

Bert Bates

Kathy Sierra

Beijing • Boston • Farnham • Sebastopol • Tokyo

To the Gang of Four, whose insight and expertise in capturing and communicating
Design Patterns has changed the face of software design forever, and bettered the lives
of developers throughout the world.
But seriously, when are we going to see a second edition? After all, it’s been only ten
twenty years.

Praise for Head First Design
Patterns

“I received the book yesterday and started to read it on the way home... and I couldn’t
stop. I took it to the gym and I expect people saw me smiling a lot while I was
exercising and reading. This is très ‘cool’. It is fun, but they cover a lot of ground and
they are right to the point. I’m really impressed.”

— Erich Gamma, IBM Distinguished Engineer, and coauthor of
Design Patterns with the rest of the Gang of Four — Richard

Helm, Ralph Johnson and John Vlissides

“Head First Design Patterns manages to mix fun, belly-laughs, insight, technical
depth, and great practical advice in one entertaining and thought-provoking read.
Whether you are new to design patterns, or have been using them for years, you are
sure to get something from visiting Objectville.”

— Richard Helm, coauthor of Design Patterns with rest of the
Gang of Four — Erich Gamma, Ralph Johnson and John

Vlissides

“I feel like a thousand pounds of books have just been lifted off of my head.”
— Ward Cunningham, inventor of the Wiki and founder of the

Hillside Group

“This book is close to perfect, because of the way it combines expertise and
readability. It speaks with authority and it reads beautifully. It’s one of the very few
software books I’ve ever read that strikes me as indispensable. (I’d put maybe 10
books in this category, at the outside.)”

— David Gelernter, Professor of Computer Science, Yale
University, and author of Mirror Worlds and Machine Beauty

“A Nose Dive into the realm of patterns, a land where complex things become simple,
but where simple things can also become complex. I can think of no better tour guides
than Eric and Elisabeth.”

— Miko Matsumura, Industry Analyst, The Middleware
Company Former Chief Java Evangelist, Sun Microsystems

“I laughed, I cried, it moved me.”
— Daniel Steinberg, Editor-in-Chief, java.net

“My first reaction was to roll on the floor laughing. After I picked myself up, I realized
that not only is the book technically accurate, it is the easiest-to-understand

introduction to design patterns that I have seen.”
— Dr. Timothy A. Budd, Associate Professor of Computer

Science at Oregon State University and author of more than a
dozen books, including C++ for Java Programmers

“Jerry Rice runs patterns better than any receiver in the NFL, but Eric and Elisabeth
have out run him. Seriously...this is one of the funniest and smartest books on software
design I’ve ever read.”

— Aaron LaBerge, SVP Technology & Product Development,
ESPN

More Praise for Head First Design
Patterns

“Great code design is, first and foremost, great information design. A code designer is
teaching a computer how to do something, and it is no surprise that a great teacher of
computers should turn out to be a great teacher of programmers. This book’s admirable
clarity, humor, and substantial doses of clever make it the sort of book that helps even
non-programmers think well about problem-solving.”

— Cory Doctorow, co-editor of Boing Boing and author of Down
and Out in the Magic Kingdom and Someone Comes to Town,

Someone Leaves Town

“There’s an old saying in the computer and videogame business — well, it can’t be
that old because the discipline is not all that old — and it goes something like this:
Design is Life. What’s particularly curious about this phrase is that even today almost
no one who works at the craft of creating electronic games can agree on what it means
to ‘design’ a game. Is the designer a software engineer? An art director? A storyteller?
An architect or a builder? A pitch person or a visionary? Can an individual indeed be
in part all of these? And most importantly, who the %$!#&* cares?
It has been said that the ‘designed by’ credit in interactive entertainment is akin to the
‘directed by’ credit in filmmaking, which in fact allows it to share DNA with perhaps
the single most controversial, overstated, and too often entirely lacking in humility
credit grab ever propagated on commercial art. Good company, eh? Yet if Design is
Life, then perhaps it is time we spent some quality cycles thinking about what it is.
Eric Freeman and Elisabeth Robson have intrepidly volunteered to look behind the
code curtain for us in Head First Design Patterns. I’m not sure either of them cares all
that much about the PlayStation or X-Box, nor should they. Yet they do address the
notion of design at a significantly honest level such that anyone looking for ego
reinforcement of his or her own brilliant auteurship is best advised not to go digging
here where truth is stunningly revealed. Sophists and circus barkers need not apply.
Next-generation literati, please come equipped with a pencil.”

— Ken Goldstein, Executive Vice President & Managing
Director, Disney Online

“Just the right tone for the geeked-out, casual-cool guru coder in all of us. The right
reference for practical development strategies — gets my brain going without having
to slog through a bunch of tired, stale professor-speak.”

— Travis Kalanick, CEO and cofounder of Uber and Member of
the MIT TR100

“This book combines good humor, great examples, and in-depth knowledge of Design
Patterns in such a way that makes learning fun. Being in the entertainment technology
industry, I am intrigued by the Hollywood Principle and the home theater Facade
Pattern, to name a few. The understanding of Design Patterns not only helps us create
reusable and maintainable quality software, but also helps sharpen our problem-solving
skills across all problem domains. This book is a must-read for all computer
professionals and students.”

— Newton Lee, Founder and Editor-in-Chief, Association for
Computing Machinery’s (ACM) Computers in Entertainment

(acmcie.org)

Praise for other books by Eric
Freeman and Elisabeth Robson

“I literally love this book. In fact, I kissed this book in front of my wife.”
— Satish Kumar

“Head First HTML and CSS is a thoroughly modern introduction to forward-looking
practices in web page markup and presentation. It correctly anticipates readers’
puzzlements and handles them just in time. The highly graphic and incremental
approach precisely mimics the best way to learn this stuff: make a small change and
see it in the browser to understand what each new item means.”

— Danny Goodman, author of Dynamic HTML: The Definitive
Guide

“The Web would be a much better place if every HTML author started off by reading
this book.”

— L. David Baron, Technical Lead, Layout & CSS, Mozilla
Corporation http://dbaron.org/

“My wife stole the book. She’s never done any web design, so she needed a book like
Head First HTML and CSS to take her from beginning to end. She now has a list of
websites she wants to build — for our son’s class, our family...If I’m lucky, I’ll get the
book back when she’s done.”

— David Kaminsky, Master Inventor, IBM

“This book takes you behind the scenes of JavaScript and leaves you with a deep
understanding of how this remarkable programming language works.”

— Chris Fuselier, Engineering Consultant

“I wish I’d had Head First JavaScript Programming when I was starting out!”
— Chris Fuselier, Engineering Consultant

“The Head First series utilizes elements of modern learning theory, including
constructivism, to bring readers up to speed quickly. The authors have proven with this
book that expert-level content can be taught quickly and efficiently. Make no mistake
here, this is a serious JavaScript book, and yet, fun reading!”

— Frank Moore, Web designer and developer

“Looking for a book that will keep you interested (and laughing) but teach you some
serious programming skills? Head First JavaScript Programming is it!”

— Tim Williams, software entrepreneur

http://dbaron.org/

Other O’Reilly books by Eric Freeman and Elisabeth Robson
Head First JavaScript Programming
Head First HTML and CSS
Head First HTML5 Programming

Other related books from O’Reilly
Head First Java
Head First EJB
Head First Servlets & JSP
Learning Java
Java in a Nutshell
Java Enterprise in a Nutshell
Java Examples in a Nutshell
Java Cookbook
J2EE Design Patterns

Authors of Head First Design
Patterns

Eric is described by Head First series co-creator Kathy Sierra as “one of
those rare individuals fluent in the language, practice, and culture of multiple
domains from hipster hacker, corporate VP, engineer, think tank.”
Professionally, Eric recently ended nearly a decade as a media company
executive — having held the position of CTO of Disney Online &
Disney.com at The Walt Disney Company. Eric is now devoting his time to
WickedlySmart, a startup he co-created with Elisabeth.
By training, Eric is a computer scientist, having studied with industry
luminary David Gelernter during his Ph.D. work at Yale University. His
dissertation is credited as the seminal work in alternatives to the desktop
metaphor, and also as the first implementation of activity streams, a concept
he and Dr. Gelernter developed.
In his spare time, Eric is deeply involved with music; you’ll find Eric’s latest
project, a collaboration with ambient music pioneer Steve Roach, available
on the iPhone app store under the name Immersion Station.
Eric lives with his wife and young daughter in Austin, Texas. His daughter is

a frequent vistor to Eric’s studio, where she loves to turn the knobs of his
synths and audio effects.
Write to Eric at eric@wickedlysmart.com or visit his site at
ericfreeman.com.

Elisabeth is a software engineer, writer, and trainer. She has been passionate
about technology since her days as a student at Yale University, where she
earned a Masters of Science in Computer Science and designed a concurrent,
visual programming language and software architecture.
Elisabeth’s been involved with the Internet since the early days; she co-
created the award-winning web site, The Ada Project, one of the first web
sites designed to help women in computer science find career and mentorship
information online.
She’s currently co-founder of WickedlySmart, an online education
experience centered on web technologies, where she creates books, articles,
videos, and more. Previously, as Director of Special Projects at O’Reilly
Media, Elisabeth produced in-person workshops and online courses on a
variety of technical topics and developed her passion for creating learning
experiences to help people understand technology. Prior to her work with
O’Reilly, Elisabeth spent time spreading fairy dust at The Walt Disney
Company, where she led research and development efforts in digital media.
When not in front of her computer, you’ll find Elisabeth hiking, cycling, or

kayaking in the great outdoors, with her camera nearby, or cooking
vegetarian meals.
You can send her email at beth@wickedlysmart.com or visit her blog at
elisabethrobson.com.

Creators of the Head First series
(and co-conspirators on this book)

Kathy has been interested in learning theory since her days as a game
designer (she wrote games for Virgin, MGM, and Amblin’). She developed
much of the Head First format while teaching New Media Authoring for
UCLA Extension’s Entertainment Studies program. More recently, she’s
been a master trainer for Sun Microsystems, teaching Sun’s Java instructors
how to teach the latest Java technologies, and developing several of Sun’s
certification exams. Together with Bert Bates, she has been actively using the
Head First concepts to teach throusands of developers. Kathy is the founder
of javaranch.com, which won a 2003 and 2004 Software Development
magazine Jolt Cola Productivity Award. You might catch her teaching Java
on the Java Jam Geek Cruise (geekcruises.com).
Likes: running, skiing, skateboarding, playing with her Icelandic horses, and
weird science. Dislikes: entropy.
You can find her on javaranch, or occasionally blogging at seriouspony.com.
Write to her at kathy@wickedlysmart.com.
Bert is a long-time software developer and architect, but a decade-long stint
in artificial intelligence drove his interest in learning theory and technology-

based training. He’s been helping clients become better programmers ever
since. Recently, he’s been heading up the development team for several of
Sun’s Java Certification exams.
He spent the first decade of his software career travelling the world to help
broadcast clients like Radio New Zealand, the Weather Channel, and the Arts
& Entertainment Network (A & E). One of his all-time favorite projects was
building a full rail system simulation for Union Pacific Railroad.
Bert is a long-time, hopelessly addicted go player, and has been working on a
go program for way too long. He’s a fair guitar player and is now trying his
hand at banjo.
Look for him on javaranch, on the IGS go server, or you can write to him at
terrapin@wickedlysmart.com.

How to Use This Book: Intro

In this section, we answer the burning question: “So, why DID they put that in a design
patterns book?”

Who is this book for?
If you can answer “yes” to all of these:
① Do you know Java? (You don’t need to be a guru.)

NOTE

You’ll probably be okay if you know C# instead.

② Do you want to learn, understand, remember, and apply design
patterns, including the OO design principles upon which design patterns
are based?
③ Do you prefer stimulating dinner party conversation to dry, dull,
academic lectures?

this book is for you.

Who should probably back away from this book?
If you can answer “yes” to any one of these:
① Are you completely new to Java?
(You don’t need to be advanced, and even if you don’t know Java, but you
know C#, you’ll probably understand at least 80% of the code examples.
You also might be okay with just a C++ background.)
② Are you a kick-butt OO designer/developer looking for a reference
book?
③ Are you an architect looking for enterprise design patterns?
④ Are you afraid to try something different? Would you rather have a
root canal than mix stripes with plaid? Do you believe that a technical
book can’t be serious if Java components are anthropomorphized?

this book is not for you.

[note from marketing: this book is for anyone with a credit card.]

We know what you’re thinking.
“How can this be a serious programming book?”
“What’s with all the graphics?”
“Can I actually learn it this way?”

And we know what your brain is thinking.
Your brain craves novelty. It’s always searching, scanning, waiting for
something unusual. It was built that way, and it helps you stay alive.
Today, you’re less likely to be a tiger snack. But your brain’s still looking.
You just never know.
So what does your brain do with all the routine, ordinary, normal things you
encounter? Everything it can to stop them from interfering with the brain’s
real job — recording things that matter. It doesn’t bother saving the boring
things; they never make it past the “this is obviously not important” filter.
How does your brain know what’s important? Suppose you’re out for a day
hike and a tiger jumps in front of you, what happens inside your head and
body?
Neurons fire. Emotions crank up. Chemicals surge.

And that’s how your brain knows...

This must be important! Don’t forget it!
But imagine you’re at home, or in a library. It’s a safe, warm, tiger-free zone.
You’re studying. Getting ready for an exam. Or trying to learn some tough
technical topic your boss thinks will take a week, ten days at the most.
Just one problem. Your brain’s trying to do you a big favor. It’s trying to
make sure that this obviously non-important content doesn’t clutter up scarce
resources. Resources that are better spent storing the really big things. Like
tigers. Like the danger of fire. Like how you should never again snowboard
in shorts.
And there’s no simple way to tell your brain, “Hey brain, thank you very
much, but no matter how dull this book is, and how little I’m registering on
the emotional Richter scale right now, I really do want you to keep this stuff
around.”

WE THINK OF A “HEAD FIRST” READER AS A LEARNER

So what does it take to learn something? First, you have to get it, then make sure
you don’t forget it. It’s not about pushing facts into your head. Based on the latest
research in cognitive science, neurobiology, and educational psychology, learning
takes a lot more than text on a page. We know what turns your brain on.

Some of the Head First learning principles:

Make it visual. Images are far more memorable than words alone, and make learning
much more effective (up to 89% improvement in recall and transfer studies). It also
makes things more understandable. Put the words within or near the graphics they
relate to, rather than on the bottom or on another page, and learners will be up to twice as
likely to solve problems related to the content.

Use a conversational and personalized style. In recent studies, students performed up
to 40% better on post-learning tests if the content spoke directly to the reader, using a
first-person, conversational style rather than taking a formal tone. Tell stories instead of
lecturing. Use casual language. Don’t take yourself too seriously. Which would you pay
more attention to: a stimulating dinner party companion, or a lecture?

Get the learner to think more deeply. In other words, unless you actively flex your
neurons, nothing much happens in your head. A reader has to be motivated, engaged,
curious, and inspired to solve problems, draw conclusions, and generate new knowledge.
And for that, you need challenges, exercises, and thought-provoking questions, and
activities that involve both sides of the brain, and multiple senses.

Get — and keep — the reader’s attention. We’ve all had the “I really want to learn
this but I can’t stay awake past page one” experience. Your brain pays attention to things
that are out of the ordinary, interesting, strange, eye-catching, unexpected. Learning a
new, tough, technical topic doesn’t have to be boring. Your brain will learn much more
quickly if it’s not.

Touch their emotions. We now know that your ability to remember something is
largely dependent on its emotional content. You remember what you care about. You
remember when you feel something. No, we’re not talking heart-wrenching stories about
a boy and his dog. We’re talking emotions like surprise, curiosity, fun, “what the...?” ,
and the feeling of “I Rule!” that comes when you solve a puzzle, learn something
everybody else thinks is hard, or realize you know something that “I’m more technical
than thou” Bob from engineering doesn’t.

Metacognition: thinking about thinking
If you really want to learn, and you want to learn more quickly and more
deeply, pay attention to how you pay attention. Think about how you think.
Learn how you learn.
Most of us did not take courses on metacognition or learning theory when we
were growing up. We were expected to learn, but rarely taught to learn.
But we assume that if you’re holding this book, you really want to learn
design patterns. And you probably don’t want to spend a lot of time. And you
want to remember what you read, and be able to apply it. And for that,
you’ve got to understand it. To get the most from this book, or any book or

learning experience, take responsibility for your brain. Your brain on this
content.
The trick is to get your brain to see the new material you’re learning as
Really Important. Crucial to your well-being. As important as a tiger.
Otherwise, you’re in for a constant battle, with your brain doing its best to
keep the new content from sticking.

So how DO you get your brain to think Design Patterns are as important
as a tiger?
There’s the slow, tedious way, or the faster, more effective way. The slow
way is about sheer repetition. You obviously know that you are able to learn
and remember even the dullest of topics, if you keep pounding on the same
thing. With enough repetition, your brain says, “This doesn’t feel important
to him, but he keeps looking at the same thing over and over and over, so I
suppose it must be.”
The faster way is to do anything that increases brain activity, especially
different types of brain activity. The things on the previous page are a big part

of the solution, and they’re all things that have been proven to help your brain
work in your favor. For example, studies show that putting words within the
pictures they describe (as opposed to somewhere else in the page, like a
caption or in the body text) causes your brain to try to makes sense of how
the words and picture relate, and this causes more neurons to fire. More
neurons firing = more chances for your brain to get that this is something
worth paying attention to, and possibly recording.
A conversational style helps because people tend to pay more attention when
they perceive that they’re in a conversation, since they’re expected to follow
along and hold up their end. The amazing thing is, your brain doesn’t
necessarily care that the “conversation” is between you and a book! On the
other hand, if the writing style is formal and dry, your brain perceives it the
same way you experience being lectured to while sitting in a roomful of
passive attendees. No need to stay awake.
But pictures and conversational style are just the beginning.

Here’s what WE did
We used pictures, because your brain is tuned for visuals, not text. As far as
your brain’s concerned, a picture really is worth 1,024 words. And when text
and pictures work together, we embedded the text in the pictures because
your brain works more effectively when the text is within the thing the text
refers to, as opposed to in a caption or buried in the text somewhere.

We used redundancy, saying the same thing in different ways and with
different media types, and multiple senses, to increase the chance that the
content gets coded into more than one area of your brain.
We used concepts and pictures in unexpected ways because your brain is
tuned for novelty, and we used pictures and ideas with at least some
emotional content, because your brain is tuned to pay attention to the
biochemistry of emotions. That which causes you to feel something is more
likely to be remembered, even if that feeling is nothing more than a little
humor, surprise, or interest.
We used a personalized, conversational style, because your brain is tuned to
pay more attention when it believes you’re in a conversation than if it thinks
you’re passively listening to a presentation. Your brain does this even when
you’re reading.

We included more than 40 activities, because your brain is tuned to learn and

remember more when you do things than when you read about things. And
we made the exercises challenging-yet-do-able, because that’s what most
people prefer.
We used multiple learning styles, because you might prefer step-by-step
procedures, while someone else wants to understand the big picture first,
while someone else just wants to see a code example. But regardless of your
own learning preference, everyone benefits from seeing the same content
represented in multiple ways.

We include content for both sides of your brain, because the more of your
brain you engage, the more likely you are to learn and remember, and the
longer you can stay focused. Since working one side of the brain often means
giving the other side a chance to rest, you can be more productive at learning
for a longer period of time.

And we included stories and exercises that present more than one point of
view, because your brain is tuned to learn more deeply when it’s forced to
make evaluations and judgements.
We included challenges, with exercises, and by asking questions that don’t
always have a straight answer, because your brain is tuned to learn and
remember when it has to work at something. Think about it — you can’t get
your body in shape just by watching people at the gym. But we did our best to
make sure that when you’re working hard, it’s on the right things. That
you’re not spending one extra dendrite processing a hard-to-understand
example, or parsing difficult, jargon-laden, or overly terse text.
We used people. In stories, examples, pictures, etc., because, well, because
you’re a person. And your brain pays more attention to people than it does to
things.
We used an 80/20 approach. We assume that if you’re going for a PhD in
software design, this won’t be your only book. So we don’t talk about

everything. Just the stuff you’ll actually need.

Here’s what YOU can do to bend your brain into
submission
So, we did our part. The rest is up to you. These tips are a starting point;
listen to your brain and figure out what works for you and what doesn’t. Try
new things.

Cut this out and stick it on your refrigerator.

① Slow down. The more you understand, the less you have to
memorize.
Don’t just read. Stop and think. When the book asks you a question, don’t
just skip to the answer. Imagine that someone really is asking the question.
The more deeply you force your brain to think, the better chance you have
of learning and remembering.
② Do the exercises. Write your own notes.
We put them in, but if we did them for you, that would be like having
someone else do your workouts for you. And don’t just look at the

exercises. Use a pencil. There’s plenty of evidence that physical activity
while learning can increase the learning.
③ Read the “There Are No Dumb Questions”
That means all of them. They’re not optional side-bars — they’re part of
the core content! Don’t skip them.
④ Make this the last thing you read before bed. Or at least the last
challenging thing.
Part of the learning (especially the transfer to long-term memory) happens
after you put the book down. Your brain needs time on its own, to do
more processing. If you put in something new during that processing-time,
some of what you just learned will be lost.
⑤ Drink water. Lots of it.
Your brain works best in a nice bath of fluid. Dehydration (which can
happen before you ever feel thirsty) decreases cognitive function.
⑥ Talk about it. Out loud.
Speaking activates a different part of the brain. If you’re trying to
understand something, or increase your chance of remembering it later,
say it out loud. Better still, try to explain it out loud to someone else.
You’ll learn more quickly, and you might uncover ideas you hadn’t
known were there when you were reading about it.
⑦ Listen to your brain.
Pay attention to whether your brain is getting overloaded. If you find
yourself starting to skim the surface or forget what you just read, it’s time
for a break. Once you go past a certain point, you won’t learn faster by
trying to shove more in, and you might even hurt the process.
⑧ Feel something!
Your brain needs to know that this matters. Get involved with the stories.
Make up your own captions for the photos. Groaning over a bad joke is
still better than feeling nothing at all.
⑨ Design something!
Apply this to something new you’re designing, or refactor an older
project. Just do something to get some experience beyond the exercises
and activities in this book. All you need is a pencil and a problem to
solve... a problem that might benefit from one or more design patterns.

Read Me
This is a learning experience, not a reference book. We deliberately stripped

out everything that might get in the way of learning whatever it is we’re
working on at that point in the book. And the first time through, you need to
begin at the beginning, because the book makes assumptions about what
you’ve already seen and learned.

We use simple UML-like diagrams.
Although there’s a good chance you’ve run across UML, it’s not covered in
the book, and it’s not a prerequisite for the book. If you’ve never seen UML
before, don’t worry, we’ll give you a few pointers along the way. So in other
words, you won’t have to worry about Design Patterns and UML at the same
time. Our diagrams are “UML-like” — while we try to be true to UML there
are times we bend the rules a bit, usually for our own selfish artistic reasons.
We don’t cover every single Design Pattern ever created.
There are a lot of Design Patterns. The original foundational patterns (known
as the GoF patterns), enterprise Java patterns, JSP patterns, architectural
patterns, game design patterns and a lot more. But our goal was to make sure
the book weighed less than the person reading it, so we don’t cover them all
here. Our focus is on the core patterns that matter from the original GoF
patterns, and making sure that you really, truly, deeply understand how and
when to use them. You will find a brief look at some of the other patterns (the
ones you’re far less likely to use) in the appendix. In any case, once you’re
done with Head First Design Patterns, you’ll be able to pick up any pattern
catalog and get up to speed quickly.
The activities are NOT optional.
The exercises and activities are not add-ons; they’re part of the core content
of the book. Some of them are to help with memory, some for understanding,
and some to help you apply what you’ve learned. Don’t skip the exercises.

The crossword puzzles are the only things you don’t have to do, but they’re
good for giving your brain a chance to think about the words from a different
context.
We use the word “composition” in the general OO sense, which is more
flexible than the strict UML use of “composition.”
When we say “one object is composed with another object” we mean that
they are related by a HAS-A relationship. Our use reflects the traditional use
of the term and is the one used in the GoF text (you’ll learn what that is
later). More recently, UML has refined this term into several types of
composition. If you are an UML expert, you’ll still be able to read the book
and you should be able to easily map the use of composition to more refined
terms as you read.
The redundancy is intentional and important.
One distinct difference in a Head First book is that we want you to really get
it. And we want you to finish the book remembering what you’ve learned.
Most reference books don’t have retention and recall as a goal, but this book
is about learning, so you’ll see some of the same concepts come up more
than once.
The code examples are as lean as possible.
Our readers tell us that it’s frustrating to wade through 200 lines of code
looking for the two lines they need to understand. Most examples in this book
are shown within the smallest possible context, so that the part you’re trying
to learn is clear and simple. Don’t expect all of the code to be robust, or even
complete — the examples are written specifically for learning, and aren’t
always fully-functional.
In some cases, we haven’t included all of the import statements needed, but
we assume that if you’re a Java programmer, you know that ArrayList is in
java.util, for example. If the imports were not part of the normal core JSE
API, we mention it. We’ve also placed all the source code on the Web so you
can download it. You’ll find it at http://wickedlysmart.com/head-first-
design-patterns/

Also, for the sake of focusing on the learning side of the code, we did not put
our classes into packages (in other words, they’re all in the Java default
package). We don’t recommend this in the real world, and when you
download the code examples from this book, you’ll find that all classes are in

packages.
The Brain Power exercises don’t have answers.
For some of them, there is no right answer, and for others, part of the learning
experience of the Brain Power activities is for you to decide if and when your
answers are right. In some of the Brain Power exercises you will find hints to
point you in the right direction.

Tech Reviewers

Philippe Maquet

In memory of Philippe Maquet
1960 - 2004
Your amazing technical expertise, relentless enthusiasm, and deep concern for the
learner will inspire us always.
We will never forget you.

Acknowledgments
At O’Reilly:
Our biggest thanks to Mike Loukides at O’Reilly, for starting it all and
helping to shape the Head First concept into a series. And a big thanks to the
driving force behind Head First, Tim O’Reilly. Thanks to the clever Head
First “series mom” Kyle Hart, “In Design King” Ron Bilodeau, rock-and-
roll star Ellie Volkhausen for her inspired cover design, Melanie
Yarbrough for shepherding production, Colleen Gorman and Rachel
Monaghan for their hardcore copyedits, and Bob Pfahler for a much
improved index. Finally, thanks to Mike Hendrickson and Meghan
Blanchette for championing this book and building the team.
Our intrepid reviewers:
We are extremely grateful for our technical review director Johannes
deJong. You are our hero, Johannes. And we deeply appreciate the
contributions of the co-manager of the Javaranch review team, the late
Philippe Maquet. You have single-handedly brightened the lives of
thousands of developers, and the impact you’ve had on their (and our) lives is

forever. Jef Cumps is scarily good at finding problems in our draft chapters,
and once again made a huge difference for the book. Thanks Jef! Valentin
Cretazz (AOP guy), who has been with us from the very first Head First
book, proved (as always) just how much we really need his technical
expertise and insight. You rock Valentin (but lose the tie).
Two newcomers to the HF review team, Barney Marispini and Ike Van
Atta did a kick butt job on the book — you guys gave us some really crucial
feedback. Thanks for joining the team.
We also got some excellent technical help from Javaranch moderators/gurus
Mark Spritzler, Jason Menard, Dirk Schreckmann, Thomas Paul, and
Margarita Isaeva. And as always, thanks especially to the javaranch.com
Trail Boss, Paul Wheaton.
Thanks to the finalists of the Javaranch “Pick the Head First Design Patterns
Cover” contest. The winner, Si Brewster, submitted the winning essay that
persuaded us to pick the woman you see on our cover. Other finalists include
Andrew Esse, Gian Franco Casula, Helen Crosbie, Pho Tek, Helen Thomas,
Sateesh Kommineni, and Jeff Fisher.
For the 2014 update to the book, we are so grateful to the following technical
reviewers: George Hoffer, Ted Hill, Todd Bartoszkiewicz, Sylvain Tenier,
Scott Davidson, Kevin Ryan, Rich Ward, Mark Francis Jaeger, Mark Masse,
Glenn Ray, Bayard Fetler, Paul Higgins, Matt Carpenter, Julia Williams,
Matt McCullough, and Mary Ann Belarmino.

Even more people[1]

From Eric and Elisabeth
Writing a Head First book is a wild ride with two amazing tour guides:
Kathy Sierra and Bert Bates. With Kathy and Bert you throw out all book
writing convention and enter a world full of storytelling, learning theory,
cognitive science, and pop culture, where the reader always rules. Thanks to
both of you for letting us enter your amazing world; we hope we’ve done
Head First justice. Seriously, this has been amazing. Thanks for all your
careful guidance, for pushing us to go forward, and most of all, for trusting us
(with your baby). You’re both certainly “wickedly smart” and you’re also the
hippest 29-year-olds we know. So... what’s next?
A big thank you to Mike Loukides, Mike Hendrickson, and Meghan

Blanchette. Mike L. was with us every step of the way. Mike, your insightful
feedback helped shape the book and your encouragement kept us moving
ahead. Mike H., thanks for your persistence over five years in trying to get us
to write a patterns book; we finally did it and we’re glad we waited for Head
First. And Meg, thanks for diving into the update with us; we couldn’t have
done it without you.
A very special thanks to Erich Gamma, who went far beyond the call of
duty in reviewing this book (he even took a draft with him on vacation).
Erich, your interest in this book inspired us and your thorough technical
review improved it immeasurably. Thanks as well to the entire Gang of Four
for their support & interest, and for making a special appearance in
Objectville. We are also indebted to Ward Cunningham and the patterns
community who created the Portland Pattern Repository — an indespensible
resource for us in writing this book.
It takes a village to write a technical book: Bill Pugh and Ken Arnold gave
us expert advice on Singleton. Joshua Marinacci provided rockin’ Swing
tips and advice. John Brewer’s “Why a Duck?” paper inspired SimUDuck
(and we’re glad he likes ducks too). Dan Friedman inspired the Little
Singleton example. Daniel Steinberg acted as our “technical liason” and our
emotional support network. Thanks to Apple’s James Dempsey for allowing
us to use his MVC song. And thank you to Richard Warburton who made
sure our Java 8 code updates were up to snuff for this updated edition of the
book.
Last, a personal thank you to the Javaranch review team for their top-notch
reviews and warm support. There’s more of you in this book than you know.
From Kathy and Bert
We’d like to thank Mike Hendrickson for finding Eric and Elisabeth... but we
can’t. Because of these two, we discovered (to our horror) that we aren’t the
only ones who can do a Head First book. ;) However, if readers want to
believe that it’s really Kathy and Bert who did the cool things in the book,
well, who are we to set them straight?

[1] The large number of acknowledgments is because we’re testing the theory that everyone
mentioned in a book acknowledgment will buy at least one copy, probably more, what with
relatives and everything. If you’d like to be in the acknowledgment of our next book, and

you have a large family, write to us.

Chapter 1. Intro to Design Patterns:
Welcome to Design Patterns

Someone has already solved your problems. In this chapter, you’ll learn
why (and how) you can exploit the wisdom and lessons learned by other
developers who’ve been down the same design problem road and survived
the trip. Before we’re done, we’ll look at the use and benefits of design
patterns, look at some key OO design principles, and walk through an
example of how one pattern works. The best way to use patterns is to load
your brain with them and then recognize places in your designs and existing
applications where you can apply them. Instead of code reuse, with patterns
you get experience reuse.

It started with a simple SimUDuck app
Joe works for a company that makes a highly successful duck pond
simulation game, SimUDuck. The game can show a large variety of duck
species swimming and making quacking sounds. The initial designers of the
system used standard OO techniques and created one Duck superclass from
which all other duck types inherit.

In the last year, the company has been under increasing pressure from
competitors. After a week long off-site brainstorming session over golf, the
company executives think it’s time for a big innovation. They need
something really impressive to show at the upcoming shareholders meeting
in Maui next week.

But now we need the ducks to FLY
The executives decided that flying ducks is just what the simulator needs to
blow away the other duck sim competitors. And of course Joe’s manager told
them it’ll be no problem for Joe to just whip something up in a week. “After
all,” said Joe’s boss, “he’s an OO programmer... how hard can it be?”

But something went horribly wrong...

What happened?
Joe failed to notice that not all subclasses of Duck should fly. When Joe
added new behavior to the Duck superclass, he was also adding behavior that
was not appropriate for some Duck subclasses. He now has flying inanimate
objects in the SimUDuck program.
A localized update to the code caused a nonlocal side effect (flying rubber
ducks)!

What Joe thought was a great use of inheritance for the purpose of reuse hasn’t
turned out so well when it comes to maintenance.

Joe thinks about inheritance...

SHARPEN YOUR PENCIL

Which of the following are disadvantages of using inheritance to provide Duck
behavior? (Choose all that apply.)

A. Code is duplicated across subclasses.

B. Runtime behavior changes are difficult.

C. We can’t make ducks dance.

D. Hard to gain knowledge of all duck behaviors.

E. Ducks can’t fly and quack at the same time.

F. Changes can unintentionally affect other ducks.

How about an interface?
Joe realized that inheritance probably wasn’t the answer, because he just got
a memo that says that the executives now want to update the product every
six months (in ways they haven’t yet decided on). Joe knows the spec will
keep changing and he’ll be forced to look at and possibly override fly() and
quack() for every new Duck subclass that’s ever added to the program...
forever.
So, he needs a cleaner way to have only some (but not all) of the duck types
fly or quack.

What do YOU think about this design?

What would you do if you were Joe?
We know that not all of the subclasses should have flying or quacking
behavior, so inheritance isn’t the right answer. But while having the
subclasses implement Flyable and/or Quackable solves part of the problem
(no inappropriately flying rubber ducks), it completely destroys code reuse
for those behaviors, so it just creates a different maintenance nightmare. And
of course there might be more than one kind of flying behavior even among
the ducks that do fly...
At this point you might be waiting for a Design Pattern to come riding in on a
white horse and save the day. But what fun would that be? No, we’re going to
figure out a solution the old-fashioned way — by applying good OO software
design principles.

The one constant in software development
Okay, what’s the one thing you can always count on in software
development?
No matter where you work, what you’re building, or what language you are
programming in, what’s the one true constant that will be with you always?

(use a mirror to see the answer)
No matter how well you design an application, over time an application must
grow and change or it will die.

SHARPEN YOUR PENCIL

Lots of things can drive change. List some reasons you’ve had to change code in your
applications (we put in a couple of our own to get you started).

My customers or users decide they want something else, or they want new functionality.

My company decided it is going with another database vendor and it is also purchasing its data
from another supplier that uses a different data format. Argh!

__

__

__

__

__

Zeroing in on the problem...
So we know using inheritance hasn’t worked out very well, since the duck
behavior keeps changing across the subclasses, and it’s not appropriate for all
subclasses to have those behaviors. The Flyable and Quackable interface
sounded promising at first — only ducks that really do fly will be Flyable,
etc. — except Java interfaces have no implementation code, so no code reuse.
And that means that whenever you need to modify a behavior, you’re forced
to track down and change it in all the different subclasses where that behavior
is defined, probably introducing new bugs along the way!
Luckily, there’s a design principle for just this situation.

DESIGN PRINCIPLE

Identify the aspects of your application that vary and separate them from what stays the
same.

The first of many design principles. We’ll spend more time on these throughout the
book.

Take what varies and “encapsulate” it so it won’t affect the rest of your code.
The result? Fewer unintended consequences from code changes and more
flexibility in your systems!

In other words, if you’ve got some aspect of your code that is changing, say
with every new requirement, then you know you’ve got a behavior that needs
to be pulled out and separated from all the stuff that doesn’t change.

Here’s another way to think about this principle: take the parts that vary and
encapsulate them, so that later you can alter or extend the parts that vary
without affecting those that don’t.
As simple as this concept is, it forms the basis for almost every design
pattern. All patterns provide a way to let some part of a system vary
independently of all other parts.
Okay, time to pull the duck behavior out of the Duck classes!

Separating what changes from what stays the same
Where do we start? As far as we can tell, other than the problems with fly()
and quack(), the Duck class is working well and there are no other parts of it
that appear to vary or change frequently. So, other than a few slight changes,
we’re going to pretty much leave the Duck class alone.
Now, to separate the “parts that change from those that stay the same,” we are
going to create two sets of classes (totally apart from Duck), one for fly and
one for quack. Each set of classes will hold all the implementations of the
respective behavior. For instance, we might have one class that implements
quacking, another that implements squeaking, and another that implements
silence.
We know that fly() and quack() are the parts of the Duck class that vary
across ducks.
To separate these behaviors from the Duck class, we’ll pull both methods
out of the Duck class and create a new set of classes to represent each
behavior.

Designing the Duck Behaviors
So how are we going to design the set of classes that implement the fly
and quack behaviors?
We’d like to keep things flexible; after all, it was the inflexibility in the duck
behaviors that got us into trouble in the first place. And we know that we
want to assign behaviors to the instances of Duck. For example, we might
want to instantiate a new MallardDuck instance and initialize it with a
specific type of flying behavior. And while we’re there, why not make sure
that we can change the behavior of a duck dynamically? In other words, we
should include behavior setter methods in the Duck classes so that we can
change the MallardDuck’s flying behavior at runtime.
Given these goals, let’s look at our second design principle:

DESIGN PRINCIPLE

Program to an interface, not an implementation.

From now on, the Duck behaviors will live in a separate class — a class that
implements a particular behavior interface.

That way, the Duck classes won’t need to know any of the implementation details
for their own behaviors.

We’ll use an interface to represent each behavior — for instance,
FlyBehavior and QuackBehavior — and each implementation of a behavior
will implement one of those interfaces.
So this time it won’t be the Duck classes that will implement the flying and
quacking interfaces. Instead, we’ll make a set of classes whose entire reason
for living is to represent a behavior (for example, “squeaking”), and it’s the
behavior class, rather than the Duck class, that will implement the behavior
interface.
This is in contrast to the way we were doing things before, where a behavior
came either from a concrete implementation in the superclass Duck, or by
providing a specialized implementation in the subclass itself. In both cases
we were relying on an implementation. We were locked into using that
specific implementation and there was no room for changing the behavior
(other than writing more code).
With our new design, the Duck subclasses will use a behavior represented by
an interface (FlyBehavior and QuackBehavior), so that the actual
implementation of the behavior (in other words, the specific concrete
behavior coded in the class that implements the FlyBehavior or
QuackBehavior) won’t be locked into the Duck subclass.

“Program to an interface” really means “Program to a supertype.”
The word interface is overloaded here. There’s the concept of interface, but
there’s also the Java construct interface. You can program to an interface,
without having to actually use a Java interface. The point is to exploit
polymorphism by programming to a supertype so that the actual runtime
object isn’t locked into the code. And we could rephrase “program to a
supertype” as “the declared type of the variables should be a supertype,
usually an abstract class or interface, so that the objects assigned to those
variables can be of any concrete implementation of the supertype, which
means the class declaring them doesn’t have to know about the actual object
types!”

This is probably old news to you, but just to make sure we’re all saying the
same thing, here’s a simple example of using a polymorphic type — imagine
an abstract class Animal, with two concrete implementations, Dog and Cat.
Programming to an implementation would be:

Dog d = new Dog();
d.bark();

NOTE

Declaring the variable “d” as type Dog (a concrete implementation of Animal) forces us
to code to a concrete implementation.

But programming to an interface/supertype would be:
Animal animal = new Dog();
animal.makeSound();

NOTE

We know it’s a Dog, but we can now use the animal reference polymorphically.

Even better, rather than hardcoding the instantiation of the subtype (like new
Dog()) into the code, assign the concrete implementation object at
runtime:

a = getAnimal();
a.makeSound();

NOTE

We don’t know WHAT the actual animal subtype is... all we care about is that it knows
how to respond to makeSound().

Implementing the Duck Behaviors
Here we have the two interfaces, FlyBehavior and QuackBehavior, along
with the corresponding classes that implement each concrete behavior:

NOTE

With this design, other types of objects can reuse our fly and quack behaviors
because these behaviors are no longer hidden away in our Duck classes!

And we can add new behaviors without modifying any of our existing behavior
classes or touching any of the Duck classes that use flying behaviors.

So we get the benefit of REUSE without all the baggage that comes along with
inheritance.

THERE ARE NO DUMB QUESTIONS

Q: Q: Do I always have to implement my application first, see where things are changing, and then go back
and separate & encapsulate those things?

A: A: Not always; often when you are designing an application, you anticipate those areas that are going to vary and
then go ahead and build the flexibility to deal with it into your code. You’ll find that the principles and patterns
can be applied at any stage of the development lifecycle.

Q: Q: Should we make Duck an interface too?

A: A: Not in this case. As you’ll see once we’ve got everything hooked together, we do benefit by having Duck not
be an interface, and having specific ducks, like MallardDuck, inherit common properties and methods. Now that
we’ve removed what varies from the Duck inheritance, we get the benefits of this structure without the problems.

Q: Q: It feels a little weird to have a class that’s just a behavior. Aren’t classes supposed to represent things?

Aren’t classes supposed to have both state AND behavior?

A: A: In an OO system, yes, classes represent things that generally have both state (instance variables) and methods.
And in this case, the thing happens to be a behavior. But even a behavior can still have state and methods; a flying
behavior might have instance variables representing the attributes for the flying (wing beats per minute, max
altitude, and speed, etc.) behavior.

SHARPEN YOUR PENCIL

① Using our new design, what would you do if you needed to add rocket-powered
flying to the SimUDuck app?
② Can you think of a class that might want to use the Quack behavior that isn’t a
duck?

Answers:
1) Create a FlyRocketPowered class that implements the FlyBehavior
interface.
2) One example, a duck call (a device that makes duck sounds).

Integrating the Duck Behavior
The key is that a Duck will now delegate its flying and quacking
behavior, instead of using quacking and flying methods defined in the
Duck class (or subclass).
Here’s how:
① First we’ll add two instance variables to the Duck class called
flyBehavior and quackBehavior that are declared as the interface type (not
a concrete class implementation type). Each duck object will set these
variables polymorphically to reference the specific behavior type it would
like at runtime (FlyWithWings, Squeak, etc.).
We’ll also remove the fly() and quack() methods from the Duck class (and
any subclasses) because we’ve moved this behavior out into the
FlyBehavior and QuackBehavior classes.
We’ll replace fly() and quack() in the Duck class with two similar
methods, called performFly() and performQuack(); you’ll see how they
work next.

② Now we implement performQuack():

Pretty simple, huh? To perform the quack, a Duck just allows the object
that is referenced by quackBehavior to quack for it.
In this part of the code we don’t care what kind of object it is, all we care
about is that it knows how to quack()!

More integration...
③ Okay, time to worry about how the flyBehavior and quackBehavior
instance variables are set. Let’s take a look at the MallardDuck class:

So MallardDuck’s quack is a real live duck quack, not a squeak and not a
mute quack. So what happens here? When a MallardDuck is instantiated,
its constructor initializes the MallardDuck’s inherited quackBehavior
instance variable to a new instance of type Quack (a QuackBehavior
concrete implementation class).
And the same is true for the duck’s flying behavior — the MallardDuck’s
constructor initializes the flyBehavior instance variable with an instance of
type FlyWithWings (a FlyBehavior concrete implementation class).

Good catch, that’s exactly what we’re doing... for now.
Later in the book we’ll have more patterns in our toolbox that can help us fix
it.
Still, notice that while we are setting the behaviors to concrete classes (by
instantiating a behavior class like Quack or FlyWithWings and assigning it to
our behavior reference variable), we could easily change that at runtime.
So, we still have a lot of flexibility here, but we’re doing a poor job of
initializing the instance variables in a flexible way. But think about it: since
the quackBehavior instance variable is an interface type, we could (through
the magic of polymorphism) dynamically assign a different QuackBehavior

implementation class at runtime.
Take a moment and think about how you would implement a duck so that its
behavior could change at runtime. (You’ll see the code that does this a few
pages from now.)

Testing the Duck code
① Type and compile the Duck class below (Duck.java), and the
MallardDuck class from two pages back (MallardDuck.java).

② Type and compile the FlyBehavior interface (FlyBehavior.java)
and the two behavior implementation classes (FlyWithWings.java and
FlyNoWay.java).

③ Type and compile the QuackBehavior interface
(QuackBehavior.java) and the three behavior implementation classes
(Quack.java, MuteQuack.java, and Squeak.java).

public interface QuackBehavior {
 public void quack();
}

public class Quack implements QuackBehavior {
 public void quack() {
 System.out.println("Quack");
 }
}

public class MuteQuack implements QuackBehavior {
 public void quack() {
 System.out.println("<< Silence >>");
 }
}

public class Squeak implements QuackBehavior {
 public void quack() {
 System.out.println("Squeak");
 }
}

④ Type and compile the test class (MiniDuckSimulator.java).

⑤ Run the code!

Setting behavior dynamically
What a shame to have all this dynamic talent built into our ducks and not be
using it! Imagine you want to set the duck’s behavior type through a setter
method on the duck subclass, rather than by instantiating it in the duck’s
constructor.
① Add two new methods to the Duck class:

We can call these methods anytime we want to change the behavior of a
duck on the fly.

NOTE

Editor note: gratuitous pun - fix

② Make a new Duck type (ModelDuck.java).

③ Make a new FlyBehavior type (FlyRocketPowered.java).

④ Change the test class (MiniDuckSimulator.java), add the
ModelDuck, and make the ModelDuck rocket-enabled.

To change a duck’s behavior at runtime, just call the duck’s setter method for
that behavior.

The Big Picture on encapsulated behaviors
Okay, now that we’ve done the deep dive on the duck simulator design,
it’s time to come back up for air and take a look at the big picture.
Below is the entire reworked class structure. We have everything you’d
expect: ducks extending Duck, fly behaviors implementing FlyBehavior, and
quack behaviors implementing QuackBehavior.
Notice also that we’ve started to describe things a little differently. Instead of
thinking of the duck behaviors as a set of behaviors, we’ll start thinking of
them as a family of algorithms. Think about it: in the SimUDuck design, the

algorithms represent things a duck would do (different ways of quacking or
flying), but we could just as easily use the same techniques for a set of
classes that implement the ways to compute state sales tax by different states.
Pay careful attention to the relationships between the classes. In fact, grab
your pen and write the appropriate relationship (IS-A, HAS-A, and
IMPLEMENTS) on each arrow in the class diagram.

HAS-A can be better than IS-A
The HAS-A relationship is an interesting one: each duck has a FlyBehavior
and a QuackBehavior to which it delegates flying and quacking.
When you put two classes together like this you’re using composition.
Instead of inheriting their behavior, the ducks get their behavior by being
composed with the right behavior object.
This is an important technique; in fact, we’ve been using our third design
principle:

DESIGN PRINCIPLE

Favor composition over inheritance.

As you’ve seen, creating systems using composition gives you a lot more
flexibility. Not only does it let you encapsulate a family of algorithms into
their own set of classes, but it also lets you change behavior at runtime as
long as the object you’re composing with implements the correct behavior
interface.
Composition is used in many design patterns and you’ll see a lot more about
its advantages and disadvantages throughout the book.

BRAIN POWER

A duck call is a device that hunters use to mimic the calls (quacks) of ducks. How would
you implement your own duck call that does not inherit from the Duck class?

MASTER AND STUDENT...

Master: Grasshopper, tell me what you have learned of the Object-Oriented ways.

Student: Master, I have learned that the promise of the object-oriented way is reuse.

Master: Grasshopper, continue...

Student: Master, through inheritance all good things may be reused and so we come to
drastically cut development time like we swiftly cut bamboo in the woods.

Master: Grasshopper, is more time spent on code before or after development is
complete?

Student: The answer is after, Master. We always spend more time maintaining and
changing software than on initial development.

Master: So Grasshopper, should effort go into reuse above maintainability and
extensibility?

Student: Master, I believe that there is truth in this.

Master: I can see that you still have much to learn. I would like for you to go and
meditate on inheritance further. As you’ve seen, inheritance has its problems, and there
are other ways of achieving reuse.

Speaking of Design Patterns...

CONGRATULATIONS ON YOUR FIRST PATTERN!

You just applied your first design pattern — the STRATEGY Pattern. That’s right, you
used the Strategy Pattern to rework the SimUDuck app. Thanks to this pattern, the
simulator is ready for any changes those execs might cook up on their next business trip
to Maui.

Now that we’ve made you take the long road to apply it, here’s the formal definition of
this pattern:

NOTE

The Strategy Pattern defines a family of algorithms,
encapsulates each one, and makes them interchangeable. Strategy
lets the algorithm vary independently from clients that use it.

Use THIS definition when you need to impress friends and influence key
executives.

DESIGN PUZZLE

Below you’ll find a mess of classes and interfaces for an action adventure game. You’ll
find classes for game characters along with classes for weapon behaviors the characters
can use in the game. Each character can make use of one weapon at a time, but can
change weapons at any time during the game. Your job is to sort it all out...

(Answers are at the end of the chapter.)

Your task:

① Arrange the classes.
② Identify one abstract class, one interface, and eight classes.
③ Draw arrows between classes.

1. Draw this kind of arrow for inheritance (“extends”).
2. Draw this kind of arrow for interface (“implements”).

3. Draw this kind of arrow for “HAS-A”.

④ Put the method setWeapon() into the right class.

Overheard at the local diner...

What’s the difference between these two orders? Not a thing! They’re both
the same order, except Alice is using twice the number of words and trying
the patience of a grumpy short-order cook.
What’s Flo got that Alice doesn’t? A shared vocabulary with the short-order
cook. Not only does that make it easier to communicate with the cook, but it
gives the cook less to remember because he’s got all the diner patterns in his
head.
Design Patterns give you a shared vocabulary with other developers. Once
you’ve got the vocabulary you can more easily communicate with other
developers and inspire those who don’t know patterns to start learning them.
It also elevates your thinking about architectures by letting you think at the
pattern level, not the nitty-gritty object level.

Overheard in the next cubicle...

BRAIN POWER

Can you think of other shared vocabularies that are used beyond OO design and diner
talk? (Hint: how about auto mechanics, carpenters, gourmet chefs, air traffic control.)
What qualities are communicated along with the lingo?

Can you think of aspects of OO design that get communicated along with pattern names?
What qualities get communicated along with the name “Strategy Pattern”?

The power of a shared pattern vocabulary
When you communicate using patterns you are doing more than just
sharing LINGO.
Shared pattern vocabularies are POWERFUL. When you communicate
with another developer or your team using patterns, you are communicating
not just a pattern name but a whole set of qualities, characteristics, and
constraints that the pattern represents.

NOTE

“We’re using the Strategy Pattern to implement the various behaviors of our ducks.”
This tells you the duck behavior has been encapsulated into its own set of classes that
can be easily expanded and changed, even at runtime if needed.

Patterns allow you to say more with less. When you use a pattern in a
description, other developers quickly know precisely the design you have in
mind.
Talking at the pattern level allows you to stay “in the design” longer.
Talking about software systems using patterns allows you to keep the
discussion at the design level, without having to dive down to the nitty-gritty
details of implementing objects and classes.

NOTE

How many design meetings have you been in that quickly degrade into implementation
details?

Shared vocabularies can turbo-charge your development team. A team
well versed in design patterns can move more quickly with less room for
misunderstanding.

NOTE

As your team begins to share design ideas and experience in terms of patterns, you will
build a community of patterns users.

Shared vocabularies encourage more junior developers to get up to
speed. Junior developers look up to experienced developers. When senior
developers make use of design patterns, junior developers also become
motivated to learn them. Build a community of pattern users at your
organization.

NOTE

Think about starting a patterns study group at your organization. Maybe you can even
get paid while you’re learning...

How do I use Design Patterns?
We’ve all used off-the-shelf libraries and frameworks. We take them, write
some code against their APIs, compile them into our programs, and benefit
from a lot of code someone else has written. Think about the Java APIs and
all the functionality they give you: network, GUI, IO, etc. Libraries and
frameworks go a long way towards a development model where we can just
pick and choose components and plug them right in. But... they don’t help us
structure our own applications in ways that are easier to understand, more
maintainable and flexible. That’s where Design Patterns come in.
Design patterns don’t go directly into your code, they first go into your
BRAIN. Once you’ve loaded your brain with a good working knowledge of
patterns, you can then start to apply them to your new designs, and rework
your old code when you find it’s degrading into an inflexible mess of jungle
spaghetti code.

THERE ARE NO DUMB QUESTIONS

Q: Q: If design patterns are so great, why can’t someone build a library of them so I don’t have to?

A: A: Design patterns are higher level than libraries. Design patterns tell us how to structure classes and objects to
solve certain problems and it is our job to adapt those designs to fit our particular application.

Q: Q: Aren’t libraries and frameworks also design patterns?

A: A: Frameworks and libraries are not design patterns; they provide specific implementations that we link into our
code. Sometimes, however, libraries and frameworks make use of design patterns in their implementations. That’s
great, because once you understand design patterns, you’ll more quickly understand APIs that are structured
around design patterns.

Q: Q: So, there are no libraries of design patterns?

A: A: No, but you will learn later about pattern catalogs with lists of patterns that you can apply to your applications.

Developer: Okay, hmm, but isn’t this all just good object-oriented design; I
mean as long as I follow encapsulation and I know about abstraction,
inheritance, and polymorphism, do I really need to think about Design
Patterns? Isn’t it pretty straightforward? Isn’t this why I took all those OO
courses? I think Design Patterns are useful for people who don’t know good

OO design.
Guru: Ah, this is one of the true misunderstandings of object-oriented
development: that by knowing the OO basics we are automatically going to
be good at building flexible, reusable, and maintainable systems.
Developer: No?
Guru: No. As it turns out, constructing OO systems that have these
properties is not always obvious and has been discovered only through hard
work.
Developer: I think I’m starting to get it. These, sometimes non-obvious,
ways of constructing object-oriented systems have been collected...
Guru: ...yes, into a set of patterns called Design Patterns.
Developer: So, by knowing patterns, I can skip the hard work and jump
straight to designs that always work?
Guru: Yes, to an extent, but remember, design is an art. There will always be
tradeoffs. But, if you follow well thought-out and time-tested design patterns,
you’ll be way ahead.
Developer: What do I do if I can’t find a pattern?

Guru: There are some object-oriented principles that underlie the patterns,
and knowing these will help you to cope when you can’t find a pattern that
matches your problem.
Developer: Principles? You mean beyond abstraction, encapsulation, and...
Guru: Yes, one of the secrets to creating maintainable OO systems is
thinking about how they might change in the future, and these principles
address those issues.

Tools for your Design Toolbox
You’ve nearly made it through the first chapter! You’ve already put a few
tools in your OO toolbox; let’s make a list of them before we move on to
Chapter 2.

BULLET POINTS

Knowing the OO basics does not make you a good OO designer.
Good OO designs are reusable, extensible, and maintainable.
Patterns show you how to build systems with good OO design qualities.
Patterns are proven object-oriented experience.
Patterns don’t give you code, they give you general solutions to design problems.
You apply them to your specific application.

Patterns aren’t invented, they are discovered.
Most patterns and principles address issues of change in software.
Most patterns allow some part of a system to vary independently of all other parts.
We often try to take what varies in a system and encapsulate it.
Patterns provide a shared language that can maximize the value of your
communication with other developers.

DESIGN PATTERNS CROSSWORD

Let’s give your right brain something to do.

It’s your standard crossword; all of the solution words are from this chapter.

Across Down

2. ________ what varies.

4. Design patterns __________.

1. Patterns _______ in many applications.

3. Favor this over inheritance.

6. Java IO, Networking, Sound.

9. Rubber ducks make a __________.

13. Bartender thought they were called.

15. Program to this, not an implementation.

17. Patterns go into your _________.

18. Learn from the other guy’s ___________.

19. Development constant.

20. Patterns give us a shared ____________.

5. Dan was thrilled with this pattern.

7. Most patterns follow from OO _________.

8. Not your own __________.

10. High level libraries.

11. Joe’s favorite drink.

12. Pattern that fixed the simulator.

13. Duck that can’t quack.

14. Grilled cheese with bacon.

15. Duck demo was located here.

DESIGN PUZZLE SOLUTION

Character is the abstract class for all the other characters (King, Queen, Knight, and
Troll), while WeaponBehavior is an interface that all weapon behaviors implement. So
all actual characters and weapons are concrete classes.

To switch weapons, each character calls the setWeapon() method, which is defined in
the Character superclass. During a fight the useWeapon() method is called on the current
weapon set for a given character to inflict great bodily damage on another character.

SHARPEN YOUR PENCIL SOLUTION

Which of the following are disadvantages of using subclassing to provide specific Duck
behavior? (Choose all that apply.) Here’s our solution.

A. Code is duplicated across subclasses.

B. Runtime behavior changes are difficult.

C. We can’t make duck’s dance.

D. Hard to gain knowledge of all duck behaviors.

E. Ducks can’t fly and quack at the same time.

F. Changes can unintentionally affect other ducks.

SHARPEN YOUR PENCIL SOLUTION

What are some factors that drive change in your applications? You might have a very
different list, but here’s a few of ours. Look familiar? Here’s our solution.

NOTE

My customers or users decide they want something else, or they
want new functionality.

My company decided it is going with another database vendor and
it is also purchasing its data from another supplier that uses a
different data format. Argh!

Well, technology changes and we’ve got to update our code to
make use of protocols.

We’ve learned enough building our system that we’d like to go
back and do things a little better.

DESIGN PATTERNS CROSSWORD SOLUTION

Chapter 2. The Observer Pattern:
Keeping your Objects in the know

Don’t miss out when something interesting happens! We’ve got a pattern
that keeps your objects in the know when something they might care about
happens. Objects can even decide at runtime whether they want to be kept
informed. The Observer Pattern is one of the most heavily used patterns in
the JDK, and it’s incredibly useful. Before we’re done, we’ll also look at one-
to-many relationships and loose coupling (yeah, that’s right, we said
coupling). With Observer, you’ll be the life of the Patterns Party.
Congratulations!
Your team has just won the contract to build Weather-O-Rama, Inc.’s
next-generation, Internet-based Weather Monitoring Station.

Statement of Work

Congratulations on being selected to build our next-generation, Internet-based Weather
Monitoring Station!

The weather station will be based on our patent pending WeatherData object, which
tracks current weather conditions (temperature, humidity, and barometric pressure). We’d
like you to create an application that initially provides three display elements: current
conditions, weather statistics, and a simple forecast, all updated in real time as the
WeatherData object acquires the most recent measurements.

Further, this is an expandable weather station. Weather-ORama wants to release an API
so that other developers can write their own weather displays and plug them right in.
We’d like for you to supply that API!

Weather-O-Rama thinks we have a great business model: once the customers are hooked,
we intend to charge them for each display they use. Now for the best part: we are going to
pay you in stock options.

We look forward to seeing your design and alpha application.

Sincerely,

Johnny Hurricane, CEO

P.S. We are overnighting the WeatherData source files to you.

The Weather Monitoring application overview
The three players in the system are the weather station (the physical device
that acquires the actual weather data), the WeatherData object (that tracks the
data coming from the Weather Station and updates the displays), and the
display that shows users the current weather conditions.

The WeatherData object knows how to talk to the physical Weather Station,
to get updated data. The WeatherData object then updates its displays for the
three different display elements: Current Conditions (shows temperature,
humidity, and pressure), Weather Statistics, and a simple forecast.
Our job, if we choose to accept it, is to create an app that uses the
WeatherData object to update three displays for current conditions,
weather stats, and a forecast.

Unpacking the WeatherData class
As promised, the next morning the WeatherData source files arrive.
When we peek inside the code, things look pretty straightforward:

Our job is to implement measurementsChanged() so that it updates the
three displays for current conditions, weather stats, and forecast.

What do we know so far?

The spec from Weather-O-Rama wasn’t all that clear, but we have to figure
out what we need to do. So, what do we know so far?

The WeatherData class has getter methods for three measurement values: temperature,
humidity, and barometric pressure.

getTemperature()
getHumidity()
getPressure()

The measurementsChanged() method is called any time new weather measurement
data is available. (We don’t know or care how this method is called; we just know that
it is.)

measurementsChanged()

We need to implement three display elements that use the weather data: a current
conditions display, a statistics display, and a forecast display. These displays must be
updated each time WeatherData has new measurements.

The system must be expandable — other developers can create new custom display
elements and users can add or remove as many display elements as they want to the
application. Currently, we know about only the initial three display types (current
conditions, statistics, and forecast).

Taking a first, misguided SWAG at the Weather Station
Here’s a first implementation possibility — we’ll take the hint from the
Weather-O-Rama developers and add our code to the
measurementsChanged() method:

SHARPEN YOUR PENCIL

Based on our first implementation, which of the following apply? (Choose all that
apply.)

A. We are coding to concrete implementations, not interfaces.

B. For every new display element we need to alter code.

C. We have no way to add (or remove) display elements at run time.

D. The display elements don’t implement a common interface.

E. We haven’t encapsulated the part that changes.

F. We are violating encapsulation of the WeatherData class.

Definition of SWAG: Scientific Wild A** Guess

What’s wrong with our implementation?
Think back to all those Chapter 1 concepts and principles...

We’ll take a look at Observer, then come back and figure out how to apply it
to the Weather Monitoring app.

Meet the Observer Pattern
You know how newspaper or magazine subscriptions work:
① A newspaper publisher goes into business and begins publishing

newspapers.
② You subscribe to a particular publisher, and every time there’s a new
edition it gets delivered to you. As long as you remain a subscriber, you
get new newspapers.
③ You unsubscribe when you don’t want papers anymore, and they stop
being delivered.
④ While the publisher remains in business, people, hotels, airlines, and
other businesses constantly subscribe and unsubscribe to the newspaper.

Publishers + Subscribers = Observer Pattern
If you understand newspaper subscriptions, you pretty much understand
the Observer Pattern, only we call the publisher the SUBJECT and the
subscribers the OBSERVERS.
Let’s take a closer look:

A day in the life of the Observer Pattern

A Duck object comes along and tells the Subject that it wants to become an
observer.

Duck really wants in on the action; those ints Subject is sending out whenever its
state changes look pretty interesting...

The Duck object is now an official observer.

Duck is psyched... he’s on the list and is waiting with great anticipation for the next
notification so he can get an int.

The Subject gets a new data value!

Now Duck and all the rest of the observers get a notification that the Subject has
changed.

The Mouse object asks to be removed as an observer.

The Mouse object has been getting ints for ages and is tired of it, so it decides it’s

time to stop being an observer.

Mouse is outta here!

The Subject acknowledges the Mouse’s request and removes it from the set of
observers.

The Subject has another new int.

All the observers get another notification, except for the Mouse who is no longer
included. Don’t tell anyone, but the Mouse secretly misses those ints... maybe it’ll
ask to be an observer again some day.

Five-minute drama: a subject for observation

In today’s skit, two post-bubble software developers encounter a real live
head hunter...

Two weeks later...

Jill’s loving life, and no longer an observer. She’s also enjoying the nice fat
signing bonus that she got because the company didn’t have to pay a
headhunter.

But what has become of our dear Lori? We hear she’s beating the headhunter
at his own game. She’s not only still an observer, she’s got her own call list
now, and she is notifying her own observers. Lori’s a subject and an observer
all in one.

The Observer Pattern defined
When you’re trying to picture the Observer Pattern, a newspaper subscription
service with its publisher and subscribers is a good way to visualize the
pattern.
In the real world, however, you’ll typically see the Observer Pattern defined
like this:

NOTE

The Observer Pattern defines a one-to-many dependency between objects so that when
one object changes state, all of its dependents are notified and updated automatically.

Let’s relate this definition to how we’ve been talking about the pattern:

The Observer Pattern defines a one-to-many relationship between a set of objects.
When the state of one object changes, all of its dependents are notified.

The subject and observers define the one-to-many relationship. The observers
are dependent on the subject such that when the subject’s state changes, the
observers get notified. Depending on the style of notification, the observer
may also be updated with new values.
As you’ll discover, there are a few different ways to implement the Observer
Pattern, but most revolve around a class design that includes Subject and
Observer interfaces.
Let’s take a look...

The Observer Pattern defined: the class diagram

THERE ARE NO DUMB QUESTIONS

Q: Q: What does this have to do with one-to-many relationships?

A: A: With the Observer Pattern, the Subject is the object that contains the state and controls it. So, there is ONE
subject with state. The observers, on the other hand, use the state, even if they don’t own it. There are many
observers and they rely on the Subject to tell them when its state changes. So there is a relationship between the
ONE Subject to the MANY Observers.

Q: Q: How does dependence come into this?

A: A: Because the subject is the sole owner of that data, the observers are dependent on the subject to update them
when the data changes. This leads to a cleaner OO design than allowing many objects to control the same data.

The power of Loose Coupling
When two objects are loosely coupled, they can interact, but have very
little knowledge of each other.
The Observer Pattern provides an object design where subjects and
observers are loosely coupled.

Why?
The only thing the subject knows about an observer is that it implements
a certain interface (the Observer interface). It doesn’t need to know the
concrete class of the observer, what it does, or anything else about it.
We can add new observers at any time. Because the only thing the subject
depends on is a list of objects that implement the Observer interface, we can
add new observers whenever we want. In fact, we can replace any observer at
runtime with another observer and the subject will keep purring along.
Likewise, we can remove observers at any time.
We never need to modify the subject to add new types of observers. Let’s
say we have a new concrete class come along that needs to be an observer.
We don’t need to make any changes to the subject to accommodate the new
class type; all we have to do is implement the Observer interface in the new
class and register as an observer. The subject doesn’t care; it will deliver
notifications to any object that implements the Observer interface.
We can reuse subjects or observers independently of each other. If we
have another use for a subject or an observer, we can easily reuse them
because the two aren’t tightly coupled.
Changes to either the subject or an observer will not affect the other.
Because the two are loosely coupled, we are free to make changes to either,
as long as the objects still meet their obligations to implement the subject or
observer interfaces.

NOTE

How many different kinds of change can you identify here?

DESIGN PRINCIPLE

Strive for loosely coupled designs between objects that interact.

Loosely coupled designs allow us to build flexible OO systems that can
handle change because they minimize the interdependency between
objects.

SHARPEN YOUR PENCIL

Before moving on, try sketching out the classes you’ll need to implement the Weather
Station, including the WeatherData class and its display elements. Make sure your
diagram shows how all the pieces fit together and also how another developer might
implement her own display element.

If you need a little help, read the next page; your teammates are already talking about
how to design the Weather Station.

Cubicle conversation
Back to the Weather Station project. Your teammates have already started
thinking through the problem...

Mary: Well, it helps to know we’re using the Observer Pattern.
Sue: Right... but how do we apply it?
Mary: Hmm. Let’s look at the definition again:
The Observer Pattern defines a one-to-many dependency between objects so

that when one object changes state, all its dependents are notified and
updated automatically.
Mary: That actually makes some sense when you think about it. Our
WeatherData class is the “one” and our “many” is the various display
elements that use the weather measurements.
Sue: That’s right. The WeatherData class certainly has state... that’s the
temperature, humidity, and barometric pressure, and those definitely change.
Mary: Yup, and when those measurements change, we have to notify all the
display elements so they can do whatever it is they are going to do with the
measurements.
Sue: Cool, I now think I see how the Observer Pattern can be applied to our
Weather Station problem.
Mary: There are still a few things to consider that I’m not sure I understand
yet.
Sue: Like what?
Mary: For one thing, how do we get the weather measurements to the
display elements?
Sue: Well, looking back at the picture of the Observer Pattern, if we make the
WeatherData object the subject, and the display elements the observers, then
the displays will register themselves with the WeatherData object in order to
get the information they want, right?
Mary: Yes... and once the Weather Station knows about a display element,
then it can just call a method to tell it about the measurements.
Sue: We gotta remember that every display element can be different... so I
think that’s where having a common interface comes in. Even though every
component has a different type, they should all implement the same interface
so that the WeatherData object will know how to send them the
measurements.
Mary: I see what you mean. So every display will have, say, an update()
method that WeatherData will call.
Sue: And update() is defined in a common interface that all the elements
implement...

Designing the Weather Station
How does this diagram compare with yours?

Implementing the Weather Station
We’re going to start our implementation using the class diagram and
following Mary and Sue’s lead (from a few pages back). You’ll see later in
this chapter that Java provides some built-in support for the Observer Pattern,
however, we’re going to get our hands dirty and roll our own for now. While
in some cases you can make use of Java’s built-in support, in a lot of cases
it’s more flexible to build your own (and it’s not all that hard). So, let’s get
started with the interfaces:

BRAIN POWER

Mary and Sue thought that passing the measurements directly to the observers was the
most straightforward method of updating state. Do you think this is wise? Hint: is this an
area of the application that might change in the future? If it did change, would the
change be well encapsulated, or would it require changes in many parts of the code?

Can you think of other ways to approach the problem of passing the updated state to the
observers?

Don’t worry; we’ll come back to this design decision after we finish the initial
implementation.

Implementing the Subject interface in WeatherData
REMEMBER: we don’t provide import and package statements in the code listings.
Get the complete source code from http://wickedlysmart.com/head-first-design-
patterns/.

Remember our first attempt at implementing the WeatherData class at the
beginning of the chapter? You might want to refresh your memory. Now it’s
time to go back and do things with the Observer Pattern in mind...

http://wickedlysmart.com/head-first-design-patterns/

Now, let’s build those display elements
Now that we’ve got our WeatherData class straightened out, it’s time to build
the Display Elements. Weather-O-Rama ordered three: the current conditions
display, the statistics display, and the forecast display. Let’s take a look at the
current conditions display; once you have a good feel for this display
element, check out the statistics and forecast displays in the code directory.
You’ll see they are very similar.

THERE ARE NO DUMB QUESTIONS

Q: Q: Is update() the best place to call display?

A: A: In this simple example it made sense to call display() when the values changed. However, you are right; there
are much better ways to design the way the data gets displayed. We are going to see this when we get to the
Model-View-Controller pattern.

Q: Q: Why did you store a reference to the Subject? It doesn’t look like you use it again after the constructor.

A: A: True, but in the future we may want to un-register ourselves as an observer and it would be handy to already
have a reference to the subject.

Power up the Weather Station

① First, let’s create a test harness.
The Weather Station is ready to go. All we need is some code to glue
everything together. Here’s our first attempt. We’ll come back later in the
book and make sure all the components are easily pluggable via a
configuration file. For now here’s how it all works:

② Run the code and let the Observer Pattern do its magic.

SHARPEN YOUR PENCIL

Johnny Hurricane, Weather-O-Rama’s CEO, just called and they can’t possibly ship
without a Heat Index display element. Here are the details.

The heat index is an index that combines temperature and humidity to determine the
apparent temperature (how hot it actually feels). To compute the heat index, you take the

temperature, T, and the relative humidity, RH, and use this formula:
heatindex =

 16.923 + 1.85212 * 10-1 * T + 5.37941 * RH - 1.00254 * 10-1 *
 T * RH + 9.41695 * 10-3 * T2 + 7.28898 * 10-3 * RH2 + 3.45372 *
 10-4 * T2 * RH - 8.14971 * 10-4 * T * RH2 + 1.02102 * 10-5 * T2 *
 RH2 - 3.8646 * 10-5 * T3 + 2.91583 * 10-5 * RH3 + 1.42721 * 10-6

 * T3 * RH + 1.97483 * 10-7 * T * RH3 - 2.18429 * 10-8 * T3 * RH2

 + 8.43296 * 10-10 * T2 * RH3 - 4.81975 * 10-11 * T3 * RH3

So get typing!

Just kidding. Don’t worry, you won’t have to type that formula in; just create your own
HeatIndexDisplay.java file and copy the formula from heatindex.txt into it.

NOTE

You can get heatindex.txt from wickedlysmart.com.

How does it work? You’d have to refer to Head First Meteorology, or try asking
someone at the National Weather Service (or try a web search).

When you finish, your output should look like this:

FIRESIDE CHATS

Tonight’s talk: A Subject and Observer spar over the right way to get state
information to the Observer.

Subject: Observer:

I’m glad we’re finally getting a
chance to chat in person.

 Really? I thought you didn’t care much about us Observers.

Well, I do my job, don’t I? I
always tell you what’s going on...
Just because I don’t really know
who you are doesn’t mean I don’t
care. And besides, I do know the
most important thing about you
— you implement the Observer
interface.

 Yeah, but that’s just a small part of who I am. Anyway, I know
a lot more about you...

Oh yeah, like what?

 Well, you’re always passing your state around to us Observers
so we can see what’s going on inside you. Which gets a little
annoying at times...

Well, excuuuse me. I have to
send my state with my
notifications so all you lazy
Observers will know what
happened!

 Okay, wait just a minute here; first, we’re not lazy, we just
have other stuff to do in between your oh-so-important
notifications, Mr. Subject, and second, why don’t you let us
come to you for the state we want rather than pushing it out to
just everyone?

Well... I guess that might work.
I’d have to open myself up even
more, though, to let all you
Observers come in and get the
state that you need. That might be
kind of dangerous. I can’t let you
come in and just snoop around
looking at everything I’ve got.

 Why don’t you just write some public getter methods that will
let us pull out the state we need?

Yes, I could let you pull my
state. But won’t that be less

convenient for you? If you have
to come to me every time you
want something, you might have
to make multiple method calls to
get all the state you want. That’s
why I like push better... then you
have everything you need in one
notification.

 Don’t be so pushy! There are so many different kinds of us
Observers, there’s no way you can anticipate everything we
need. Just let us come to you to get the state we need. That
way, if some of us only need a little bit of state, we aren’t
forced to get it all. It also makes things easier to modify later.
Say, for example, you expand yourself and add some more
state. If you use pull, you don’t have to go around and change
the update calls on every observer; you just need to change
yourself to allow more getter methods to access our additional
state.

Well, I can see the advantages to
doing it both ways. I have noticed
that there is a built-in Java
Observer Pattern that allows you
to use either push or pull.

 Oh really? I think we’re going to look at that next....

Great... maybe I’ll get to see a
good example of pull and change
my mind.

 What, us agree on something? I guess there’s always hope.

Using Java’s built-in Observer Pattern
So far we’ve rolled our own code for the Observer Pattern, but Java has built-
in support in several of its APIs. The most general is the Observer interface
and the Observable class in the java.util package. These are quite similar to
our Subject and Observer interfaces, but give you a lot of functionality out of
the box. You can also implement either a push or pull style of update to your
observers, as you will see.
To get a high-level feel for java.util.Observer and java.util.Observable, check
out this reworked OO design for the WeatherStation:

How Java’s built-in Observer Pattern works
The built-in Observer Pattern works a bit differently than the implementation

that we used on the Weather Station. The most obvious difference is that
WeatherData (our subject) now extends the Observable class and inherits the
add, delete, and notify Observer methods (among a few others). Here’s how
we use Java’s version:
For an Object to become an observer...
As usual, implement the Observer interface (this time the java.util.Observer
interface) and call addObserver() on any Observable object. Likewise, to
remove yourself as an observer, just call deleteObserver().
For the Observable to send notifications...
First of all you need to be Observable by extending the java.util.Observable
superclass. From there it is a two-step process:
① You first must call the setChanged() method to signify that the state
has changed in your object.
② Then, call one of two notifyObservers() methods:

For an Observer to receive notifications...
It implements the update method, as before, but the signature of the method is
a bit different:
If you want to “push” data to the observers, you can pass the data as a data
object to the notifyObservers(arg) method. If not, then the Observer has to

“pull” the data it wants from the Observable object passed to it. How? Let’s
rework the Weather Station and you’ll see.

The setChanged() method is used to signify that the state has changed and
that notifyObservers(), when it is called, should update its observers. If
notifyObservers() is called without first calling setChanged(), the observers
will NOT be notified. Let’s take a look behind the scenes of Observable to
see how this works:

BEHIND THE SCENES

Why is this necessary? The setChanged() method is meant to give you more
flexibility in how you update observers by allowing you to optimize the
notifications. For example, in our Weather Station, imagine if our
measurements were so sensitive that the temperature readings were
constantly fluctuating by a few tenths of a degree. That might cause the
WeatherData object to send out notifications constantly. Instead, we might
want to send out notifications only if the temperature changes more than half
a degree and we could call setChanged() only after that happened.
You might not use this functionality very often, but it’s there if you need it.
In either case, you need to call setChanged() for notifications to work. If this
functionality is something that is useful to you, you may also want to use the
clearChanged() method, which sets the changed state back to false, and the
hasChanged() method, which tells you the current state of the changed flag.

Reworking the Weather Station with the built-in
support
First, let’s rework WeatherData to use java.util.Observable

Now, let’s rework the CurrentConditionsDisplay

CODE MAGNETS

The ForecastDisplay class is all scrambled up on the fridge. Can you reconstruct the
code snippets to make it work? Some of the curly braces fell on the floor and they were
too small to pick up, so feel free to add as many of those as you need!

Running the new code
Just to be sure, let’s run the new code...

Hmm, do you notice anything different? Look again...
You’ll see all the same calculations, but mysteriously, the order of the text
output is different. Why might this happen? Think for a minute before
reading on...
Never depend on order of evaluation of the Observer notifications
The java.util.Observable has implemented its notifyObservers() method such
that the Observers are notified in a different order than our own
implementation. Who’s right? Neither; we just chose to implement things in
different ways.
What would be incorrect, however, is if we wrote our code to depend on a
specific notification order. Why? Because if you need to change
Observable/Observer implementations, the order of notification could change
and your application would produce incorrect results. Now that’s definitely
not what we’d consider loosely coupled.

The dark side of java.util.Observable
Yes, good catch. As you’ve noticed, Observable is a class, not an interface,
and worse, it doesn’t even implement an interface. Unfortunately, the
java.util.Observable implementation has a number of problems that limit its
usefulness and reuse. That’s not to say it doesn’t provide some utility, but
there are some large potholes to watch out for.
Observable is a class
You already know from our principles this is a bad idea, but what harm does
it really cause?
First, because Observable is a class, you have to subclass it. That means you
can’t add on the Observable behavior to an existing class that already extends
another superclass. This limits its reuse potential (and isn’t that why we are

using patterns in the first place?).
Second, because there isn’t an Observable interface, you can’t even create
your own implementation that plays well with Java’s built-in Observer API.
Nor do you have the option of swapping out the java.util implementation for
another (say, a new, multithreaded implementation).
Observable protects crucial methods
If you look at the Observable API, the setChanged() method is protected. So
what? Well, this means you can’t call setChanged() unless you’ve subclassed
Observable. This means you can’t even create an instance of the Observable
class and compose it with your own objects, you have to subclass. The design
violates a second design principle here...favor composition over inheritance.
What to do?
Observable may serve your needs if you can extend java.util.Observable. On
the other hand, you may need to roll your own implementation as we did at
the beginning of the chapter. In either case, you know the Observer Pattern
well and you’re in a good position to work with any API that makes use of
the pattern.

Other places you’ll find the Observer Pattern in the
JDK
The java.util implementation of Observer/Observable is not the only place
you’ll find the Observer Pattern in the JDK; both JavaBeans and Swing also
provide their own implementations of the pattern. At this point you
understand enough about Observer to explore these APIs on your own;
however, let’s do a quick, simple Swing example just for the fun of it.

NOTE

If you’re curious about the Observer Pattern in JavaBeans, check out the
PropertyChangeListener interface.

A little background...
Let’s take a look at a simple part of the Swing API, the JButton. If you look
under the hood at JButton’s superclass, AbstractButton, you’ll see that it has
a lot of add/ remove listener methods. These methods allow you to add and

remove observers, or, as they are called in Swing, listeners, to listen for
various types of events that occur on the Swing component. For instance, an
ActionListener lets you “listen in” on any types of actions that might occur
on a button, like a button press. You’ll find various types of listeners all over
the Swing API.
A little life-changing application
Okay, our application is pretty simple. You’ve got a button that says “Should
I do it?” and when you click on that button the listeners (observers) get to
answer the question in any way they want. We’re implementing two such
listeners, called the AngelListener and the DevilListener. Here’s how the
application behaves:

And the code...
This life-changing application requires very little code. All we need to do is
create a JButton object, add it to a JFrame and set up our listeners. We’re
going to use inner classes for the listeners, which is a common technique in
Swing programming. If you aren’t up on inner classes or Swing, you might
want to review the “Getting GUI” chapter of Head First Java.

NOTE

Lambda expressions were added in Java 8. If you aren’t familiar with them, don’t worry
about it; you can continue using inner classes for your Swing observers.

Yes, you’re still using the Observer Pattern. By using a lambda expression
rather than an inner class, you’re just skipping the step of creating an
ActionListener object. With a lambda expression, you create a function object
instead, and this function object is the observer. When you pass that function
object to addActionListener(), Java ensures its signature matches
actionPerformed(), the one method in the ActionListener interface.
Later, when the button is clicked, the button object notifies its observers —
including the function objects created by the lambda expressions — that it’s
been clicked, and calls each listener’s actionPerformed() method.
Let’s take a look at how you’d use lambda expressions as observers to
simplify our previous code:

The updated code, using lambda expressions

Tools for your Design Toolbox
Welcome to the end of Chapter 2. You’ve added a few new things to your
OO toolbox...

BULLET POINTS

The Observer Pattern defines a one-to-many relationship between objects.
Subjects, or as we also know them, Observables, update Observers using a common
interface.
Observers are loosely coupled in that the Observable knows nothing about them,
other than that they implement the Observer interface.
You can push or pull data from the Observable when using the pattern (pull is
considered more “correct”).
Don’t depend on a specific order of notification for your Observers.
Java has several implementations of the Observer Pattern, including the general
purpose java.util.Observable.
Watch out for issues with the java.util.Observable implementation.
Don’t be afraid to create your own Observable implementation if needed.
Swing makes heavy use of the Observer Pattern, as do many GUI frameworks.
You’ll also find the pattern in many other places, including JavaBeans and RMI.

DESIGN PRINCIPLE CHALLENGE

For each design principle, describe how the Observer Pattern makes use of the principle.

DESIGN PRINCIPLE

Identify the aspects of your
application that vary and
separate them from what
stays the same.

__

__

__

__

__

__

DESIGN PRINCIPLE

Program to an interface,
not an implementation.

__

__

__

__

__

__

DESIGN PRINCIPLE

Favor composition over
inheritance.

This is a hard one, hint: think about how observers and subjects
work together.

__

__

__

__

DESIGN PATTERNS CROSSWORD

Time to give your right brain something to do again! This time all of the solution words
are from Chapter 2.

Across Down

1. Observable is a ___________, not an interface.

3. Devil and Angel are _________ to the button.

4. Implement this method to get notified.

5. Jill got one of her own.

6. CurrentConditionsDisplay implements this
interface.

8. How to get yourself off the Observer list.

12. You forgot this if you’re not getting notified
when you think you should be.

15. One Subject likes to talk to _______ observers.

18. Don’t count on this for notification.

19. Temperature, humidity and __________.

2. Ron was both an Observer and a
_________.

3. You want to keep your coupling
_________.

7. He says you should go for it.

9. _________ can manage your observers for
you.

10. Java framework with lots of Observers.

11. Weather-O-Rama’s CEO named after this
kind of storm.

13. Observers like to be ___________ when
something new happens.

14. The WeatherData class __________ the

20. Observers are __________ on the Subject.

21. Program to an _________ not an
implementation.

22. A Subject is similar to a __________.

Subject interface.

16. He didn’t want any more ints, so he
removed himself.

17. CEO almost forgot the ________ index
display

19. Subject initially wanted to _________ all
the data to Observer.

SHARPEN YOUR PENCIL SOLUTION

Based on our first implementation, which of the following apply? (Choose all that
apply.)

A. We are coding to concrete implementations, not interfaces.

B. For every new display element we need to alter code.

C. We have no way to add display elements at run time.

D. The display elements don’t implement a common interface.

E. We haven’t encapsulated what changes.

F. We are violating encapsulation of the WeatherData class.

DESIGN PRINCIPLE CHALLENGE SOLUTION

DESIGN PRINCIPLE

Identify the aspects of your
application that vary and separate
them from what stays the same.

__The thing that varies in the Observer Pattern_______

__is the state of the Subject and the number and_____

__types of Observers. With this pattern, you can______

__vary the objects that are dependent on the state____

__of the Subject, without having to change that_______

__Subject. That’s called planning ahead!____________

DESIGN PRINCIPLE

Program to an interface, not an
implementation.

__Both the Subject and Observer use interfaces.______

__The Subject keeps track of objects
implementing____

__the Observer interface, while the
observers_________

__register with, and get notified by, the Subject_______

__interface. As we’ve seen, this keeps things nice
and______

__loosely coupled.___________________________

DESIGN PRINCIPLE

Favor composition over inheritance.

__The Observer Pattern uses composition to
compose__

__any number of Observers with their
Subjects.________

__These relationships aren’t set up by some kind
of_____

__inheritance hierarchy. No, they are set up at_____

__runtime by
composition!___________________________

CODE MAGNETS SOLUTION

The ForecastDisplay class is all scrambled up on the fridge. Can you reconstruct the
code snippets to make it work? Some of the curly braces fell on the floor and they were
too small to pick up, so feel free to add as many of those as you need! Here’s our
solution.

DESIGN PATTERNS CROSSWORD SOLUTION

Chapter 3. The Decorator Pattern:
Decorating Objects

Just call this chapter “Design Eye for the Inheritance Guy.” We’ll re-
examine the typical overuse of inheritance and you’ll learn how to decorate
your classes at runtime using a form of object composition. Why? Once you
know the techniques of decorating, you’ll be able to give your (or someone
else’s) objects new responsibilities without making any code changes to the
underlying classes.

Welcome to Starbuzz Coffee

Starbuzz Coffee has made a name for itself as the fastest growing coffee
shop around. If you’ve seen one on your local corner, look across the
street; you’ll see another one.
Because they’ve grown so quickly, they’re scrambling to update their
ordering systems to match their beverage offerings.
When they first went into business they designed their classes like this...

In addition to your coffee, you can also ask for several condiments like
steamed milk, soy, and mocha (otherwise known as chocolate), and have
it all topped off with whipped milk. Starbuzz charges a bit for each of
these, so they really need to get them built into their order system.
Here’s their first attempt...

BRAIN POWER

It’s pretty obvious that Starbuzz has created a maintenance nightmare for themselves.
What happens when the price of milk goes up? What do they do when they add a new
caramel topping?

Thinking beyond the maintenance problem, which of the design principles that we’ve
covered so far are they violating?

Hint: they’re violating two of them in a big way!

Well, let’s give it a try. Let’s start with the Beverage base class and add
instance variables to represent whether or not each beverage has milk, soy,
mocha, and whip...

Now let’s add in the subclasses, one for each beverage on the menu:

SHARPEN YOUR PENCIL

Write the cost() methods for the following classes (pseudo-Java is okay):

public class Beverage {
 public double cost() {

 }
}

public class DarkRoast extends Beverage {

 public DarkRoast() {
 description = "Most Excellent Dark Roast";
 }

 public double cost() {

 }
}

SHARPEN YOUR PENCIL

What requirements or other factors might change that will impact this design?

MASTER AND STUDENT...

Master: Grasshopper, it has been some time since our last meeting. Have you been deep
in meditation on inheritance?

Student: Yes, Master. While inheritance is powerful, I have learned that it doesn’t
always lead to the most flexible or maintainable designs.

Master: Ah yes, you have made some progress. So, tell me, my student, how then will
you achieve reuse if not through inheritance?

Student: Master, I have learned there are ways of “inheriting” behavior at runtime
through composition and delegation.

Master: Please, go on...

Student: When I inherit behavior by subclassing, that behavior is set statically at
compile time. In addition, all subclasses must inherit the same behavior. If however, I
can extend an object’s behavior through composition, then I can do this dynamically at
runtime.

Master: Very good, Grasshopper, you are beginning to see the power of composition.

Student: Yes, it is possible for me to add multiple new responsibilities to objects through
this technique, including responsibilities that were not even thought of by the designer of
the superclass. And, I don’t have to touch their code!

Master: What have you learned about the effect of composition on maintaining your
code?

Student: Well, that is what I was getting at. By dynamically composing objects, I can
add new functionality by writing new code rather than altering existing code. Because
I’m not changing existing code, the chances of introducing bugs or causing unintended
side effects in pre-existing code are much reduced.

Master: Very good. Enough for today, Grasshopper. I would like for you to go and
meditate further on this topic... Remember, code should be closed (to change) like the
lotus flower in the evening, yet open (to extension) like the lotus flower in the morning.

The Open-Closed Principle
Grasshopper is on to one of the most important design principles:

DESIGN PRINCIPLE

Classes should be open for extension, but closed for modification.

Come on in; we’re open. Feel free to extend our classes with any new
behavior you like. If your needs or requirements change (and we know they
will), just go ahead and make your own extensions.

Sorry, we’re closed. That’s right, we spent a lot of time getting this code

correct and bug free, so we can’t let you alter the existing code. It must
remain closed to modification. If you don’t like it, you can speak to the
manager.
Our goal is to allow classes to be easily extended to incorporate new
behavior without modifying existing code. What do we get if we
accomplish this? Designs that are resilient to change and flexible enough
to take on new functionality to meet changing requirements.

THERE ARE NO DUMB QUESTIONS

Q: Q: Open for extension and closed for modification? That sounds very contradictory. How can a design be
both?

A: A: That’s a very good question. It certainly sounds contradictory at first. After all, the less modifiable something
is, the harder it is to extend, right?
As it turns out, though, there are some clever OO techniques for allowing systems to be extended, even if we can’t
change the underlying code. Think about the Observer Pattern (in Chapter 2)... by adding new Observers, we can
extend the Subject at any time, without adding code to the Subject. You’ll see quite a few more ways of extending
behavior with other OO design techniques.

Q: Q: Okay, I understand Observable, but how do I generally design something to be extensible, yet closed for
modification?

A: A: Many of the patterns give us time-tested designs that protect your code from being modified by supplying a
means of extension. In this chapter you’ll see a good example of using the Decorator Pattern to follow the Open-
Closed principle.

Q: Q: How can I make every part of my design follow the Open-Closed Principle?

A: A: Usually, you can’t. Making OO design flexible and open to extension without the modification of existing
code takes time and effort. In general, we don’t have the luxury of tying down every part of our designs (and it
would probably be wasteful). Following the Open-Closed Principle usually introduces new levels of abstraction,
which adds complexity to our code. You want to concentrate on those areas that are most likely to change in your
designs and apply the principles there.

Q: Q: How do I know which areas of change are more important?

A: A: That is partly a matter of experience in designing OO systems and also a matter of knowing the domain you
are working in. Looking at other examples will help you learn to identify areas of change in your own designs.

While it may seem like a contradiction, there are techniques for allowing code to
be extended without direct modification.
Be careful when choosing the areas of code that need to be extended; applying the
Open-Closed Principle EVERYWHERE is wasteful and unnecessary, and can
lead to complex, hard-to-understand code.

Meet the Decorator Pattern
Okay, we’ve seen that representing our beverage plus condiment pricing
scheme with inheritance has not worked out very well — we get class
explosions and rigid designs, or we add functionality to the base class that

isn’t appropriate for some of the subclasses.
So, here’s what we’ll do instead: we’ll start with a beverage and “decorate” it
with the condiments at runtime. For example, if the customer wants a Dark
Roast with Mocha and Whip, then we’ll:
① Take a DarkRoast object
② Decorate it with a Mocha object
③ Decorate it with a Whip object
④ Call the cost() method and rely on delegation to add on the
condiment costs

Okay, but how do you “decorate” an object, and how does delegation come
into this? A hint: think of decorator objects as “wrappers.” Let’s see how this
works...

Constructing a drink order with Decorators
① We start with our DarkRoast object.

② The customer wants Mocha, so we create a Mocha object and wrap
it around the DarkRoast.

③ The customer also wants Whip, so we create a Whip decorator and
wrap Mocha with it.

NOTE

So, a DarkRoast wrapped in Mocha and Whip is still a Beverage and we can do
anything with it we can do with a DarkRoast, including call its cost() method.

④ Now it’s time to compute the cost for the customer. We do this by

calling cost() on the outermost decorator, Whip, and Whip is going to
delegate computing the cost to the objects it decorates. Once it gets a
cost, it will add on the cost of the Whip.

Okay, here’s what we know so far...
Decorators have the same supertype as the objects they decorate.
You can use one or more decorators to wrap an object.
Given that the decorator has the same supertype as the object it decorates,
we can pass around a decorated object in place of the original (wrapped)
object.
The decorator adds its own behavior either before and/or after delegating
to the object it decorates to do the rest of the job.

NOTE

Key point!

Objects can be decorated at any time, so we can decorate objects
dynamically at runtime with as many decorators as we like.

Now let’s see how this all really works by looking at the Decorator
Pattern definition and writing some code.

The Decorator Pattern defined
Let’s first take a look at the Decorator Pattern description:

NOTE

The Decorator Pattern attaches additional responsibilities to an object dynamically.
Decorators provide a flexible alternative to subclassing for extending functionality.

While that describes the role of the Decorator Pattern, it doesn’t give us a lot
of insight into how we’d apply the pattern to our own implementation. Let’s
take a look at the class diagram, which is a little more revealing (on the next
page we’ll look at the same structure applied to the beverage problem).

Decorating our Beverages

Okay, let’s work our Starbuzz beverages into this framework...

BRAIN POWER

Before going further, think about how you’d implement the cost() method of the coffees
and the condiments. Also think about how you’d implement the getDescription() method
of the condiments.

Cubicle Conversation
Some confusion over Inheritance versus Composition

Sue: What do you mean?
Mary: Look at the class diagram. The CondimentDecorator is extending the
Beverage class. That’s inheritance, right?
Sue: True. I think the point is that it’s vital that the decorators have the same
type as the objects they are going to decorate. So here we’re using inheritance
to achieve the type matching, but we aren’t using inheritance to get behavior.
Mary: Okay, I can see how decorators need the same “interface” as the
components they wrap because they need to stand in place of the component.
But where does the behavior come in?
Sue: When we compose a decorator with a component, we are adding new
behavior. We are acquiring new behavior not by inheriting it from a
superclass, but by composing objects together.
Mary: Okay, so we’re subclassing the abstract class Beverage in order to
have the correct type, not to inherit its behavior. The behavior comes in
through the composition of decorators with the base components as well as

other decorators.
Sue: That’s right.
Mary: Ooooh, I see. And because we are using object composition, we get a
whole lot more flexibility about how to mix and match condiments and
beverages. Very smooth.
Sue: Yes, if we rely on inheritance, then our behavior can only be determined
statically at compile time. In other words, we get only whatever behavior the
superclass gives us or that we override. With composition, we can mix and
match decorators any way we like... at runtime.
Mary: And as I understand it, we can implement new decorators at any time
to add new behavior. If we relied on inheritance, we’d have to go in and
change existing code any time we wanted new behavior.
Sue: Exactly.
Mary: I just have one more question. If all we need to inherit is the type of
the component, how come we didn’t use an interface instead of an abstract
class for the Beverage class?
Sue: Well, remember, when we got this code, Starbuzz already had an
abstract Beverage class. Traditionally the Decorator Pattern does specify an
abstract component, but in Java, obviously, we could use an interface. But we
always try to avoid altering existing code, so don’t “fix” it if the abstract class
will work just fine.

New barista training
Make a picture for what happens when the order is for a “double mocha soy
latte with whip” beverage. Use the menu to get the correct prices, and draw
your picture using the same format we used earlier (from a few pages back):

SHARPEN YOUR PENCIL

Draw your picture here.

Writing the Starbuzz code
It’s time to whip this design into some real code.
Let’s start with the Beverage class, which doesn’t need to change from
Starbuzz’s original design. Let’s take a look:

Beverage is simple enough. Let’s implement the abstract class for the
Condiments (Decorator) as well:

Coding beverages
Now that we’ve got our base classes out of the way, let’s implement some
beverages. We’ll start with Espresso. Remember, we need to set a
description for the specific beverage and also implement the cost()
method.

Coding condiments
If you look back at the Decorator Pattern class diagram, you’ll see we’ve
now written our abstract component (Beverage), we have our concrete
components (HouseBlend), and we have our abstract decorator
(CondimentDecorator). Now it’s time to implement the concrete

decorators. Here’s Mocha:

On the next page we’ll actually instantiate the beverage and wrap it with all
its condiments (decorators), but first...

EXERCISE

Write and compile the code for the other Soy and Whip condiments. You’ll need them to
finish and test the application.

Serving some coffees
Congratulations. It’s time to sit back, order a few coffees, and marvel at the
flexible design you created with the Decorator Pattern.
Here’s some test code*to make orders:

* We’re going to see a much better way of creating decorated objects when we cover
the Factory and Builder Design Patterns. Please note that the Builder Pattern is covered
in the Appendix.

Now, let’s get those orders in:

THERE ARE NO DUMB QUESTIONS

Q: Q: I’m a little worried about code that might test for a specific concrete component — say, HouseBlend —
and do something, like issue a discount. Once I’ve wrapped the HouseBlend with decorators, this isn’t
going to work anymore.

A: A: That is exactly right. If you have code that relies on the concrete component’s type, decorators will break that

code. As long as you only write code against the abstract component type, the use of decorators will remain
transparent to your code. However, once you start writing code against concrete components, you’ll want to
rethink your application design and your use of decorators.

Q: Q: Wouldn’t it be easy for some client of a beverage to end up with a decorator that isn’t the outermost
decorator? Like if I had a DarkRoast with Mocha, Soy, and Whip, it would be easy to write code that
somehow ended up with a reference to Soy instead of Whip, which means it would not include Whip in the
order.

A: A: You could certainly argue that you have to manage more objects with the Decorator Pattern and so there is an
increased chance that coding errors will introduce the kinds of problems you suggest. However, decorators are
typically created by using other patterns like Factory and Builder. Once we’ve covered these patterns, you’ll see
that the creation of the concrete component with its decorator is “well encapsulated” and doesn’t lead to these
kinds of problems.

Q: Q: Can decorators know about the other decorations in the chain? Say I wanted my getDescription()
method to print “Whip, Double Mocha” instead of “Mocha, Whip, Mocha.” That would require that my
outermost decorator know all the decorators it is wrapping.

A: A: Decorators are meant to add behavior to the object they wrap. When you need to peek at multiple layers into
the decorator chain, you are starting to push the decorator beyond its true intent. Nevertheless, such things are
possible. Imagine a CondimentPrettyPrint decorator that parses the final decription and can print “Mocha, Whip,
Mocha” as “Whip, Double Mocha.” Note that getDescription() could return an ArrayList of descriptions to make
this easier.

SHARPEN YOUR PENCIL

Our friends at Starbuzz have introduced sizes to their menu. You can now order a coffee
in tall, grande, and venti sizes (translation: small, medium, and large). Starbuzz saw this
as an intrinsic part of the coffee class, so they’ve added two methods to the Beverage
class: setSize() and getSize(). They’d also like for the condiments to be charged
according to size, so for instance, Soy costs 10¢, 15¢, and 20¢, respectively, for tall,
grande, and venti coffees. The updated Beverage class is shown below.

How would you alter the decorator classes to handle this change in requirements?
public abstract class Beverage {
 public enum Size { TALL, GRANDE, VENTI };
 Size size = Size.TALL;
 String description = "Unknown Beverage";
 public String getDescription() {
 return description;
 }
 public void setSize(Size size) {
 this.size = size;
 }
 public Size getSize() {
 return this.size;
 }
 public abstract double cost();
}

Real World Decorators: Java I/O
The large number of classes in the java.io package is... overwhelming. Don’t

feel alone if you said “whoa” the first (and second and third) time you looked
at this API. But now that you know the Decorator Pattern, the I/O classes
should make more sense since the java.io package is largely based on
Decorator. Here’s a typical set of objects that use decorators to add
functionality to reading data from a file:

BufferedInputStream and LineNumberInputStream both extend
FilterInputStream, which acts as the abstract decorator class.

Decorating the java.io classes

You can see that this isn’t so different from the Starbuzz design. You should
now be in a good position to look over the java.io API docs and compose
decorators on the various input streams.
You’ll see that the output streams have the same design. And you’ve
probably already found that the Reader/Writer streams (for character-based
data) closely mirror the design of the streams classes (with a few differences
and inconsistencies, but close enough to figure out what’s going on).
Java I/O also points out one of the downsides of the Decorator Pattern:
designs using this pattern often result in a large number of small classes that
can be overwhelming to a developer trying to use the Decorator-based API.
But now that you know how Decorator works, you can keep things in
perspective and when you’re using someone else’s Decorator-heavy API, you
can work through how their classes are organized so that you can easily use
wrapping to get the behavior you’re after.

Writing your own Java I/O Decorator
Okay, you know the Decorator Pattern, you’ve seen the I/O class diagram.
You should be ready to write your own input decorator.
How about this: write a decorator that converts all uppercase characters to
lowercase in the input stream. In other words, if we read in “I know the
Decorator Pattern therefore I RULE!” then your decorator converts this to “i
know the decorator pattern therefore i rule!”

REMEMBER: we don’t provide import and package statements in the code listings.
Get the complete source code from http://wickedlysmart.com/head-first-design-
patterns/.

Test out your new Java I/O Decorator
Write some quick code to test the I/O decorator:

http://wickedlysmart.com/head-first-design-patterns/

Give it a spin

PATTERNS EXPOSED

This week’s interview: Confessions of a Decorator

Head First: Welcome, Decorator Pattern. We’ve heard that you’ve been a bit down on
yourself lately?

Decorator: Yes, I know the world sees me as the glamorous design pattern, but you
know, I’ve got my share of problems just like everyone.

HeadFirst: Can you perhaps share some of your troubles with us?

Decorator: Sure. Well, you know I’ve got the power to add flexibility to designs, that
much is for sure, but I also have a dark side. You see, I can sometimes add a lot of small

classes to a design and this occasionally results in a design that’s less than
straightforward for others to understand.

HeadFirst: Can you give us an example?

Decorator: Take the Java I/O libraries. These are notoriously difficult for people to
understand at first. But if they just saw the classes as a set of wrappers around an
InputStream, life would be much easier.

HeadFirst: That doesn’t sound so bad. You’re still a great pattern, and improving this is
just a matter of public education, right?

Decorator: There’s more, I’m afraid. I’ve got typing problems: you see, people
sometimes take a piece of client code that relies on specific types and introduce
decorators without thinking through everything. Now, one great thing about me is that
you can usually insert decorators transparently and the client never has to know it’s
dealing with a decorator. But like I said, some code is dependent on specific types and
when you start introducing decorators, boom! Bad things happen.

HeadFirst: Well, I think everyone understands that you have to be careful when
inserting decorators. I don’t think this is a reason to be too down on yourself.

Decorator: I know, I try not to be. I also have the problem that introducing decorators
can increase the complexity of the code needed to instantiate the component. Once
you’ve got decorators, you’ve got to not only instantiate the component, but also wrap it
with who knows how many decorators.

HeadFirst: I’ll be interviewing the Factory and Builder patterns next week — I hear
they can be very helpful with this?

Decorator: That’s true; I should talk to those guys more often.

HeadFirst: Well, we all think you’re a great pattern for creating flexible designs and
staying true to the Open-Closed Principle, so keep your chin up and think positively!

Decorator: I’ll do my best, thank you.

Tools for your Design Toolbox
You’ve got another chapter under your belt and a new principle and pattern in
the toolbox.

BULLET POINTS

Inheritance is one form of extension, but not necessarily the best way to achieve
flexibility in our designs.
In our designs we should allow behavior to be extended without the need to modify
existing code.
Composition and delegation can often be used to add new behaviors at runtime.
The Decorator Pattern provides an alternative to subclassing for extending behavior.
The Decorator Pattern involves a set of decorator classes that are used to wrap
concrete components.
Decorator classes mirror the type of the components they decorate. (In fact, they are
the same type as the components they decorate, either through inheritance or
interface implementation.)
Decorators change the behavior of their components by adding new functionality
before and/or after (or even in place of) method calls to the component.
You can wrap a component with any number of decorators.
Decorators are typically transparent to the client of the component; that is, unless the
client is relying on the component’s concrete type.
Decorators can result in many small objects in our design, and overuse can be
complex.

SHARPEN YOUR PENCIL SOLUTION

Write the cost() methods for the following classes (pseudo-Java is okay). Here’s our
solution:

public class Beverage {

// declare instance variables for milkCost,
// soyCost, mochaCost, and whipCost, and
// getters and setters for milk, soy, mocha
// and whip.

public double cost() {

 float condimentCost = 0.0;
 if (hasMilk()) {
 condimentCost += milkCost;
 }
 if (hasSoy()) {
 condimentCost += soyCost;
 }
 if (hasMocha()) {
 condimentCost += mochaCost;
 }
 if (hasWhip()) {
 condimentCost += whipCost;
 }
 return condimentCost;
 }

}

public class DarkRoast extends Beverage {

 public DarkRoast() {
 description = "Most Excellent Dark Roast";
 }

 public double cost() {
 return 1.99 + super.cost();
 }
}

SHARPEN YOUR PENCIL SOLUTION

New barista training

“double mocha soy latte with whip”

SHARPEN YOUR PENCIL SOLUTION

Our friends at Starbuzz have introduced sizes to their menu. You can now order a coffee
in tall, grande, and venti sizes (for us normal folk: small, medium, and large). Starbuzz
saw this as an intrinsic part of the coffee class, so they’ve added two methods to the
Beverage class: setSize() and getSize(). They’d also like for the condiments to be
charged according to size, so for instance, Soy costs 10¢, 15¢, and 20¢, respectively, for
tall, grande, and venti coffees.

How would you alter the decorator classes to handle this change in requirements? Here’s

our solution.

Chapter 4. The Factory Pattern:
Baking with OO Goodness

Get ready to bake some loosely coupled OO designs. There is more to
making objects than just using the new operator. You’ll learn that
instantiation is an activity that shouldn’t always be done in public and can
often lead to coupling problems. And you don’t want that, do you? Find out
how Factory Patterns can help save you from embarrassing dependencies.

When you see “new,” think “concrete.”
Yes, when you use new you are certainly instantiating a concrete class, so
that’s definitely an implementation, not an interface. And it’s a good
question; you’ve learned that tying your code to a concrete class can make it
more fragile and less flexible.

When you have a whole set of related concrete classes, often you’re forced to
write code like this:

Here we’ve got several concrete classes being instantiated, and the decision
of which to instantiate is made at runtime depending on some set of
conditions.
When you see code like this, you know that when it comes time for changes
or extensions, you’ll have to reopen this code and examine what needs to be
added (or deleted). Often this kind of code ends up in several parts of the
application making maintenance and updates more difficult and error-prone.

What’s wrong with “new”?

Technically there’s nothing wrong with new. After all, it’s a fundamental part
of Java. The real culprit is our old friend CHANGE and how change impacts
our use of new.
By coding to an interface, you know you can insulate yourself from a lot of
changes that might happen to a system down the road. Why? If your code is
written to an interface, then it will work with any new classes implementing
that interface through polymorphism. However, when you have code that
makes use of lots of concrete classes, you’re looking for trouble because that
code may have to be changed as new concrete classes are added. So, in other
words, your code will not be “closed for modification.” To extend it with new
concrete types, you’ll have to reopen it.

NOTE

Remember that designs should be “open for extension but closed for modification” - see
Chapter 3 for a review.

So what can you do? It’s times like these that you can fall back on OO
Design Principles to look for clues. Remember, our first principle deals with
change and guides us to identify the aspects that vary and separate them from
what stays the same.

BRAIN POWER

How might you take all the parts of your application that instantiate concrete classes and
separate or encapsulate them from the rest of your application?

Identifying the aspects that vary

Let’s say you have a pizza shop, and as a cutting-edge pizza store owner in
Objectville you might end up writing some code like this:

But you need more than one type of pizza...
So then you’d add some code that determines the appropriate type of pizza
and then goes about making the pizza:

But the pressure is on to add more pizza types
You realize that all of your competitors have added a couple of trendy pizzas

to their menus: the Clam Pizza and the Veggie Pizza. Obviously you need to
keep up with the competition, so you’ll add these items to your menu. And
you haven’t been selling many Greek Pizzas lately, so you decide to take that
off the menu:

Clearly, dealing with which concrete class is instantiated is really messing up
our orderPizza() method and preventing it from being closed for
modification. But now that we know what is varying and what isn’t, it’s
probably time to encapsulate it.

Encapsulating object creation
So now we know we’d be better off moving the object creation out of the
orderPizza() method. But how? Well, what we’re going to do is take the
creation code and move it out into another object that is only going to be
concerned with creating pizzas.

We’ve got a name for this new object: we call it a Factory.
Factories handle the details of object creation. Once we have a
SimplePizzaFactory, our orderPizza() method just becomes a client of that
object. Any time it needs a pizza it asks the pizza factory to make one. Gone
are the days when the orderPizza() method needs to know about Greek versus
Clam pizzas. Now the orderPizza() method just cares that it gets a pizza that
implements the Pizza interface so that it can call prepare(), bake(), cut(), and
box().
We’ve still got a few details to fill in here; for instance, what does the
orderPizza() method replace its creation code with? Let’s implement a simple
factory for the pizza store and find out...

Building a simple pizza factory
We’ll start with the factory itself. What we’re going to do is define a class
that encapsulates the object creation for all pizzas. Here it is...

THERE ARE NO DUMB QUESTIONS

Q: Q: What’s the advantage of this? It looks like we are just pushing the problem off to another object.

A: A: One thing to remember is that the SimplePizzaFactory may have many clients. We’ve only seen the
orderPizza() method; however, there may be a PizzaShopMenu class that uses the factory to get pizzas for their
current description and price. We might also have a HomeDelivery class that handles pizzas in a different way
than our PizzaShop class but is also a client of the factory.

So, by encapsulating the pizza creating in one class, we now have only one place to make modifications when the
implementation changes.

Don’t forget, we are also just about to remove the concrete instantiations from our client code.

Q: Q: I’ve seen a similar design where a factory like this is defined as a static method. What is the difference?

A: A: Defining a simple factory as a static method is a common technique and is often called a static factory. Why
use a static method? Because you don’t need to instantiate an object to make use of the create method. But
remember it also has the disadvantage that you can’t subclass and change the behavior of the create method.

Reworking the PizzaStore class

Now it’s time to fix up our client code. What we want to do is rely on the
factory to create the pizzas for us. Here are the changes:

BRAIN POWER

Q: We know that object composition allows us to change behavior dynamically at runtime (among other things)
because we can swap in and out implementations. How might we be able to use that in the PizzaStore? What
factory implementations might we be able to swap in and out?

A: We don’t know about you, but we’re thinking New York, Chicago, and California style pizza factories (let’s not
forget New Haven, too)

The Simple Factory defined

Pattern Honorable Mention
The Simple Factory isn’t actually a Design Pattern; it’s more of a
programming idiom. But it is commonly used, so we’ll give it a Head First
Pattern Honorable Mention. Some developers do mistake this idiom for the
“Factory Pattern,” so the next time there is an awkward silence between you
and another developer, you’ve got a nice topic to break the ice.
Just because Simple Factory isn’t a REAL pattern doesn’t mean we shouldn’t
check out how it’s put together. Let’s take a look at the class diagram of our
new Pizza Store:

Think of Simple Factory as a warm up. Next, we’ll explore two heavy-duty
patterns that are both factories. But don’t worry, there’s more pizza to come!

NOTE

*Just another reminder: in design patterns, the phrase “implement an interface” does
NOT always mean “write a class that implements a Java interface, by using the
‘implements’ keyword in the class declaration.” In the general use of the phrase, a
concrete class implementing a method from a supertype (which could be a class OR
interface) is still considered to be “implementing the interface” of that supertype.

Franchising the pizza store
Your Objectville PizzaStore has done so well that you’ve trounced the
competition and now everyone wants a PizzaStore in their own
neighborhood. As the franchiser, you want to ensure the quality of the
franchise operations and so you want them to use your time-tested code.
But what about regional differences? Each franchise might want to offer
different styles of pizzas (New York, Chicago, and California, to name a
few), depending on where the franchise store is located and the tastes of the
local pizza connoisseurs.

We’ve seen one approach...
If we take out SimplePizzaFactory and create three different factories —
NYPizzaFactory, ChicagoPizzaFactory and CaliforniaPizzaFactory — then
we can just compose the PizzaStore with the appropriate factory and a

franchise is good to go. That’s one approach.
Let’s see what that would look like...

But you’d like a little more quality control...
So you test-marketed the SimpleFactory idea, and what you found was that
the franchises were using your factory to create pizzas, but starting to employ
their own home-grown procedures for the rest of the process: they’d bake
things a little differently, they’d forget to cut the pizza and they’d use third-
party boxes.
Rethinking the problem a bit, you see that what you’d really like to do is
create a framework that ties the store and the pizza creation together, yet still
allows things to remain flexible.
In our early code, before the SimplePizzaFactory, we had the pizza-making
code tied to the PizzaStore, but it wasn’t flexible. So, how can we have our
pizza and eat it too?

A framework for the pizza store
There is a way to localize all the pizza-making activities to the PizzaStore
class, and yet give the franchises freedom to have their own regional style.
What we’re going to do is put the createPizza() method back into PizzaStore,
but this time as an abstract method, and then create a PizzaStore subclass
for each regional style.
First, let’s look at the changes to the PizzaStore:

Now we’ve got a store waiting for subclasses; we’re going to have a subclass
for each regional type (NYPizzaStore, ChicagoPizzaStore,
CaliforniaPizzaStore) and each subclass is going to make the decision about
what makes up a pizza. Let’s take a look at how this is going to work.

Allowing the subclasses to decide
Remember, the PizzaStore already has a well-honed order system in the
orderPizza() method and you want to ensure that it’s consistent across all
franchises.
What varies among the regional PizzaStores is the style of pizzas they make
— New York Pizza has thin crust, Chicago Pizza has thick, and so on — and
we are going to push all these variations into the createPizza() method and

make it responsible for creating the right kind of pizza. The way we do this is
by letting each subclass of PizzaStore define what the createPizza() method
looks like. So, we will have a number of concrete subclasses of PizzaStore,
each with its own pizza variations, all fitting within the PizzaStore framework
and still making use of the well-tuned orderPizza() method.

Well, think about it from the point of view of the PizzaStore’s orderPizza()
method: it is defined in the abstract PizzaStore, but concrete types are only
created in the subclasses.

Now, to take this a little further, the orderPizza() method does a lot of things
with a Pizza object (like prepare, bake, cut, box), but because Pizza is
abstract, orderPizza() has no idea what real concrete classes are involved. In
other words, it’s decoupled!

When orderPizza() calls createPizza(), one of your subclasses will be called
into action to create a pizza. Which kind of pizza will be made? Well, that’s
decided by the choice of pizza store you order from, NYStylePizzaStore or
ChicagoStylePizzaStore.

So, is there a real-time decision that subclasses make? No, but from the
perspective of orderPizza(), if you chose a NYStylePizzaStore, that subclass
gets to determine which pizza is made. So the subclasses aren’t really
“deciding” — it was you who decided by choosing which store you wanted
— but they do determine which kind of pizza gets made.

Let’s make a PizzaStore
Being a franchise has its benefits. You get all the PizzaStore functionality for
free. All the regional stores need to do is subclass PizzaStore and supply a
createPizza() method that implements their style of Pizza. We’ll take care of
the big three pizza styles for the franchisees.
Here’s the New York regional style:

NOTE

* Note that the orderPizza() method in the superclass has no clue which Pizza we are
creating; it just knows it can prepare, bake, cut, and box it!

Once we’ve got our PizzaStore subclasses built, it will be time to see about
ordering up a pizza or two. But before we do that, why don’t you take a crack
at building the Chicago Style and California Style pizza stores on the next
page.

SHARPEN YOUR PENCIL

We’ve knocked out the NYPizzaStore; just two more to go and we’ll be ready to
franchise! Write the Chicago and California PizzaStore implementations here:

Declaring a factory method
With just a couple of transformations to the PizzaStore we’ve gone from
having an object handle the instantiation of our concrete classes to a set of
subclasses that are now taking on that responsibility. Let’s take a closer look:

CODE UP CLOSE

A factory method handles object creation and encapsulates it in a subclass. This
decouples the client code in the superclass from the object creation code in the subclass.

Let’s see how it works: ordering pizzas with the pizza
factory method

So how do they order?
① First, Joel and Ethan need an instance of a PizzaStore. Joel needs to
instantiate a ChicagoPizzaStore and Ethan needs a NYPizzaStore.
② With a PizzaStore in hand, both Ethan and Joel call the orderPizza()
method and pass in the type of pizza they want (cheese, veggie, and so
on).
③ To create the pizzas, the createPizza() method is called, which is
defined in the two subclasses NYPizzaStore and ChicagoPizzaStore. As
we defined them, the NYPizzaStore instantiates a NY style pizza, and the
ChicagoPizzaStore instantiates a Chicago style pizza. In either case, the
Pizza is returned to the orderPizza() method.
④ The orderPizza() method has no idea what kind of pizza was created,
but it knows it is a pizza and it prepares, bakes, cuts, and boxes it for
Ethan and Joel.

Let’s check out how these pizzas are really made to
order...

Behind the Scenes

We’re just missing one thing: PIZZA!

Our PizzaStore isn’t going to be very popular without
some pizzas, so let’s implement them

NOTE

REMEMBER: we don’t provide import and package statements in the code listings. Get
the complete source code from the wickedlysmart website. You’ll find the URL on page
xxxiii in the Intro.

Now we just need some concrete subclasses... how about
defining New York and Chicago style cheese pizzas?

You’ve waited long enough. Time for some pizzas!

It’s finally time to meet the Factory Method Pattern
All factory patterns encapsulate object creation. The Factory Method Pattern
encapsulates object creation by letting subclasses decide what objects to
create. Let’s check out these class diagrams to see who the players are in this

pattern:

The Creator classes

The Product classes

Another perspective: parallel class hierarchies
We’ve seen that the factory method provides a framework by supplying an
orderPizza() method that is combined with a factory method. Another way to
look at this pattern as a framework is in the way it encapsulates product
knowledge into each creator.

Let’s look at the two parallel class hierarchies and see how they relate:

NOTE

The factory method is the key to encapsulating this knowledge.

DESIGN PUZZLE

We need another kind of pizza for those crazy Californians (crazy in a good way, of
course). Draw another parallel set of classes that you’d need to add a new California
region to our PizzaStore.

Okay, now write the five most bizarre things you can think of to put on a pizza. Then,
you’ll be ready to go into business making pizza in California!

Factory Method Pattern defined
It’s time to roll out the official definition of the Factory Method Pattern:

NOTE

The Factory Method Pattern defines an interface for creating an object, but lets
subclasses decide which class to instantiate. Factory Method lets a class defer
instantiation to subclasses.

As with every factory, the Factory Method Pattern gives us a way to
encapsulate the instantiations of concrete types. Looking at the class diagram
below, you can see that the abstract Creator gives you an interface with a
method for creating objects, also known as the “factory method.” Any other
methods implemented in the abstract Creator are written to operate on
products produced by the factory method. Only subclasses actually
implement the factory method and create products.
As in the official definition, you’ll often hear developers say that the Factory
Method lets subclasses decide which class to instantiate. They say “decide”
not because the pattern allows subclasses themselves to decide at runtime, but
because the creator class is written without knowledge of the actual products
that will be created, which is decided purely by the choice of the subclass that
is used.

NOTE

You could ask them what “decides” means, but we bet you now understand this better
than they do!

THERE ARE NO DUMB QUESTIONS

Q: Q: What’s the advantage of the Factory Method Pattern when you only have one ConcreteCreator?

A: A: The Factory Method Pattern is useful if you’ve only got one concrete creator because you are decoupling the
implementation of the product from its use. If you add additional products or change a product’s implementation,
it will not affect your Creator (because the Creator is not tightly coupled to any ConcreteProduct).

Q: Q: Would it be correct to say that our NY and Chicago stores are implemented using Simple Factory?
They look just like it.

A: A: They’re similar, but used in different ways. Even though the implementation of each concrete store looks a lot
like the SimplePizzaFactory, remember that the concrete stores are extending a class that has defined
createPizza() as an abstract method. It is up to each store to define the behavior of the createPizza() method. In
Simple Factory, the factory is another object that is composed with the PizzaStore.

Q: Q: Are the factory method and the Creator always abstract?

A: A: No, you can define a default factory method to produce some concrete product. Then you always have a means
of creating products even if there are no subclasses of the Creator.

Q: Q: Each store can make four different kinds of pizzas based on the type passed in. Do all concrete creators
make multiple products, or do they sometimes just make one?

A: A: We implemented what is known as the parameterized factory method. It can make more than one object based
on a parameter passed in, as you noticed. Often, however, a factory just produces one object and is not
parameterized. Both are valid forms of the pattern.

Q: Q: Your parameterized types don’t seem “type-safe.” I’m just passing in a String! What if I asked for a
“CalmPizza”?

A: A: You are certainly correct and that would cause, what we call in the business, a “runtime error.” There are
several other more sophisticated techniques that can be used to make parameters more “type safe,” or, in other
words, to ensure errors in parameters can be caught at compile time. For instance, you can create objects that
represent the parameter types, use static constants, or use enums.

Q: Q: I’m still a bit confused about the difference between Simple Factory and Factory Method. They look
very similar, except that in Factory Method, the class that returns the pizza is a subclass. Can you explain?

A: A: You’re right that the subclasses do look a lot like Simple Factory; however, think of Simple Factory as a one-
shot deal, while with Factory Method you are creating a framework that lets the subclasses decide which
implementation will be used. For example, the orderPizza() method in the Factory Method provides a general
framework for creating pizzas that relies on a factory method to actually create the concrete classes that go into
making a pizza. By subclassing the PizzaStore class, you decide what concrete products go into making the pizza
that orderPizza() returns. Compare that with SimpleFactory, which gives you a way to encapsulate object
creation, but doesn’t give you the flexibility of the Factory Method because there is no way to vary the products
you’re creating.

MASTER AND STUDENT...

Master: Grasshopper, tell me how your training is going.

Student: Master, I have taken my study of “encapsulate what varies” further.

Master: Go on...

Student: I have learned that one can encapsulate the code that creates objects. When
you have code that instantiates concrete classes, this is an area of frequent change. I’ve

learned a technique called “factories” that allows you to encapsulate this behavior of
instantiation.

Master: And these “factories,” of what benefit are they?

Student: There are many. By placing all my creation code in one object or method, I
avoid duplication in my code and provide one place to perform maintenance. That also
means clients depend only upon interfaces rather than the concrete classes required to
instantiate objects. As I have learned in my studies, this allows me to program to an
interface, not an implementation, and that makes my code more flexible and extensible
in the future.

Master: Yes Grasshopper, your OO instincts are growing. Do you have any questions
for your master today?

Student: Master, I know that by encapsulating object creation I am coding to
abstractions and decoupling my client code from actual implementations. But my factory
code must still use concrete classes to instantiate real objects. Am I not pulling the wool
over my own eyes?

Master: Grasshopper, object creation is a reality of life; we must create objects or we
will never create a single Java program. But, with knowledge of this reality, we can
design our code so that we have corralled this creation code like the sheep whose wool
you would pull over your eyes. Once corralled, we can protect and care for the creation
code. If we let our creation code run wild, then we will never collect its “wool.”

Student: Master, I see the truth in this.

Master: As I knew you would. Now, please go and meditate on object dependencies.

A very dependent PizzaStore

SHARPEN YOUR PENCIL

Let’s pretend you’ve never heard of an OO factory. Here’s a version of the PizzaStore
that doesn’t use a factory; make a count of the number of concrete pizza objects this
class is dependent on. If you added California style pizzas to this PizzaStore, how many
objects would it be dependent on then?

Looking at object dependencies
When you directly instantiate an object, you are depending on its concrete
class. Take a look at our very dependent PizzaStore one page back. It creates
all the pizza objects right in the PizzaStore class instead of delegating to a
factory.
If we draw a diagram representing that version of the PizzaStore and all the
objects it depends on, here’s what it looks like:

The Dependency Inversion Principle
It should be pretty clear that reducing dependencies to concrete classes in our
code is a “good thing.” In fact, we’ve got an OO design principle that
formalizes this notion; it even has a big, formal name: Dependency Inversion
Principle.

NOTE

Yet another phrase you can use to impress the execs in the room! Your raise will more
than offset the cost of this book, and you’ll gain the admiration of your fellow
developers.

Here’s the general principle:

DESIGN PRINCIPLE

Depend upon abstractions. Do not depend upon concrete classes.

At first, this principle sounds a lot like “Program to an interface, not an
implementation,” right? It is similar; however, the Dependency Inversion
Principle makes an even stronger statement about abstraction. It suggests that
our high-level components should not depend on our low-level components;
rather, they should both depend on abstractions.

NOTE

A “high-level” component is a class with behavior defined in terms of other, “low-level”
components.

For example, PizzaStore is a high-level component because its behavior is defined in
terms of pizzas - it creates all the different pizza objects, and prepares, bakes, cuts, and
boxes them, while the pizzas it uses are low-level components.

But what the heck does that mean?
Well, let’s start by looking again at the pizza store diagram on the previous
page. PizzaStore is our “high-level component” and the pizza
implementations are our “low-level components,” and clearly the PizzaStore
is dependent on the concrete pizza classes.
Now, this principle tells us we should instead write our code so that we are
depending on abstractions, not concrete classes. That goes for both our high-
level modules and our low-level modules.
But how do we do this? Let’s think about how we’d apply this principle to
our Very Dependent PizzaStore implementation...

Applying the Principle
Now, the main problem with the Very Dependent PizzaStore is that it
depends on every type of pizza because it actually instantiates concrete types
in its orderPizza() method.
While we’ve created an abstraction, Pizza, we’re nevertheless creating
concrete Pizzas in this code, so we don’t get a lot of leverage out of this
abstraction.

How can we get those instantiations out of the orderPizza() method? Well, as
we know, the Factory Method allows us to do just that.
So, after we’ve applied the Factory Method, our diagram looks like this:

After applying the Factory Method, you’ll notice that our high-level
component, the PizzaStore, and our low-level components, the pizzas, both
depend on Pizza, the abstraction. Factory Method is not the only technique
for adhering to the Dependency Inversion Principle, but it is one of the more
powerful ones.

Where’s the “inversion” in Dependency Inversion Principle?
The “inversion” in the name Dependency Inversion Principle is there because
it inverts the way you typically might think about your OO design. Look at
the diagram on the previous page. Notice that the low-level components now
depend on a higher level abstraction. Likewise, the high-level component is
also tied to the same abstraction. So, the top-to-bottom dependency chart we
drew a couple of pages back has inverted itself, with both high-level and low-
level modules now depending on the abstraction.
Let’s also walk through the thinking behind the typical design process and
see how introducing the principle can invert the way we think about the
design...

Inverting your thinking...

Okay, so you need to implement a PizzaStore. What’s the first thought that pops into
your head?

Right, you start at the top and follow things down to the concrete classes. But, as
you’ve seen, you don’t want your store to know about the concrete pizza types,
because then it’ll be dependent on all those concrete classes!

Now, let’s “invert” your thinking... instead of starting at the top, start at the Pizzas
and think about what you can abstract.

Right! You are thinking about the abstraction Pizza. So now, go back and think about
the design of the Pizza Store again.

Close. But to do that you’ll have to rely on a factory to get those concrete classes out
of your Pizza Store. Once you’ve done that, your different concrete pizza types
depend only on an abstraction and so does your store. We’ve taken a design where the
store depended on concrete classes and inverted those dependencies (along with your
thinking).

A few guidelines to help you follow the Principle...
The following guidelines can help you avoid OO designs that violate the
Dependency Inversion Principle:

No variable should hold a reference to a concrete class.

NOTE

If you use new, you’ll be holding a reference to a concrete class. Use a factory to get
around that!

No class should derive from a concrete class.

NOTE

If you derive from a concrete class, you’re depending on a concrete class. Derive
from an abstraction, like an interface or an abstract class.

No method should override an implemented method of any of its base
classes.

NOTE

If you override an implemented method, then your base class wasn’t really an

abstraction to start with. Those methods implemented in the base class are meant to
be shared by all your subclasses.

You’re exactly right! Like many of our principles, this is a guideline you
should strive for, rather than a rule you should follow all the time. Clearly,
every single Java program ever written violates these guidelines!
But, if you internalize these guidelines and have them in the back of your
mind when you design, you’ll know when you are violating the principle and
you’ll have a good reason for doing so. For instance, if you have a class that
isn’t likely to change, and you know it, then it’s not the end of the world if
you instantiate a concrete class in your code. Think about it; we instantiate
String objects all the time without thinking twice. Does that violate the
principle? Yes. Is that okay? Yes. Why? Because String is very unlikely to
change.
If, on the other hand, a class you write is likely to change, you have some
good techniques like Factory Method to encapsulate that change.

Meanwhile, back at the PizzaStore...
The design for the PizzaStore is really shaping up: it’s got a flexible
framework and it does a good job of adhering to design principles.
Now, the key to Objectville Pizza’s success has always been fresh, quality
ingredients, and what you’ve discovered is that with the new framework your
franchises have been following your procedures, but a few franchises have
been substituting inferior ingredients in their pies to lower costs and increase
their margins. You know you’ve got to do something, because in the long
term this is going to hurt the Objectville brand!

Ensuring consistency in your ingredients
So how are you going to ensure each franchise is using quality ingredients?
You’re going to build a factory that produces them and ships them to your
franchises!
Now there is only one problem with this plan: the franchises are located in
different regions and what is red sauce in New York is not red sauce in
Chicago. So, you have one set of ingredients that needs to be shipped to New
York and a different set that needs to be shipped to Chicago. Let’s take a
closer look:

Families of ingredients...
New York uses one set of ingredients and Chicago another. Given the
popularity of Objectville Pizza, it won’t be long before you also need to
ship another set of regional ingredients to California, and what’s next?
Seattle?
For this to work, you are going to have to figure out how to handle
families of ingredients.

Building the ingredient factories
Now we’re going to build a factory to create our ingredients; the factory
will be responsible for creating each ingredient in the ingredient family.
In other words, the factory will need to create dough, sauce, cheese, and
so on... You’ll see how we are going to handle the regional differences
shortly.

Let’s start by defining an interface for the factory that is going to create
all our ingredients:

NOTE

If we’d had some common “machinery” to implement in each instance of factory, we
could have made this an abstract class instead...

Here’s what we’re going to do:
① Build a factory for each region. To do this, you’ll create a subclass of
PizzaIngredientFactory that implements each create method.
② Implement a set of ingredient classes to be used with the factory, like
ReggianoCheese, RedPeppers, and ThickCrustDough. These classes can
be shared among regions where appropriate.
③ Then we still need to hook all this up by working our new ingredient
factories into our old PizzaStore code.

Building the New York ingredient factory
Okay, here’s the implementation for the New York ingredient factory.
This factory specializes in Marinara Sauce, Reggiano Cheese, Fresh
Clams...

SHARPEN YOUR PENCIL

Write the ChicagoPizzaIngredientFactory. You can reference the classes below in your
implementation:

Reworking the pizzas...
We’ve got our factories all fired up and ready to produce quality ingredients;
now we just need to rework our Pizzas so they only use factory-produced
ingredients. We’ll start with our abstract Pizza class:

Reworking the pizzas, continued...
Now that you’ve got an abstract Pizza to work from, it’s time to create the
New York and Chicago style Pizzas — only this time around they will get
their ingredients straight from the factory. The franchisees’ days of skimping

on ingredients are over!
When we wrote the Factory Method code, we had a NYCheesePizza and a
ChicagoCheesePizza class. If you look at the two classes, the only thing that
differs is the use of regional ingredients. The pizzas are made just the same
(dough + sauce + cheese). The same goes for the other pizzas: Veggie, Clam,
and so on. They all follow the same preparation steps; they just have different
ingredients.
So, what you’ll see is that we really don’t need two classes for each pizza; the
ingredient factory is going to handle the regional differences for us. Here’s
the Cheese Pizza:

CODE UP CLOSE

The Pizza code uses the factory it has been composed with to produce the ingredients
used in the pizza. The ingredients produced depend on which factory we’re using. The
Pizza class doesn’t care; it knows how to make pizzas. Now, it’s decoupled from the
differences in regional ingredients and can be easily reused when there are factories for
the Rockies, the Pacific Northwest, and beyond.

Let’s check out the ClamPizza as well:

Revisiting our pizza stores
We’re almost there; we just need to make a quick trip to our franchise
stores to make sure they are using the correct Pizzas. We also need to
give them a reference to their local ingredient factories:

BRAIN POWER

Compare this version of the createPizza() method to the one in the Factory Method
implementation earlier in the chapter.

What have we done?
That was quite a series of code changes; what exactly did we do?
We provided a means of creating a family of ingredients for pizzas by
introducing a new type of factory called an Abstract Factory.
An Abstract Factory gives us an interface for creating a family of
products. By writing code that uses this interface, we decouple our code

from the actual factory that creates the products. That allows us to
implement a variety of factories that produce products meant for
different contexts — such as different regions, different operating
systems, or different look and feels.
Because our code is decoupled from the actual products, we can
substitute different factories to get different behaviors (like getting
marinara instead of plum tomatoes).
An Abstract Factory provides an interface for a family of products. What’s a
family? In our case, it’s all the things we need to make a pizza: dough, sauce,
cheese, meats, and veggies.
From the abstract factory, we derive one or more concrete factories that
produce the same products, but with different implementations.
We then write our code so that it uses the factory to create products. By
passing in a variety of factories, we get a variety of implementations of those
products. But our client code stays the same.

More pizza for Ethan and Joel...
Ethan and Joel can’t get enough Objectville Pizza! What they don’t
know is that now their orders are making use of the new ingredient
factories. So now when they order...

Behind the Scenes

The first part of the order process hasn’t changed at all. Let’s follow Ethan’s
order again:
① First we need a NY PizzaStore:

② Now that we have a store, we can take an order:

③ The orderPizza() method first calls the createPizza() method:
Pizza pizza = createPizza("cheese");

From here things change, because we are using an
ingredient factory

Behind the Scenes
④ When the createPizza() method is called, that’s when our
ingredient factory gets involved:

⑤ Next we need to prepare the pizza. Once the prepare() method is
called, the factory is asked to prepare ingredients:

⑥ Finally, we have the prepared pizza in hand and the orderPizza()
method bakes, cuts, and boxes the pizza.

Abstract Factory Pattern defined
We’re adding yet another factory pattern to our pattern family, one that lets
us create families of products. Let’s check out the official definition for this
pattern:

NOTE

The Abstract Factory Pattern provides an interface for creating families of related or
dependent objects without specifying their concrete classes.

We’ve certainly seen that Abstract Factory allows a client to use an abstract
interface to create a set of related products without knowing (or caring) about
the concrete products that are actually produced. In this way, the client is
decoupled from any of the specifics of the concrete products. Let’s look at
the class diagram to see how this all holds together:

That’s a fairly complicated class diagram; let’s look at it all in terms of
our PizzaStore:

Is that a Factory Method lurking inside the Abstract Factory?
Good catch! Yes, often the methods of an Abstract Factory are implemented
as factory methods. It makes sense, right? The job of an Abstract Factory is
to define an interface for creating a set of products. Each method in that
interface is responsible for creating a concrete product, and we implement a
subclass of the Abstract Factory to supply those implementations. So, factory
methods are a natural way to implement your product methods in your
abstract factories.

PATTERNS EXPOSED

This week’s interview: Factory Method and Abstract Factory, on each other

HeadFirst: Wow, an interview with two patterns at once! This is a first for us.

Factory Method: Yeah, I’m not so sure I like being lumped in with Abstract Factory,
you know. Just because we’re both factory patterns doesn’t mean we shouldn’t get our
own interviews.

HeadFirst: Don’t be miffed, we wanted to interview you together so we could help
clear up any confusion about who’s who for the readers. You do have similarities, and
I’ve heard that people sometimes get you confused.

Abstract Factory: It is true, there have been times I’ve been mistaken for Factory
Method, and I know you’ve had similar issues, Factory Method. We’re both really good
at decoupling applications from specific implementations; we just do it in different
ways. So I can see why people might sometimes get us confused.

Factory Method: Well, it still ticks me off. After all, I use classes to create and you use
objects; that’s totally different!

HeadFirst: Can you explain more about that, Factory Method?

Factory Method: Sure. Both Abstract Factory and I create objects — that’s our jobs.
But I do it through inheritance...

Abstract Factory: ...and I do it through object composition.

Factory Method: Right. So that means, to create objects using Factory Method, you
need to extend a class and provide an implementation for a factory method.

HeadFirst: And that factory method does what?

Factory Method: It creates objects, of course! I mean, the whole point of the Factory
Method Pattern is that you’re using a subclass to do your creation for you. In that way,
clients only need to know the abstract type they are using, the subclass worries about the
concrete type. So, in other words, I keep clients decoupled from the concrete types.

Abstract Factory: And I do too, only I do it in a different way.

HeadFirst: Go on, Abstract Factory... you said something about object composition?

Abstract Factory: I provide an abstract type for creating a family of products.
Subclasses of this type define how those products are produced. To use the factory, you
instantiate one and pass it into some code that is written against the abstract type. So,
like Factory Method, my clients are decoupled from the actual concrete products they
use.

HeadFirst: Oh, I see, so another advantage is that you group together a set of related
products.

Abstract Factory: That’s right.

HeadFirst: What happens if you need to extend that set of related products to, say, add
another one? Doesn’t that require changing your interface?

Abstract Factory: That’s true; my interface has to change if new products are added,
which I know people don’t like to do....

Factory Method: <snicker>

Abstract Factory: What are you snickering at, Factory Method?

Factory Method: Oh, come on, that’s a big deal! Changing your interface means you
have to go in and change the interface of every subclass! That sounds like a lot of work.

Abstract Factory: Yeah, but I need a big interface because I am used to creating entire
families of products. You’re only creating one product, so you don’t really need a big
interface, you just need one method.

HeadFirst: Abstract Factory, I heard that you often use factory methods to implement
your concrete factories?

Abstract Factory: Yes, I’ll admit it, my concrete factories often implement a factory
method to create their products. In my case, they are used purely to create products...

Factory Method: ...while in my case I usually implement code in the abstract creator
that makes use of the concrete types the subclasses create.

HeadFirst: It sounds like you both are good at what you do. I’m sure people like having
a choice; after all, factories are so useful, they’ll want to use them in all kinds of
different situations. You both encapsulate object creation to keep applications loosely
coupled and less dependent on implementations, which is really great, whether you’re
using Factory Method or Abstract Factory. May I allow you each a parting word?

Abstract Factory: Thanks. Remember me, Abstract Factory, and use me whenever you
have families of products you need to create and you want to make sure your clients
create products that belong together.

Factory Method: And I’m Factory Method; use me to decouple your client code from
the concrete classes you need to instantiate, or if you don’t know ahead of time all the
concrete classes you are going to need. To use me, just subclass me and implement my
factory method!

Factory Method and Abstract Factory compared

NOTE

The product subclasses create parallel sets of product families. Here we have a New
York ingredient family and a Chicago family.

Tools for your Design Toolbox

In this chapter, we added two more tools to your toolbox: Factory Method
and Abstract Factory. Both patterns encapsulate object creation and allow
you to decouple your code from concrete types.

BULLET POINTS

All factories encapsulate object creation.
Simple Factory, while not a bona fide design pattern, is a simple way to decouple
your clients from concrete classes.
Factory Method relies on inheritance: object creation is delegated to subclasses,
which implement the factory method to create objects.
Abstract Factory relies on object composition: object creation is implemented in
methods exposed in the factory interface.
All factory patterns promote loose coupling by reducing the dependency of your
application on concrete classes.
The intent of Factory Method is to allow a class to defer instantiation to its
subclasses.
The intent of Abstract Factory is to create families of related objects without having
to depend on their concrete classes.
The Dependency Inversion Principle guides us to avoid dependencies on concrete
types and to strive for abstractions.
Factories are a powerful technique for coding to abstractions, not concrete classes.

DESIGN PATTERNS CROSSWORD

It’s been a long chapter. Grab a slice of Pizza and relax while doing this crossword; all
of the solution words are from this chapter.

Across Down

1. In Factory Method, each franchise is a
________.

4. In Factory Method, who decides which
class to instantiate?

6. Role of PizzaStore in Factory Method
Pattern.

7. All New York style pizzas use this kind of
cheese.

8. In Abstract Factory, each ingredient factory
is a _______.

9. When you use new, you are programming
to an ___________.

11. createPizza() is a ____________ (two
words).

12. Joel likes this kind of pizza.

13. In Factory Method, the PizzaStore and the
concrete Pizzas all depend on this abstraction.

14. When a class instantiates an object from a

2. We used ___________ in Simple Factory and
Abstract Factory, and inheritance in Factory
Method.

3. Abstract Factory creates a ___________ of
products.

5. Not a REAL factory pattern, but handy
nonetheless.

10. Ethan likes this kind of pizza.

concrete class, it’s ___________ on that
object.

15. All factory patterns allow us to
__________ object creation.

SHARPEN YOUR PENCIL SOLUTION

We’ve knocked out the NYPizzaStore; just two more to go and we’ll be ready to
franchise! Write the Chicago and California PizzaStore implementations here:

DESIGN PUZZLE SOLUTION

We need another kind of pizza for those crazy Californians (crazy in a GOOD way, of
course). Draw another parallel set of classes that you’d need to add a new California
region to our PizzaStore.

Okay, now write the five silliest things you can think of to put on a pizza. Then, you’ll
be ready to go into business making pizza in California!

NOTE

Here are our suggestions...

__Mashed Potatoes with Roasted Garlic_____________________

__BBQ Sauce___

__Artichoke Hearts_____________________________________

__M M’s__

__Peanuts__

A very dependent PizzaStore

SHARPEN YOUR PENCIL SOLUTION

Let’s pretend you’ve never heard of an OO factory. Here’s a version of the PizzaStore
that doesn’t use a factory; make a count of the number of concrete pizza objects this
class is dependent on. If you added California style pizzas to this PizzaStore, how many
objects would it be dependent on then?

SHARPEN YOUR PENCIL SOLUTION

Go ahead and write the ChicagoPizzaIngredientFactory; you can reference the classes
below in your implementation:

public class ChicagoPizzaIngredientFactory

 implements PizzaIngredientFactory
{

 public Dough createDough() {
 return new ThickCrustDough();
 }

 public Sauce createSauce() {
 return new PlumTomatoSauce();
 }

 public Cheese createCheese() {
 return new MozzarellaCheese();
 }

 public Veggies[] createVeggies() {
 Veggies veggies[] = { new BlackOlives(),
 new Spinach(),
 new Eggplant() };
 return veggies;
 }

 public Pepperoni createPepperoni() {
 return new SlicedPepperoni();
 }

 public Clams createClam() {
 return new FrozenClams();
 }
}

DESIGN PATTERNS CROSSWORD SOLUTION

It’s been a long chapter. Grab a slice of Pizza and relax while doing this crossword; all
of the solution words are from this chapter. Here’s the solution.

Chapter 5. The Singleton Pattern:
One of a Kind Objects

Our next stop is the Singleton Pattern, our ticket to creating one-of-a-
kind objects for which there is only one instance. You might be happy to
know that of all patterns, the Singleton is the simplest in terms of its class
diagram; in fact, the diagram holds just a single class! But don’t get too
comfortable; despite its simplicity from a class design perspective, we are
going to encounter quite a few bumps and potholes in its implementation. So
buckle up.

Developer: What use is that?
Guru: There are many objects we only need one of: thread pools, caches,
dialog boxes, objects that handle preferences and registry settings, objects
used for logging, and objects that act as device drivers to devices like printers
and graphics cards. In fact, for many of these types of objects, if we were to
instantiate more than one we’d run into all sorts of problems like incorrect
program behavior, overuse of resources, or inconsistent results.
Developer: Okay, so maybe there are classes that should only be instantiated
once, but do I need a whole chapter for this? Can’t I just do this by
convention or by global variables? You know, like in Java, I could do it with
a static variable.
Guru: In many ways, the Singleton Pattern is a convention for ensuring one
and only one object is instantiated for a given class. If you’ve got a better
one, the world would like to hear about it; but remember, like all patterns, the
Singleton Pattern is a time-tested method for ensuring only one object gets
created. The Singleton Pattern also gives us a global point of access, just like
a global variable, but without the downsides.
Developer: What downsides?

Guru: Well, here’s one example: if you assign an object to a global variable,
then that object might be created when your application begins. Right? What
if this object is resource intensive and your application never ends up using
it? As you will see, with the Singleton Pattern, we can create our objects only
when they are needed.
Developer: This still doesn’t seem like it should be so difficult.
Guru: If you’ve got a good handle on static class variables and methods as
well as access modifiers, it’s not. But, in either case, it is interesting to see
how a Singleton works, and, as simple as it sounds, Singleton code is hard to
get right. Just ask yourself: how do I prevent more than one object from being
instantiated? It’s not so obvious, is it?

The Little Singleton
A small Socratic exercise in the style of The Little
Lisper

How would you
create a single
object?

new MyObject();

And, what if another
object wanted to
create a MyObject?
Could it call new on
MyObject again?

Yes, of course.

So as long as we
have a class, can we
always instantiate it
one or more times?

Yes. Well, only if it’s a public class.

And if not? Well, if it’s not a public class, only classes in the same package can
instantiate it. But they can still instantiate it more than once.

Hmm, interesting.

Did you know you
could do this?

No, I’d never thought of it, but I guess it makes sense because it is a
legal definition.

What does it mean? I suppose it is a class that can’t be instantiated because it has a
private constructor.

Well, is there ANY
object that could use
the private
constructor?

Hmm, I think the code in MyClass is the only code that could call
it. But that doesn’t make much sense.

Why not? Because I’d have to have an instance of the class to call it, but I
can’t have an instance because no other class can instantiate it. It’s
a chicken-and-egg problem: I can use the constructor from an
object of type MyClass, but I can never instantiate that object
because no other object can use “new MyClass()”.

Okay. It was just a
thought.

What does this
mean?

MyClass is a class with a static method. We can call the static
method like this:

MyClass.getInstance();

Why did you use
MyClass, instead of
some object name?

Well, getInstance() is a static method; in other words, it is a CLASS
method. You need to use the class name to reference a static
method.

Very interesting.
What if we put
things together.

Now can I
instantiate a
MyClass?

Wow, you sure can.

So, now can you
think of a second
way to instantiate an
object?

MyClass.getInstance();

Can you finish the
code so that only
ONE instance of
MyClass is ever
created?

Yes, I think so...

(You’ll find the code on the next page.)

Dissecting the classic Singleton Pattern implementation

WATCH IT!

If you’re just flipping through the book, don’t blindly type in this code; you’ll see it has
a few issues later in the chapter.

CODE UP CLOSE

PATTERNS EXPOSED

This week’s interview: Confessions of a Singleton

HeadFirst: Today we are pleased to bring you an interview with a Singleton object.
Why don’t you begin by telling us a bit about yourself.

Singleton: Well, I’m totally unique; there is just one of me!

HeadFirst: One?

Singleton: Yes, one. I’m based on the Singleton Pattern, which assures that at any time
there is only one instance of me.

HeadFirst: Isn’t that sort of a waste? Someone took the time to develop a full-blown
class and now all we can get is one object out of it?

Singleton: Not at all! There is power in ONE. Let’s say you have an object that contains
registry settings. You don’t want multiple copies of that object and its values running
around — that would lead to chaos. By using an object like me you can assure that every
object in your application is making use of the same global resource.

HeadFirst: Tell us more...

Singleton: Oh, I’m good for all kinds of things. Being single sometimes has its
advantages you know. I’m often used to manage pools of resources, like connection or
thread pools.

HeadFirst: Still, only one of your kind? That sounds lonely.

Singleton: Because there’s only one of me, I do keep busy, but it would be nice if more
developers knew me — many developers run into bugs because they have multiple
copies of objects floating around they’re not even aware of.

HeadFirst: So, if we may ask, how do you know there is only one of you? Can’t anyone
with a new operator create a “new you”?

Singleton: Nope! I’m truly unique.

HeadFirst: Well, do developers swear an oath not to instantiate you more than once?

Singleton: Of course not. The truth be told... well, this is getting kind of personal but... I
have no public constructor.

HeadFirst: NO PUBLIC CONSTRUCTOR! Oh, sorry, no public constructor?

Singleton: That’s right. My constructor is declared private.

HeadFirst: How does that work? How do you EVER get instantiated?

Singleton: You see, to get a hold of a Singleton object, you don’t instantiate one, you
just ask for an instance. So my class has a static method called getInstance(). Call that,
and I’ll show up at once, ready to work. In fact, I may already be helping other objects
when you request me.

HeadFirst: Well, Mr. Singleton, there seems to be a lot under your covers to make all
this work. Thanks for revealing yourself and we hope to speak with you again soon!

The Chocolate Factory
Everyone knows that all modern chocolate factories have computer-
controlled chocolate boilers. The job of the boiler is to take in chocolate and
milk, bring them to a boil, and then pass them on to the next phase of making
chocolate bars.
Here’s the controller class for Choc-O-Holic, Inc.’s industrial strength
Chocolate Boiler. Check out the code; you’ll notice they’ve tried to be very
careful to ensure that bad things don’t happen, like draining 500 gallons of
unboiled mixture, or filling the boiler when it’s already full, or boiling an
empty boiler!

BRAIN POWER

Choc-O-Holic has done a decent job of ensuring bad things don’t happen, don’t ya
think? Then again, you probably suspect that if two ChocolateBoiler instances get loose,
some very bad things can happen.

How might things go wrong if more than one instance of ChocolateBoiler is created in
an application?

SHARPEN YOUR PENCIL

Can you help Choc-O-Holic improve their ChocolateBoiler class by turning it into a

singleton?

Singleton Pattern defined
Now that you’ve got the classic implementation of Singleton in your
head, it’s time to sit back, enjoy a bar of chocolate, and check out the
finer points of the Singleton Pattern.
Let’s start with the concise definition of the pattern:

NOTE

The Singleton Pattern ensures a class has only one instance, and provides a global
point of access to it.

No big surprises there. But let’s break it down a bit more:
What’s really going on here? We’re taking a class and letting it manage a
single instance of itself. We’re also preventing any other class from
creating a new instance on its own. To get an instance, you’ve got to go
through the class itself.
We’re also providing a global access point to the instance: whenever you
need an instance, just query the class and it will hand you back the single
instance. As you’ve seen, we can implement this so that the Singleton is
created in a lazy manner, which is especially important for resource-
intensive objects.

Okay, let’s check out the class diagram:

Houston, Hershey, PA we have a problem...
It looks like the Chocolate Boiler has let us down; despite the fact we
improved the code using Classic Singleton, somehow the
ChocolateBoiler’s fill() method was able to start filling the boiler even
though a batch of milk and chocolate was already boiling! That’s 500
gallons of spilled milk (and chocolate)! What happened!?

Could the addition of threads have caused this? Isn’t it the case that once
we’ve set the uniqueInstance variable to the sole instance of
ChocolateBoiler, all calls to getInstance() should return the same
instance? Right?

BE THE JVM

We have two threads, each executing this code. Your job is to play the JVM and
determine whether there is a case in which two threads might get ahold of different
boiler objects. Hint: you really just need to look at the sequence of operations in the
getInstance() method and the value of uniqueInstance to see how they might

overlap. Use the code magnets to help you study how the code might interleave to
create two boiler objects.

Make sure you check your answer in BE the JVM Solution before continuing!

Dealing with multithreading
Our multithreading woes are almost trivially fixed by making
getInstance() a synchronized method:

Good point, and it’s actually a little worse than you make out: the only time
synchronization is relevant is the first time through this method. In other
words, once we’ve set the uniqueInstance variable to an instance of
Singleton, we have no further need to synchronize this method. After the first
time through, synchronization is totally unneeded overhead!

Can we improve multithreading?
For most Java applications, we obviously need to ensure that the Singleton
works in the presence of multiple threads. But, it is expensive to synchronize
the getInstance() method, so what do we do?
Well, we have a few options...

1. Do nothing if the performance of getInstance() isn’t
critical to your application.
That’s right; if calling the getInstance() method isn’t causing substantial
overhead for your application, forget about it. Synchronizing getInstance() is
straightforward and effective. Just keep in mind that synchronizing a method
can decrease performance by a factor of 100, so if a high-traffic part of your
code begins using getInstance(), you may have to reconsider.

2. Move to an eagerly created instance rather than a
lazily created one.
If your application always creates and uses an instance of the Singleton or the

overhead of creation and runtime aspects of the Singleton are not onerous,
you may want to create your Singleton eagerly, like this:

Using this approach, we rely on the JVM to create the unique instance of the
Singleton when the class is loaded. The JVM guarantees that the instance will
be created before any thread accesses the static uniqueInstance variable.

3. Use “double-checked locking” to reduce the use of
synchronization in getInstance().
With double-checked locking, we first check to see if an instance is created,
and if not, THEN we synchronize. This way, we only synchronize the first
time through, just what we want.
Let’s check out the code:

If performance is an issue in your use of the getInstance() method then this
method of implementing the Singleton can drastically reduce the overhead.

WATCH IT!

Double-checked locking doesn’t work in Java 1.4 or earlier!

Unfortunately, in Java version 1.4 and earlier, many JVMs contain implementations of
the volatile keyword that allow improper synchronization for double-checked locking. If
you must use a JVM earlier than Java 5, consider other methods of implementing your
Singleton.

Meanwhile, back at the Chocolate Factory...
While we’ve been off diagnosing the multithreading problems, the chocolate
boiler has been cleaned up and is ready to go. But first, we have to fix the
multithreading problems. We have a few solutions at hand, each with
different tradeoffs, so which solution are we going to employ?

SHARPEN YOUR PENCIL

For each solution, describe its applicability to the problem of fixing the Chocolate Boiler
code:

Synchronize the getInstance() method:

__

__

Use eager instantiation:

__

__

Double-checked locking:

__

__

Congratulations!
At this point, the Chocolate Factory is a happy customer and Choc-O-Holic
was glad to have some expertise applied to their boiler code. No matter which
multithreading solution you applied, the boiler should be in good shape with
no more mishaps. Congratulations. You’ve not only managed to escape
500lbs of hot chocolate in this chapter, but you’ve been through all the
potential problems of the Singleton.

THERE ARE NO DUMB QUESTIONS

Q: Q: For such a simple pattern consisting of only one class, Singletons sure seem to have some problems.

A: A: Well, we warned you up front! But don’t let the problems discourage you; while implementing Singletons
correctly can be tricky, after reading this chapter you are now well informed on the techniques for creating
Singletons and should use them wherever you need to control the number of instances you are creating.

Q: Q: Can’t I just create a class in which all methods and variables are defined as static? Wouldn’t that be the
same as a Singleton?

A: A: Yes, if your class is self-contained and doesn’t depend on complex initialization. However, because of the way
static initializations are handled in Java, this can get very messy, especially if multiple classes are involved. Often
this scenario can result in subtle, hard-to-find bugs involving order of initialization. Unless there is a compelling
need to implement your “singleton” this way, it is far better to stay in the object world.

Q: Q: What about class loaders? I heard there is a chance that two class loaders could each end up with their
own instance of Singleton.

A: A: Yes, that is true as each class loader defines a namespace. If you have two or more class loaders, you can load
the same class multiple times (once in each classloader). Now, if that class happens to be a Singleton, then since
we have more than one version of the class, we also have more than one instance of the Singleton. So, if you are
using multiple classloaders and Singletons, be careful. One way around this problem is to specify the classloader
yourself.

RELAX

Rumors of Singletons being eaten by the garbage collectors are greatly exaggerated

Prior to Java 1.2, a bug in the garbage collector allowed Singletons to be prematurely
collected if there was no global reference to them. In other words, you could create a
Singleton and if the only reference to the Singleton was in the Singleton itself, it would
be collected and destroyed by the garbage collector. This leads to confusing bugs
because after the Singleton is “collected,” the next call to getInstance() produces a
shiny new Singleton. In many applications, this can cause confusing behavior as state is
mysteriously reset to initial values or things like network connections are reset.

Since Java 1.2 this bug has been fixed and a global reference is no longer required. If
you are, for some reason, still using a pre-Java 1.2 JVM, then be aware of this issue;
otherwise, you can sleep well knowing your Singletons won’t be prematurely collected.

THERE ARE NO DUMB QUESTIONS

Q: Q: I’ve always been taught that a class should do one thing and one thing only. For a class to do two things
is considered bad OO design. Isn’t a Singleton violating this?

A: A: You would be referring to the “One Class, One Responsibility” principle, and yes, you are correct, the
Singleton is not only responsible for managing its one instance (and providing global access), it is also
responsible for whatever its main role is in your application. So, certainly you could argue it is taking on two
responsibilities. Nevertheless, it isn’t hard to see that there is utility in a class managing its own instance; it
certainly makes the overall design simpler. In addition, many developers are familiar with the Singleton pattern as
it is in wide use. That said, some developers do feel the need to abstract out the Singleton functionality.

Q: Q: I wanted to subclass my Singleton code, but I ran into problems. Is it okay to subclass a Singleton?

A: A: One problem with subclassing a Singleton is that the constructor is private. You can’t extend a class with a
private constructor. So, the first thing you’ll have to do is change your constructor so that it’s public or protected.
But then, it’s not really a Singleton anymore, because other classes can instantiate it.

If you do change your constructor, there’s another issue. The implementation of Singleton is based on a static
variable, so if you do a straightforward subclass, all of your derived classes will share the same instance variable.
This is probably not what you had in mind. So, for subclassing to work, implementing a registry of sorts is
required in the base class.

Before implementing such a scheme, you should ask yourself what you are really gaining from subclassing a
Singleton. Like most patterns, the Singleton is not necessarily meant to be a solution that can fit into a library. In
addition, the Singleton code is trivial to add to any existing class. Last, if you are using a large number of
Singletons in your application, you should take a hard look at your design. Singletons are meant to be used
sparingly.

Q: Q: I still don’t totally understand why global variables are worse than a Singleton.

A: A: In Java, global variables are basically static references to objects. There are a couple of disadvantages to using
global variables in this manner. We’ve already mentioned one: the issue of lazy versus eager instantiation. But we
need to keep in mind the intent of the pattern: to ensure only one instance of a class exists and to provide global
access. A global variable can provide the latter, but not the former. Global variables also tend to encourage
developers to pollute the namespace with lots of global references to small objects. Singletons don’t encourage
this in the same way, but can be abused nonetheless.

Tools for your Design Toolbox
You’ve now added another pattern to your toolbox. Singleton gives you
another method of creating objects — in this case, unique objects.

NOTE

As you’ve seen, despite its apparent simplicity, there are a lot of details involved in the

Singleton’s implementation. After reading this chapter, though, you are ready to go out
and use Singleton in the wild.

BULLET POINTS

The Singleton Pattern ensures you have at most one instance of a class in your
application.
The Singleton Pattern also provides a global access point to that instance.
Java’s implementation of the Singleton Pattern makes use of a private constructor, a
static method combined with a static variable.
Examine your performance and resource constraints and carefully choose an
appropriate Singleton implementation for multithreaded applications (and we should
consider all applications multithreaded!).
Beware of the double-checked locking implementation; it is not thread-safe in
versions before Java 2, version 5.
Be careful if you are using multiple class loaders; this could defeat the Singleton
implementation and result in multiple instances.
If you are using a JVM earlier than 1.2, you’ll need to create a registry of Singletons
to defeat the garbage collector.

DESIGN PATTERNS CROSSWORD

Sit back, open that case of chocolate that you were sent for solving the multithreading
problem, and have some downtime working on this little crossword puzzle; all of the
solution words are from this chapter.

Across Down

1. It was “one of a kind.”

2. Added to chocolate in the boiler.

8. An incorrect implementation caused this to
overflow.

10. Singleton provides a single instance and
__________ (three words).

12. Flawed multi-threading approach if not
using Java 5 or later.

13. Chocolate capital of the USA.

14. One advantage over global variables:
________ creation.

15. Company that produces boilers.

16. To totally defeat the new constructor, we
have to declare the constructor __________.

1. Multiple __________ can cause problems.

3. A Singleton is a class that manages an instance
of ________.

4. If you don’t need to worry about lazy
instantiation, you can create your instance
__________.

5. Prior to Java 1.2, this can eat your Singletons
(two words).

6. The Singleton was embarrassed it had no public
__________.

7. The classic implementation doesn’t handle this.

9. Singleton ensures only one of these exists.

11. The Singleton Pattern has one.

BE THE JVM SOLUTION

SHARPEN YOUR PENCIL SOLUTION

Can you help Choc-O-Holic improve their ChocolateBoiler class by turning it into a
singleton?

SHARPEN YOUR PENCIL SOLUTION

For each solution, describe its applicability to the problem of fixing the Chocolate Boiler
code:

Synchronize the getInstance() method:

A straightforward technique that is guaranteed to work. We don’t seem to

have__________________

any performance concerns with the chocolate boiler, so this would be a good
choice._____________________

Use eager instantiation:

We are always going to instantiate the chocolate boiler in our code, so statically
initializing_______

the instance would cause no concerns. This solution would work as well as the
synchronized____

method, although perhaps be less obvious to a developer familar with the standard
pattern.

Double-checked locking:

Given we have no performance concerns, double-checked locking seems like overkill. In

addition, we’d have to ensure that we are running at least Java
5.___

DESIGN PATTERNS CROSSWORD SOLUTION

Chapter 6. The Command Pattern:
Encapsulating Invocation

In this chapter, we take encapsulation to a whole new level: we’re going
to encapsulate method invocation. That’s right; by encapsulating method
invocation, we can crystallize pieces of computation so that the object
invoking the computation doesn’t need to worry about how to do things, it
just uses our crystallized method to get it done. We can also do some
wickedly smart things with these encapsulated method invocations, like save
them away for logging or reuse them to implement undo in our code.

Home Automation or Bust, Inc.

1221 Industrial Avenue, Suite 2000

Future City, IL 62914

Greetings!

I recently received a demo and briefing from Johnny Hurricane, CEO of Weather-O-
Rama, on their new expandable weather station. I have to say, I was so impressed with the
software architecture that I’d like to ask you to design the API for our new Home
Automation Remote Control. In return for your services we’d be happy to handsomely
reward you with stock options in Home Automation or Bust, Inc.

I’m enclosing a prototype of our ground-breaking remote control for your perusal. The
remote control features seven programmable slots (each can be assigned to a different
household device) along with corresponding on/off buttons for each. The remote also has
a global undo button.

I’m also enclosing a set of Java classes on CD-R that were created by various vendors to
control home automation devices such as lights, fans, hot tubs, audio equipment, and
other similar controllable appliances.

We’d like you to create an API for programming the remote so that each slot can be
assigned to control a device or set of devices. Note that it is important that we be able to
control the current devices on the disc, and also any future devices that the vendors may
supply.

Given the work you did on the Weather-O-Rama weather station, we know you’ll do a
great job on our remote control! We look forward to seeing your design.

Sincerely,

Bill “X-10” Thompson, CEO

Free hardware! Let’s check out the Remote Control...

Taking a look at the vendor classes
Check out the vendor classes on the CD-R. These should give you some idea
of the interfaces of the objects we need to control from the remote.

It looks like we have quite a set of classes here, and not a lot of industry
effort to come up with a set of common interfaces. Not only that, it sounds
like we can expect more of these classes in the future. Designing a remote
control API is going to be interesting. Let’s get on to the design.

Cubicle Conversation
Your teammates are already discussing how to design the remote control
API...

Mary: Yes, I thought we’d see a bunch of classes with on() and off()
methods, but here we’ve got methods like dim(), setTemperature(),
setVolume(), and setInputChannel().

Sue: Not only that, it sounds like we can expect more vendor classes in the
future with just as diverse methods.
Mary: I think it’s important we view this as a separation of concerns: the
remote should know how to interpret button presses and make requests, but it
shouldn’t know a lot about home automation or how to turn on a hot tub.
Sue: Sounds like good design. But if the remote is dumb and just knows how
to make generic requests, how do we design the remote so that it can invoke
an action that, say, turns on a light or opens a garage door?
Mary: I’m not sure, but we don’t want the remote to have to know the
specifics of the vendor classes.
Sue: What do you mean?
Mary: We don’t want the remote to consist of a set of if statements, like “if
slot1 == Light, then light.on(), else if slot1 == Hottub then hottub.jetsOn()”.
We know that is a bad design.
Sue: I agree. Whenever a new vendor class comes out, we’d have to go in
and modify the code, potentially creating bugs and more work for ourselves!

Mary: Yeah? Tell us more.
Joe: The Command Pattern allows you to decouple the requester of an action
from the object that actually performs the action. So, here the requester would

be the remote control and the object that performs the action would be an
instance of one of your vendor classes.
Sue: How is that possible? How can we decouple them? After all, when I
press a button, the remote has to turn on a light.
Joe: You can do that by introducing “command objects” into your design. A
command object encapsulates a request to do something (like turn on a light)
on a specific object (say, the living room light object). So, if we store a
command object for each button, when the button is pressed we ask the
command object to do some work. The remote doesn’t have any idea what
the work is, it just has a command object that knows how to talk to the right
object to get the work done. So, you see, the remote is decoupled from the
light object!
Sue: This certainly sounds like it’s going in the right direction.
Mary: Still, I’m having a hard time wrapping my head around the pattern.
Joe: Given that the objects are so decoupled, it’s a little difficult to picture
how the pattern actually works.
Mary: Let me see if I at least have the right idea: using this pattern, we could
create an API in which these command objects can be loaded into button
slots, allowing the remote code to stay very simple. And, the command
objects encapsulate how to do a home automation task along with the object
that needs to do it.
Joe: Yes, I think so. I also think this pattern can help you with that undo
button, but I haven’t studied that part yet.
Mary: This sounds really encouraging, but I think I have a bit of work to do
to really “get” the pattern.
Sue: Me too.

Meanwhile, back at the Diner..., or, A brief introduction
to the Command Pattern
As Joe said, it is a little hard to understand the Command Pattern by just
hearing its description. But don’t fear, we have some friends ready to help:
remember our friendly diner from Chapter 1? It’s been a while since we
visited Alice, Flo, and the short-order cook, but we’ve got good reason for

returning (well, beyond the food and great conversation): the diner is going to
help us understand the Command Pattern.

So, let’s take a short detour back to the diner and study the interactions
between the customers, the waitress, the orders and the short-order cook.
Through these interactions, you’re going to understand the objects involved
in the Command Pattern and also get a feel for how the decoupling works.
After that, we’re going to knock out that remote control API.
Checking in at the Objectville Diner...
Okay, we all know how the Diner operates:

Let’s study the interaction in a little more detail...
...and given this Diner is in Objectville, let’s think about the object and
method calls involved, too!

The Objectville Diner roles and responsibilities
An Order Slip encapsulates a request to prepare a meal.
Think of the Order Slip as an object, an object that acts as a request to
prepare a meal. Like any object, it can be passed around — from the
Waitress to the order counter, or to the next Waitress taking over her shift. It
has an interface that consists of only one method, orderUp(), that
encapsulates the actions needed to prepare the meal. It also has a reference to

the object that needs to prepare it (in our case, the Cook). It’s encapsulated in
that the Waitress doesn’t have to know what’s in the order or even who
prepares the meal; she only needs to pass the slip through the order window
and call “Order up!”

NOTE

Okay, in real life a waitress would probably care what is on the Order Slip and who
cooks it, but this is Objectville... work with us here!

The Waitress’s job is to take Order Slips and invoke the orderUp()
method on them.
The Waitress has it easy: take an order from the customer, continue
helping customers until she makes it back to the order counter, then
invoke the orderUp() method to have the meal prepared. As we’ve

already discussed, in Objectville, the Waitress really isn’t worried about
what’s on the order or who is going to prepare it; she just knows Order Slips
have an orderUp() method she can call to get the job done.
Now, throughout the day, the Waitress’s takeOrder() method gets
parameterized with different Order Slips from different customers, but that
doesn’t faze her; she knows all Order Slips support the orderUp() method and
she can call orderUp() any time she needs a meal prepared.

The Short Order Cook has the knowledge required to prepare the meal.
The Short Order Cook is the object that really knows how to prepare
meals. Once the Waitress has invoked the orderUp() method; the Short Order
Cook takes over and implements all the methods that are needed to create
meals. Notice the Waitress and the Cook are totally decoupled: the Waitress
has Order Slips that encapsulate the details of the meal; she just calls a
method on each order to get it prepared. Likewise, the Cook gets his
instructions from the Order Slip; he never needs to directly communicate
with the Waitress.

Patience, we’re getting there...
Think of the Diner as a model for an OO design pattern that allows us to
separate an object making a request from the objects that receive and execute
those requests. For instance, in our remote control API, we need to separate

the code that gets invoked when we press a button from the objects of the
vendor-specific classes that carry out those requests. What if each slot of the
remote held an object like the Diner’s Order Slip object? Then, when a button
is pressed, we could just call the equivalent of the “orderUp()” method on
this object and have the lights turn on without the remote knowing the details
of how to make those things happen or what objects are making them happen.
Now, let’s switch gears a bit and map all this Diner talk to the Command
Pattern...

BRAIN POWER

Before we move on, spend some time studying the diagram two pages back along with
Diner roles and responsibilities until you think you’ve got a handle on the Objectville
Diner objects and relationships. Once you’ve done that, get ready to nail the Command
Pattern!

From the Diner to the Command Pattern
Okay, we’ve spent enough time in the Objectville Diner that we know all the
personalities and their responsibilities quite well. Now we’re going to rework
the Diner diagram to reflect the Command Pattern. You’ll see that all the
players are the same; only the names have changed.

LOADING THE INVOKER

① The client creates a command object.
② The client does a setCommand() to store the command object in the invoker.
③ Later... the client asks the invoker to execute the command. Note: as you’ll see
later in the chapter, once the command is loaded into the invoker, it may be used and
discarded, or it may remain and be used many times.

WHO DOES WHAT?

Match the diner objects and methods with the corresponding names from the Command
Pattern.

Diner Command Pattern

Waitress Command

Short Order Cook execute()

orderUp() Client

Order Invoker

Customer Receiver

takeOrder() setCommand()

Our first command object
Isn’t it about time we build our first command object? Let’s go ahead and
write some code for the remote control. While we haven’t figured out how to
design the remote control API yet, building a few things from the bottom up
may help us...

Implementing the Command interface
First things first: all command objects implement the same interface, which
consists of one method. In the Diner we called this method orderUp();
however, we typically just use the name execute().
Here’s the Command interface:

Implementing a command to turn a light on
Now, let’s say you want to implement a command for turning a light on.
Referring to our set of vendor classes, the Light class has two methods: on()
and off(). Here’s how you can implement this as a command:

Now that you’ve got a LightOnCommand class, let’s see if we can put it to
use...

Using the command object
Okay, let’s make things simple: say we’ve got a remote control with only one
button and corresponding slot to hold a device to control:

Creating a simple test to use the Remote Control
Here’s just a bit of code to test out the simple remote control. Let’s take a
look and we’ll point out how the pieces match the Command Pattern
diagram:

SHARPEN YOUR PENCIL

Okay, it’s time for you to implement the GarageDoorOpenCommand class. First, supply
the code for the class below. You’ll need the GarageDoor class diagram.

Now that you’ve got your class, what is the output of the following code? (Hint: the
GarageDoor up() method prints out “Garage Door is Open” when it is complete.)

public class RemoteControlTest {
 public static void main(String[] args) {
 SimpleRemoteControl remote = new SimpleRemoteControl();
 Light light = new Light();
 GarageDoor garageDoor = new GarageDoor();
 LightOnCommand lightOn = new LightOnCommand(light);
 GarageDoorOpenCommand garageOpen =
 new GarageDoorOpenCommand(garageDoor);

 remote.setCommand(lightOn);
 remote.buttonWasPressed();
 remote.setCommand(garageOpen);
 remote.buttonWasPressed();
 }
}

The Command Pattern defined
You’ve done your time in the Objectville Diner, you’ve partly implemented
the remote control API, and in the process you’ve got a fairly good picture of
how the classes and objects interact in the Command Pattern. Now we’re
going to define the Command Pattern and nail down all the details.
Let’s start with its official definition:

NOTE

The Command Pattern encapsulates a request as an object, thereby letting you
parameterize other objects with different requests, queue or log requests, and support
undoable operations.

Let’s step through this. We know that a command object encapsulates a
request by binding together a set of actions on a specific receiver. To achieve
this, it packages the actions and the receiver up into an object that exposes
just one method, execute(). When called, execute() causes the actions to be
invoked on the receiver. From the outside, no other objects really know what
actions get performed on what receiver; they just know that if they call the
execute() method, their request will be serviced.
We’ve also seen a couple examples of parameterizing an object with a
command. Back at the diner, the Waitress was parameterized with multiple

orders throughout the day. In the simple remote control, we first loaded the
button slot with a “light on” command and then later replaced it with a
“garage door open” command. Like the Waitress, your remote slot didn’t care
what command object it had, as long as it implemented the Command
interface.
What we haven’t encountered yet is using commands to implement queues
and logs and support undo operations. Don’t worry, those are pretty
straightforward extensions of the basic Command Pattern and we will get to
them soon. We can also easily support what’s known as the Meta Command
Pattern once we have the basics in place. The Meta Command Pattern allows
you to create macros of commands so that you can execute multiple
commands at once.

The Command Pattern defined: the class diagram

BRAIN POWER

How does the design of the Command Pattern support the decoupling of the invoker of a
request and the receiver of the request?

Mary: Me too. So where do we begin?
Sue: Like we did in the SimpleRemote, we need to provide a way to assign
commands to slots. In our case we have seven slots, each with an “on” and
“off” button. So we might assign commands to the remote something like
this:

onCommands[0] = onCommand;
offCommands[0] = offCommand;

and so on for each of the seven command slots.
Mary: That makes sense, except for the Light objects. How does the remote
know the living room from the kitchen light?

Sue: Ah, that’s just it, it doesn’t! The remote doesn’t know anything but how
to call execute() on the corresponding command object when a button is
pressed.
Mary: Yeah, I sorta got that, but in the implementation, how do we make
sure the right objects are turning on and off the right devices?
Sue: When we create the commands to be loaded into the remote, we create
one LightCommand that is bound to the living room light object and another
that is bound to the kitchen light object. Remember, the receiver of the
request gets bound to the command it’s encapsulated in. So, by the time the
button is pressed, no one cares which light is which; the right thing just
happens when the execute() method is called.
Mary: I think I’ve got it. Let’s implement the remote and I think this will get
clearer!
Sue: Sounds good. Let’s give it a shot...

Assigning Commands to slots
So we have a plan: we’re going to assign each slot to a command in the
remote control. This makes the remote control our invoker. When a button is
pressed the execute() method is going to be called on the corresponding
command, which results in actions being invoked on the receiver (like lights,
ceiling fans, and stereos).

Implementing the Remote Control

Implementing the Commands
Well, we’ve already gotten our feet wet implementing the LightOnCommand
for the SimpleRemoteControl. We can plug that same code in here and
everything works beautifully. Off commands are no different; in fact, the

LightOffCommand looks like this:

Let’s try something a little more challenging; how about writing on and off
commands for the Stereo? Okay, off is easy, we just bind the Stereo to the
off() method in the StereoOffCommand. On is a little more complicated; let’s
say we want to write a StereoOnWithCDCommand...

Not too bad. Take a look at the rest of the vendor classes; by now, you can
definitely knock out the rest of the Command classes we need for those.

Putting the Remote Control through its paces
Our job with the remote is pretty much done; all we need to do is run some
tests and get some documentation together to describe the API. Home
Automation or Bust, Inc. sure is going to be impressed, don’t ya think?
We’ve managed to come up with a design that is going to allow them to
produce a remote that is easy to maintain and they’re going to have no
trouble convincing the vendors to write some simple command classes in the
future since they are so easy to write.
Let’s get to testing this code!

Now, let’s check out the execution of our remote control
test...

Good catch. We did sneak a little something in there. In the remote control,
we didn’t want to check to see if a command was loaded every time we
referenced a slot. For instance, in the onButtonWasPushed() method, we
would need code like this:

public void onButtonWasPushed(int slot) {
 if (onCommands[slot] != null) {
 onCommands[slot].execute();
 }
}

So, how do we get around that? Implement a command that does nothing!
public class NoCommand implements Command {
 public void execute() { }

}

Then, in our RemoteControl constructor, we assign every slot a NoCommand
object by default and we know we’ll always have some command to call in
each slot.

Command noCommand = new NoCommand();
for (int i = 0; i < 7; i++) {
 onCommands[i] = noCommand;
 offCommands[i] = noCommand;
}

So in the output of our test run, you are seeing only slots that have been
assigned to a command other than the default NoCommand object, which we
assigned when we created the RemoteControl.

PATTERN HONORABLE MENTION

The NoCommand object is an example of a null object. A null object is useful when you
don’t have a meaningful object to return, and yet you want to remove the responsibility
for handling null from the client. For instance, in our remote control we didn’t have a
meaningful object to assign to each slot out of the box, so we provided a NoCommand
object that acts as a surrogate and does nothing when its execute method is called.

You’ll find uses for Null Objects in conjunction with many Design Patterns and
sometimes you’ll even see Null Object listed as a Design Pattern.

Time to write that documentation...

REMOTE CONTROL API DESIGN FOR HOME AUTOMATION OR
BUST, INC.

We are pleased to present you with the following design and application programming
interface for your Home Automation Remote Control. Our primary design goal was to
keep the remote control code as simple as possible so that it doesn’t require changes as
new vendor classes are produced. To this end we have employed the Command Pattern
to logically decouple the RemoteControl class from the Vendor Classes. We believe this
will reduce the cost of producing the remote as well as drastically reduce your ongoing
maintenance costs.

The following class diagram provides an overview of our design:

Whoops! We almost forgot... luckily, once we have our basic Command
classes, undo is easy to add. Let’s step through adding undo to our
commands and to the remote control...

What are we doing?
Okay, we need to add functionality to support the undo button on the remote.
It works like this: say the Living Room Light is off and you press the on
button on the remote. Obviously the light turns on. Now if you press the undo
button then the last action will be reversed — in this case, the light will turn
off. Before we get into more complex examples, let’s get the light working
with the undo button:
① When commands support undo, they have an undo() method that
mirrors the execute() method. Whatever execute() last did, undo()
reverses. So, before we can add undo to our commands, we need to add an
undo() method to the Command interface:

That was simple enough.
Now, let’s dive into the Light command and implement the undo()

method.
② Let’s start with the LightOnCommand: if the LightOnCommand’s
execute() method was called, then the on() method was last called. We
know that undo() needs to do the opposite of this by calling the off()
method.

Piece of cake! Now for the LightOffCommand. Here the undo() method
just needs to call the Light’s on() method.

Could this be any easier? Okay, we aren’t done yet; we need to work a
little support into the Remote Control to handle tracking the last button
pressed and the undo button press.
③ To add support for the undo button we only have to make a few small
changes to the Remote Control class. Here’s how we’re going to do it:
we’ll add a new instance variable to track the last command invoked; then,
whenever the undo button is pressed, we retrieve that command and
invoke its undo() method.

Time to QA that Undo button!
Okay, let’s rework the test harness a bit to test the undo button:

And here are the test results...

Using state to implement Undo
Okay, implementing undo on the Light was instructive but a little too easy.

Typically, we need to manage a bit of state to implement undo. Let’s try
something a little more interesting, like the CeilingFan from the vendor
classes. The CeilingFan allows a number of speeds to be set along with an off
method.

Here’s the source code for the CeilingFan:

Adding Undo to the CeilingFan commands
Now let’s tackle adding undo to the various CeilingFan commands. To do so,
we need to track the last speed setting of the fan and, if the undo() method is
called, restore the fan to its previous setting. Here’s the code for the
CeilingFanHighCommand:

BRAIN POWER

We’ve got three more ceiling fan commands to write: low, medium, and off. Can you
see how these are implemented?

Get ready to test the ceiling fan
Time to load up our remote control with the ceiling fan commands. We’re
going to load slot 0’s on button with the medium setting for the fan and slot 1
with the high setting. Both corresponding off buttons will hold the ceiling fan
off command.

Here’s our test script:

Testing the ceiling fan...
Okay, let’s fire up the remote, load it with commands, and push some
buttons!

Every remote needs a Party Mode!
What’s the point of having a remote if you can’t push one button and
have the lights dimmed, the stereo and TV turned on and set to a DVD,
and the hot tub fired up?

Using a macro command
Let’s step through how we use a macro command:
① First we create the set of commands we want to go into the macro:

SHARPEN YOUR PENCIL

We will also need commands for the off buttons. Write the code to create those here:

② Next we create two arrays, one for the On commands and one for the

Off commands, and load them with the corresponding commands:

③ Then we assign MacroCommand to a button like we always do:

④ Finally, we just need to push some buttons and see if this works.

EXERCISE

The only thing our MacroCommand is missing is its undo functionality. When the undo
button is pressed after a macro command, all the commands that were invoked in the
macro must undo their previous actions. Here’s the code for MacroCommand; go ahead
and implement the undo() method:

THERE ARE NO DUMB QUESTIONS

Q: Q: Do I always need a receiver? Why can’t the command object implement the details of the execute()
method?

A: A: In general, we strive for “dumb” command objects that just invoke an action on a receiver; however, there are
many examples of “smart” command objects that implement most, if not all, of the logic needed to carry out a
request. Certainly you can do this; just keep in mind you’ll no longer have the same level of decoupling between
the invoker and receiver, nor will you be able to parameterize your commands with receivers.

Q: Q: How can I implement a history of undo operations? In other words, I want to be able to press the undo
button multiple times?

A: A: Great question. It’s pretty easy actually; instead of keeping just a reference to the last Command executed, you
keep a stack of previous commands. Then, whenever undo is pressed, your invoker pops the first item off the
stack and calls its undo() method.

Q: Q: Could I have just implemented party mode as a Command by creating a PartyCommand and putting
the calls to execute the other Commands in the PartyCommand’s execute() method?

A: A: You could; however, you’d essentially be “hardcoding” the party mode into the PartyCommand. Why go to
the trouble? With the MacroCommand, you can decide dynamically which Commands you want to go into the
PartyCommand, so you have more flexibility using MacroCommands. In general, the MacroCommand is a more
elegant solution and requires less new code.

The Command Pattern means lots of command classes
When you use the Command Pattern, you end up with a lot of small classes
— the concrete Command implementations — that each encapsulate the
request to the corresponding receiver. In our remote control implementation,
we have two command classes for each receiver class. For instance, for the
Light receiver, we have LightOnCommand and LightOffCommand; for the
GarageDoor receiver, we have GarageDoorUpCommand and
GarageDoorDownCommand, and so on. That’s a lot of extra stuff that’s
needed to create little bits of packaged-up computation that all have the same
interface for the RemoteControl:

Do we really need all these command classes?
A command is simply a piece of packaged-up computation. It’s a way for us
to have a common interface to the behavior of many different receivers
(lights, hot tubs, stereos) each with its own set of actions.
What if you could keep the common interface for all your commands, but
take out the bits of computation from inside the concrete Command
implementations and use them directly instead? And you could get rid of all

those extra classes and simplify your code? Well, with lambda expressions
you can. Let’s see how...

Simplifying the Remote Control with lambda
expressions
While you’ve seen how straightforward the Command Pattern is, Java gives
us a nice tool to simplify things even more; namely, the lambda expression. A
lambda expression is a short hand for a method — a bit of computation —
exactly where you need it. Instead of creating a whole separate class
containing that method, instantiating an object from that class, and then
calling the method, you can just say, “here’s the method I want called” by
using a lambda expression. In our case, the method we want called is the
execute() method.

NOTE

If you aren’t yet familiar with lambda expressions (they were added in Java 8) they can
take some getting used to. You should be able to follow along over the next few pages,
but consult a Java reference to get up to speed on the syntax and semantics if you need
to.

Let’s replace the LightOnCommand and LightOffCommand objects with
lambda expressions to see how this works. Here are the steps to use lambda
expressions instead of command objects to add the light on and off
commands to the remote control:
Step 1: Create the Receiver
This step is exactly the same as before.

Light livingRoomLight = new Light("Living Room");

Step 2: Set the remote control’s commands using lambda expressions
This is where the magic happens. Now, instead of creating

LightOnCommand and LightOffCommand objects to pass to
remoteControl.setCommand(), we simply pass a lambda expression in place
of each object, with the code from their respective execute() methods:

Step 3: Push the remote control buttons
This step doesn’t change either. Except now, when we call the remote’s
onButtonWasPushed(0) method, the command that’s in slot 0 is a function
object (created by the lambda expression). When we call execute() on the
command, that method is matched up with the method defined by the lambda
expression, which is then executed.

Well, we did say “magic” didn’t we?
Just kidding... it’s actually not all that magical. We’re using lambda
expressions to stand in for Command objects, and the Command interface has
just one method: execute(). The lambda expression we use must have a
compatible signature with this method — and it does: execute() takes no
arguments (neither does our lambda expression), and returns no value
(neither does our lambda expression), so the compiler is happy.
We pass the lambda expression into the Command parameter of the
setCommand() method:

The compiler checks to see if the Command interface has one method that
matches the lambda expression, and it does: execute().
Then, when we call execute() on that command, the method in the lambda
expression is called:

Just remember: as long as the interface of the parameter we’re passing the
lambda expression to has one (and only one!) method, and that method has a
compatible signature with the lambda expression, this will work.

Simplifying even more with method references
We can simplify our code even more using method references. When the
lambda expression you’re passing calls just one method, you can pass a
method reference in place of the lambda expression. Like this:

So now, instead of passing a lambda expression that calls the
livingRoomLight’s on() method, we’re passing a reference to the method
itself.

What if we need to do more than one thing in our

lambda expression?
Sometimes, the lambda expressions you’ll use to stand in for Command
objects have to do more than one thing. Let’s take a quick look at how to
replace the stereoOnWithCDCommand and stereoOffCommand objects with
lambda expressions, and then we’ll look at the complete code for the
RemoteLoader so you can see all these ideas come together.
The stereoOffCommand just executes a simple one-line command:

stereo.off();

So we can use a method reference, stereo::off, in place of a lambda
expression for this command.
But the stereoOnWithCDCommand does three things:

stereo.on();
stereo.setCD();
stereo.setVolume(11);

In this case, then, we can’t use a method reference. Instead, we can either
write the lambda expression in line, or we can create it separately, give it a
name, and then pass it to the remoteControl’s setCommand() method using
that name. Here’s how you can create the lambda expression separately, and
give it a name:

Notice that we use Command as the type of the lambda expression. The
lambda expression will match the Command interface’s execute() method,
and the Command parameter we’re passing it to in the setCommand()
method.

Test the remote control with lambda expressions
To use lambda expressions to simplify the code for the original Remote
Control implementation (without undo), we’re going to change the code in
the RemoteLoader to replace the concrete Command objects with lambda
expressions, and change the RemoteControl constructor to use lambda
expressions instead of a NoCommand object. Once we’ve done that, we can

delete all the concrete Command classes (LightOnCommand,
LightOffCommand, HottubOnCommand, HottubOffCommand, and so on).
And that’s it. Everything else stays the same. Make sure you don’t delete the
Command interface; you still need that to match the type of the function
objects created by the lambda expressions that get stored in the remote
control, and passed to the various methods.
Here’s the new code for the RemoteLoader class:

And don’t forget, we need to modify the RemoteControl constructor to
remove the code to construct NoCommand objects, and replace those with
lambda expressions too:

Check out the results of all those lambda expression
commands...

THERE ARE NO DUMB QUESTIONS

Q: Q: Can a lambda expression have parameters or return a value? Or does it always have to be a void, no-
argument method?

A: A: Yes, a lambda expression can have parameters and return a value (take a look back at Chapter 2 to see how we
used a one-argument lambda expression in place of an ActionListener object in the Swing observer example). But
the rules are the same: the signature of the lambda expression must match the signature of the one method in the
type of the object you’re using the lambda expression to stand in for. To learn more about how to write lambda
expressions with parameters and return values (and how to deal with the types), check out the Java docs.

Q: Q: You keep saying that a lambda expression must match a method in an interface with one, and only one,
method. So if an interface has two methods, we can’t use a lambda expression?

A: A: That’s right. An interface, like our original Command interface (or ActionListener as another example), that
has just one method is known as a functional interface. Lambda expressions are designed specifically to replace
the methods in these functional interfaces, partly as a way to reduce the code that is required when you have a lot
of these small classes with functional interfaces. If your interface has two methods, it’s not a functional interface
and you won’t be able to replace it with a lambda expression. Think about it: a lambda expression is really a
replacement for a method, not an entire object. You can’t replace two methods with one lambda expression.

Q: Q: Does that mean we can’t use lambda expressions for our Remote Control implementation with undo?
There, our Command interface has two methods: execute() and undo().

A: A: That’s right. You could probably find a way to use lambdas with undo (by making two different types of
commands), but in the end your code would probably be more complex than if you’d just used Command objects
like we did when we implemented the RemoteControl with undo earlier in the chapter.

Lambda expressions are meant to be used with functional interfaces (one method only), to simplify your code. If
you find yourself trying to work around this to support a case like Command with undo, then using lambda
expressions probably isn’t the right solution.

Q: Q: Why do the names of on and off slots look so weird when we display the RemoteControl?

A: A: If you take another look at how we implemented the toString() method of RemoteControl, you’ll see we’re
using getClass() to get the class of the Command object, and then getName() to get the name of the class, and
printing that to the console as a string. This was a convenient way to get a name for each slot, but kind of a cheat.

As you can see from the output, lambda expressions don’t have nice class names. That’s because their names are
assigned internally by the Java runtime and Java has no idea what these lambda expressions mean; to Java, they’re
just function objects that happen to match a method in an interface.

To fix the RemoteControl display, we’d have to modify the setCommand() code in RemoteControl, perhaps to
allow a name parameter for each slot, and modify the toString() method to use this name. Then in RemoteLoader,
we’d pass a nice, human-readable name into setCommand() along with the commands. This would probably
mirror real life more closely (if you’re programming your own remote, you’ll likely want to set your own custom
names).

More uses of the Command Pattern: queuing requests
Commands give us a way to package a piece of computation (a receiver and a
set of actions) and pass it around as a first-class object. Now, the computation
itself may be invoked long after some client application creates the command
object. In fact, it may even be invoked by a different thread. We can take this
scenario and apply it to many useful applications such as schedulers, thread
pools, and job queues, to name a few.
Imagine a job queue: you add commands to the queue on one end, and on the
other end sits a group of threads. Threads run the following script: they
remove a command from the queue, call its execute() method, wait for the
call to finish, then discard the command object and retrieve a new one.

Note that the job queue classes are totally decoupled from the objects that are
doing the computation. One minute a thread may be computing a financial
computation, and the next it may be retrieving something from the network.
The job queue objects don’t care; they just retrieve commands and call
execute(). Likewise, as long as you put objects into the queue that implement
the Command Pattern, your execute() method will be invoked when a thread
is available.

BRAIN POWER

How might a web server make use of such a queue? What other applications can you
think of?

More uses of the Command Pattern: logging requests
The semantics of some applications require that we log all actions and be able
to recover after a crash by reinvoking those actions. The Command Pattern
can support these semantics with the addition of two methods: store() and
load(). In Java we could use object serialization to implement these methods,
but the normal caveats for using serialization for persistence apply.
How does this work? As we execute commands, we store a history of them
on disk. When a crash occurs, we reload the command objects and invoke
their execute() methods in batch and in order.
Now, this kind of logging wouldn’t make sense for a remote control;
however, there are many applications that invoke actions on large data
structures that can’t be quickly saved each time a change is made. By using
logging, we can save all the operations since the last check point, and if there
is a system failure, apply those operations to our checkpoint. Take, for
example, a spreadsheet application: we might want to implement our failure
recovery by logging the actions on the spreadsheet rather than writing a copy
of the spreadsheet to disk every time a change occurs. In more advanced
applications, these techniques can be extended to apply to sets of operations
in a transactional manner so that all of the operations complete, or none of
them do.

Tools for your Design Toolbox
Your toolbox is starting to get heavy! In this chapter we’ve added a pattern
that allows us to encapsulate methods into Command objects: store them,
pass them around, and invoke them when you need them.

BULLET POINTS

The Command Pattern decouples an object making a request from the one that
knows how to perform it.
A Command object is at the center of this decoupling and encapsulates a receiver
with an action (or set of actions) .
An invoker makes a request of a Command object by calling its execute() method,
which invokes those actions on the receiver.
Invokers can be parameterized with Commands, even dynamically at runtime.
Commands may support undo by implementing an undo method that restores the
object to its previous state before the execute() method was last called.
Macro Commands are a simple extension of Command that allow multiple
commands to be invoked. Likewise, Macro Commands can easily support undo().
In practice, it is not uncommon for “smart” Command objects to implement the
request themselves rather than delegating to a receiver.
Commands may also be used to implement logging and transactional systems.

DESIGN PATTERNS CROSSWORD

Time to take a breather and let it all sink in.

It’s another crossword; all of the solution words are from this chapter.

Across Down

3. The Waitress was one.

4. A command __________ a set of actions and a
receiver.

7. Dr. Seuss diner food.

8. Our favorite city.

9. Act as the receivers in the remote control.

13. Object that knows the actions and the
receiver.

14. Another thing Command can do.

15. Object that knows how to get things done.

17. A command encapsulates this.

1. Role of customer in the Command Pattern.

2. Our first command object controlled this.

5. Invoker and receiver are _________.

6. Company that got us word-of-mouth
business.

10. All commands provide this.

11. The Cook and this person were definitely
decoupled.

12. Carries out a request.

16. Waitress didn’t do this.

WHO DOES WHAT? SOLUTION

Match the diner objects and methods with the corresponding names from the Command

Pattern

SHARPEN YOUR PENCIL SOLUTION

Here’s the code for the GarageDoorOpenCommand class.
public class GarageDoorOpenCommand implements Command {
 GarageDoor garageDoor;

 public GarageDoorOpenCommand(GarageDoor garageDoor) {
 this.garageDoor = garageDoor;
 }
 public void execute() {
 garageDoor.up();
 }
}

Here’s the output:

EXERCISE SOLUTION

Here is the undo() method for the MacroCommand.
public class MacroCommand implements Command {
 Command[] commands;
 public MacroCommand(Command[] commands) {
 this.commands = commands;
 }

 public void execute() {
 for (int i = 0; i < commands.length; i++) {
 commands[i].execute();
 }
 }

 public void undo() {
 for (int i = commands.length - 1; i > = 0; i--) {
 commands[i].undo();
 }
 }
}

SHARPEN YOUR PENCIL SOLUTION

Here is the code to create commands for the off button.
LightOffCommand lightOff = new LightOffCommand(light);
StereoOffCommand stereoOff = new StereoOffCommand(stereo);
TVOffCommand tvOff = new TVOffCommand(tv);
HottubOffCommand hottubOff = new HottubOffCommand(hottub);

Chapter 7. The Adapter and Facade
Patterns: Being Adaptive

In this chapter we’re going to attempt such impossible feats as putting a
square peg in a round hole. Sound impossible? Not when we have Design
Patterns. Remember the Decorator Pattern? We wrapped objects to give
them new responsibilities. Now we’re going to wrap some objects with a
different purpose: to make their interfaces look like something they’re not.
Why would we do that? So we can adapt a design expecting one interface to a
class that implements a different interface. That’s not all; while we’re at it,
we’re going to look at another pattern that wraps objects to simplify their
interface.

Adapters all around us
You’ll have no trouble understanding what an OO adapter is because the

real world is full of them. How’s this for an example: Have you ever
needed to use a US-made laptop in Great Britain? Then you’ve probably
needed an AC power adapter...

You know what the adapter does: it sits in between the plug of your laptop
and the British AC outlet; its job is to adapt the British outlet so that you can
plug your laptop into it and receive power. Or look at it this way: the adapter
changes the interface of the outlet into one that your laptop expects.

NOTE

How many other real-world adapters can you think of?

Some AC adapters are simple — they only change the shape of the outlet so
that it matches your plug, and they pass the AC current straight through —
but other adapters are more complex internally and may need to step the
power up or down to match your devices’ needs.
Okay, that’s the real world; what about object-oriented adapters? Well, our
OO adapters play the same role as their real-world counterparts: they take an
interface and adapt it to one that a client is expecting.

Object-oriented adapters

Say you’ve got an existing software system that you need to work a new
vendor class library into, but the new vendor designed their interfaces
differently than the last vendor:

Okay, you don’t want to solve the problem by changing your existing code
(and you can’t change the vendor’s code). So what do you do? Well, you can
write a class that adapts the new vendor interface into the one you’re
expecting.

The adapter acts as the middleman by receiving requests from the client and
converting them into requests that make sense on the vendor classes.

NOTE

Can you think of a solution that doesn’t require YOU to write ANY additional code to
integrate the new vendor classes? How about making the vendor supply the adapter
class?

If it walks like a duck and quacks like a duck, then it
must might be a duck turkey wrapped with a duck
adapter...
It’s time to see an adapter in action. Remember our ducks from Chapter 1?
Let’s review a slightly simplified version of the Duck interfaces and classes:

Here’s a subclass of Duck, the MallardDuck.

Now it’s time to meet the newest fowl on the block:

Now, let’s say you’re short on Duck objects and you’d like to use some
Turkey objects in their place. Obviously we can’t use the turkeys outright
because they have a different interface.
So, let’s write an Adapter:

CODE UP CLOSE

Test drive the adapter
Now we just need some code to test drive our adapter:

The Adapter Pattern explained
Now that we have an idea of what an Adapter is, let’s step back and look at
all the pieces again.

Here’s how the Client uses the Adapter
① The client makes a request to the adapter by calling a method on it
using the target interface.
② The adapter translates the request into one or more calls on the
adaptee using the adaptee interface.
③ The client receives the results of the call and never knows there is
an adapter doing the translation.

NOTE

Note that the Client and Adaptee are decoupled – neither knows about the other.

SHARPEN YOUR PENCIL

Let’s say we also need an Adapter that converts a Duck to a Turkey. Let’s call it
DuckAdapter. Write that class:

How did you handle the fly method (after all, we know ducks fly longer than turkeys)?
Check the answers at the end of the chapter for our solution. Did you think of a better
way?

THERE ARE NO DUMB QUESTIONS

Q: Q: How much “adapting” does an adapter need to do? It seems like if I need to implement a large target
interface, I could have a LOT of work on my hands?

A: A: You certainly could. The job of implementing an adapter really is proportional to the size of the interface you
need to support as your target interface. Think about your options, however. You could rework all your client-side
calls to the interface, which would result in a lot of investigative work and code changes. Or, you can cleanly
provide one class that encapsulates all the changes in one class.

Q: Q: Does an adapter always wrap one and only one class?

A: A: The Adapter Pattern’s role is to convert one interface into another. While most examples of the adapter pattern
show an adapter wrapping one adaptee, we both know the world is often a bit more messy. So, you may well have
situations where an adapter holds two or more adaptees that are needed to implement the target interface.
This relates to another pattern called the Facade Pattern; people often confuse the two. Remind us to revisit this
point when we talk about facades later in this chapter.

Q: Q: What if I have old and new parts of my system, and the old parts expect the old vendor interface, but
we’ve already written the new parts to use the new vendor interface? It is going to get confusing using an
adapter here and the unwrapped interface there. Wouldn’t I be better off just writing my older code and
forgetting the adapter?

A: A: Not necessarily. One thing you can do is create a Two Way Adapter that supports both interfaces. To create a
Two Way Adapter, just implement both interfaces involved, so the adapter can act as an old interface or a new
interface.

Adapter Pattern defined
Enough ducks, turkeys, and AC power adapters; let’s get real and look at the
official definition of the Adapter Pattern:

NOTE

The Adapter Pattern converts the interface of a class into another interface the clients
expect. Adapter lets classes work together that couldn’t otherwise because of
incompatible interfaces.

Now, we know this pattern allows us to use a client with an incompatible
interface by creating an Adapter that does the conversion. This acts to
decouple the client from the implemented interface, and if we expect the
interface to change over time, the adapter encapsulates that change so that the
client doesn’t have to be modified each time it needs to operate against a
different interface.
We’ve taken a look at the runtime behavior of the pattern; let’s take a look at
its class diagram as well:

The Adapter Pattern is full of good OO design principles: check out the use
of object composition to wrap the adaptee with an altered interface. This
approach has the added advantage that we can use an adapter with any
subclass of the adaptee.
Also check out how the pattern binds the client to an interface, not an
implementation; we could use several adapters, each converting a different
backend set of classes. Or, we could add new implementations after the fact,
as long as they adhere to the Target interface.

Object and class adapters
Now despite having defined the pattern, we haven’t told you the whole story
yet. There are actually two kinds of adapters: object adapters and class
adapters. This chapter has covered object adapters and the class diagram on
the previous page is a diagram of an object adapter.
So what’s a class adapter and why haven’t we told you about it? Because you
need multiple inheritance to implement it, which isn’t possible in Java. But,
that doesn’t mean you might not encounter a need for class adapters down the
road when using your favorite multiple inheritance language! Let’s look at
the class diagram for multiple inheritance.

Look familiar? That’s right — the only difference is that with class adapter
we subclass the Target and the Adaptee, while with object adapter we use
composition to pass requests to an Adaptee.

BRAIN POWER

Object adapters and class adapters use two different means of adapting the adaptee
(composition versus inheritance). How do these implementation differences affect the
flexibility of the adapter?

DUCK MAGNETS

Your job is to take the duck and turkey magnets and drag them over the part of the
diagram that describes the role played by that bird, in our earlier example. (Try not to
flip back through the pages.) Then add your own annotations to describe how it works.

Class Adapter

Object Adapter

Drag these onto the class diagram, to show which part of the diagram represents the
Duck and which represents the Turkey.

DUCK MAGNETS ANSWER

NOTE

Note: the class adapter uses multiple inheritance, so you can’t do
it in Java...

Class Adapter

Object Adapter

FIRESIDE CHATS

Tonight’s talk: The Object Adapter and Class Adapter meet face to face.

Object Adapter: Class Adapter:

Because I use composition I’ve got a leg
up. I can not only adapt an adaptee class,
but any of its subclasses.

That’s true, I do have trouble with that because I am
committed to one specific adaptee class, but I have a
huge advantage because I don’t have to reimplement
my entire adaptee. I can also override the behavior of
my adaptee if I need to because I’m just subclassing.

In my part of the world, we like to use
composition over inheritance; you may be
saving a few lines of code, but all I’m
doing is writing a little code to delegate to
the adaptee. We like to keep things
flexible.

 Flexible maybe, but efficient? No. Using a class
adapter there is just one of me, not an adapter and an
adaptee.

You’re worried about one little object?
You might be able to quickly override a
method, but any behavior I add to my
adapter code works with my adaptee class
and all its subclasses.

 Yeah, but what if a subclass of adaptee adds some new
behavior. Then what?

Hey, come on, cut me a break, I just need
to compose with the subclass to make that
work.

 Sounds messy...

You wanna see messy? Look in the
mirror!

Real-world adapters
Let’s take a look at the use of a simple Adapter in the real world (something
more serious than Ducks at least)...

Old-world Enumerators
If you’ve been around Java for a while you probably remember that the early
collection types (Vector, Stack, Hashtable, and a few others) implement a
method, elements(), which returns an Enumeration. The Enumeration
interface allows you to step through the elements of a collection without

knowing the specifics of how they are managed in the collection.

New-world Iterators
The newer Collection classes use an Iterator interface that, like Enumeration,
allows you to iterate through a set of items in a collection, but also adds the
ability to remove items.

And today...
We are often faced with legacy code that exposes the Enumeration interface,
yet we’d like for our new code to use only Iterators. It looks like we need to
build an adapter.

Adapting an Enumeration to an Iterator
First we’ll look at the two interfaces to figure out how the methods map from
one to the other. In other words, we’ll figure out what to call on the adaptee
when the client invokes a method on the target.

Designing the Adapter
Here’s what the classes should look like: we need an adapter that implements
the Target interface and that is composed with an adaptee. The hasNext() and
next() methods are going to be straightforward to map from target to adaptee:
we just pass them right through. But what do you do about remove()? Think
about it for a moment (and we’ll deal with it on the next page). For now,
here’s the class diagram:

Dealing with the remove() method
Well, we know Enumeration just doesn’t support remove. It’s a “read only”
interface. There’s no way to implement a fully functioning remove() method
on the adapter. The best we can do is throw a runtime exception. Luckily, the
designers of the Iterator interface foresaw this need and defined the remove()
method so that it supports an UnsupportedOperationException.
This is a case where the adapter isn’t perfect; clients will have to watch out
for potential exceptions, but as long as the client is careful and the adapter is
well documented this is a perfectly reasonable solution.

Writing the EnumerationIterator adapter
Here’s simple but effective code for all those legacy classes still producing
Enumerations:

EXERCISE

While Java has gone in the direction of the Iterator, there is nevertheless a lot of legacy

client code that depends on the Enumeration interface, so an Adapter that converts an
Iterator to an Enumeration is also quite useful.

Write an Adapter that adapts an Iterator to an Enumeration. You can test your code by
adapting an ArrayList. The ArrayList class supports the Iterator interface but doesn’t
support Enumerations (well, not yet anyway).

BRAIN POWER

Some AC adapters do more than just change the interface — they add other features like
surge protection, indicator lights, and other bells and whistles.

If you were going to implement these kinds of features, what pattern would you use?

FIRESIDE CHATS

Tonight’s talk: The Decorator Pattern and the Adapter Pattern discuss their
differences.

Decorator: Adapter:

I’m important. My job is all about responsibility — you
know that when a Decorator is involved there’s going to be
some new responsibilities or behaviors added to your
design.

 You guys want all the glory while us
adapters are down in the trenches
doing the dirty work: converting
interfaces. Our jobs may not be
glamorous, but our clients sure do
appreciate us making their lives
simpler.

That may be true, but don’t think we don’t work hard.
When we have to decorate a big interface, whoa, that can
take a lot of code.

 Try being an adapter when you’ve got
to bring several classes together to
provide the interface your client is
expecting. Now that’s tough. But we
have a saying: “an uncoupled client is
a happy client.”

Cute. Don’t think we get all the glory; sometimes I’m just
one decorator that is being wrapped by who knows how

many other decorators. When a method call gets delegated
to you, you have no idea how many other decorators have
already dealt with it and you don’t know that you’ll ever
get noticed for your efforts servicing the request.

 Hey, if adapters are doing their job,
our clients never even know we’re
there. It can be a thankless job.

 But, the great thing about us adapters
is that we allow clients to make use of
new libraries and subsets without
changing any code; they just rely on
us to do the conversion for them.
Hey, it’s a niche, but we’re good at it.

Well, us decorators do that as well, only we allow new
behavior to be added to classes without altering existing
code. I still say that adapters are just fancy decorators — I
mean, just like us, you wrap an object.

 No, no, no, not at all. We always
convert the interface of what we
wrap; you never do. I’d say a
decorator is like an adapter; it is just
that you don’t change the interface!

Uh, no. Our job in life is to extend the behaviors or
responsibilities of the objects we wrap; we aren’t a simple
pass through.

 Hey, who are you calling a simple
pass through? Come on down and
we’ll see how long you last
converting a few interfaces!

Maybe we should agree to disagree. We seem to look
somewhat similar on paper, but clearly we are miles apart
in our intent.

 Oh yeah, I’m with you there.

And now for something different...
There’s another pattern in this chapter.
You’ve seen how the Adapter Pattern converts the interface of a class into
one that a client is expecting. You also know we achieve this in Java by

wrapping the object that has an incompatible interface with an object that
implements the correct one.
We’re going to look at a pattern now that alters an interface, but for a
different reason: to simplify the interface. It’s aptly named the Facade Pattern
because this pattern hides all the complexity of one or more classes behind a
clean, well-lit facade.

WHO DOES WHAT?

Match each pattern with its intent:

Pattern Intent

Decorator Converts one interface to another

Adapter Doesn’t alter the interface, but adds responsibility

Facade Makes an interface simpler

Home Sweet Home Theater
Before we dive into the details of the Facade Pattern, let’s take a look at a
growing national obsession: building your own home theater.
You’ve done your research and you’ve assembled a killer system complete
with a DVD player, a projection video system, an automated screen, surround
sound, and even a popcorn popper.

Check out all the components you’ve put together:

You’ve spent weeks running wire, mounting the projector, making all the
connections, and fine tuning. Now it’s time to put it all in motion and enjoy a
movie...

Watching a movie (the hard way)
Pick out a DVD, relax, and get ready for movie magic. Oh, there’s just
one thing — to watch the movie, you need to perform a few tasks:
① Turn on the popcorn popper
② Start the popper popping
③ Dim the lights
④ Put the screen down
⑤ Turn the projector on
⑥ Set the projector input to DVD
⑦ Put the projector on wide-screen mode
⑧ Turn the sound amplifier on
⑨ Set the amplifier to DVD input

⑩ Set the amplifier to surround sound
⑪ Set the amplifier volume to medium (5)
⑫ Turn the DVD player on
⑬ Start the DVD player playing

Let’s check out those same tasks in terms of the classes and the method
calls needed to perform them:

But there’s more...
When the movie is over, how do you turn everything off? Wouldn’t you
have to do all of this over again, in reverse?
Wouldn’t it be as complex to listen to a CD or the radio?
If you decide to upgrade your system, you’re probably going to have to
learn a slightly different procedure.

So what to do? The complexity of using your home theater is becoming
apparent!
Let’s see how the Facade Pattern can get us out of this mess so we can enjoy
the movie...

Lights, Camera, Facade!
A Facade is just what you need: with the Facade Pattern you can take a
complex subsystem and make it easier to use by implementing a Facade class
that provides one, more reasonable interface. Don’t worry; if you need the
power of the complex subsystem, it’s still there for you to use, but if all you
need is a straightforward interface, the Facade is there for you.

Let’s take a look at how the Facade operates:

THERE ARE NO DUMB QUESTIONS

Q: Q: If the facade encapsulates the subsystem classes, how does a client that needs lower-level functionality
gain access to them?

A: A: Facades don’t “encapsulate” the subsystem classes; they merely provide a simplified interface to their
functionality. The subsystem classes still remain available for direct use by clients that need to use more specific
interfaces. This is a nice property of the Facade Pattern: it provides a simplified interface while still exposing the
full functionality of the system to those who may need it.

Q: Q: Does the facade add any functionality or does it just pass through each request to the subsystem?

A: A: A facade is free to add its own “smarts” in addition to making use of the subsystem. For instance, while our
home theater facade doesn’t implement any new behavior, it is smart enough to know that the popcorn popper has
to be turned on before it can pop (as well as the details of how to turn on and stage a movie showing).

Q: Q: Does each subsystem have only one facade?

A: A: Not necessarily. The pattern certainly allows for any number of facades to be created for a given subsystem.

Q: Q: What is the benefit of the facade other than the fact that I now have a simpler interface?

A: A: The Facade Pattern also allows you to decouple your client implementation from any one subsystem. Let’s say
that you get a big raise and decide to upgrade your home theater to all new components that have different
interfaces. Well, if you coded your client to the facade rather than the subsystem, your client code doesn’t need to
change, just the facade (and hopefully the manufacturer is supplying that!).

Q: Q: So the way to tell the difference between the Adapter Pattern and the Facade Pattern is that the adapter
wraps one class and the facade may represent many classes?

A: A: No! Remember, the Adapter Pattern changes the interface of one or more classes into one interface that a
client is expecting. While most textbook examples show the adapter adapting one class, you may need to adapt
many classes to provide the interface a client is coded to. Likewise, a Facade may provide a simplified interface to
a single class with a very complex interface.
The difference between the two is not in terms of how many classes they “wrap,” it is in their intent. The intent of
the Adapter Pattern is to alter an interface so that it matches one a client is expecting. The intent of the Facade
Pattern is to provide a simplified interface to a subsystem.

A facade not only simplifies an interface, it decouples a client from a subsystem of
components.
Facades and adapters may wrap multiple classes, but a facade’s intent is to
simplify, while an adapter’s is to convert the interface to something different.

Constructing your home theater facade
Let’s step through the construction of the HomeTheaterFacade. The first step
is to use composition so that the facade has access to all the components of
the subsystem:

Implementing the simplified interface
Now it’s time to bring the components of the subsystem together into a
unified interface. Let’s implement the watchMovie() and endMovie()
methods:

BRAIN POWER

Think about the facades you’ve encountered in the Java API. Where would you like to
have a few new ones?

Time to watch a movie (the easy way)
It’s SHOWTIME!

Facade Pattern defined
To use the Facade Pattern, we create a class that simplifies and unifies a set
of more complex classes that belong to some subsystem. Unlike a lot of
patterns, Facade is fairly straightforward; there are no mind-bending
abstractions to get your head around. But that doesn’t make it any less
powerful: the Facade Pattern allows us to avoid tight coupling between

clients and subsystems, and, as you will see shortly, also helps us adhere to a
new object-oriented principle.
Before we introduce that new principle, let’s take a look at the official
definition of the pattern:

NOTE

The Facade Pattern provides a unified interface to a set of interfaces in a subsystem.
Facade defines a higher-level interface that makes the subsystem easier to use.

There isn’t a lot here that you don’t already know, but one of the most
important things to remember about a pattern is its intent. This definition tells
us loud and clear that the purpose of the facade is to make a subsystem easier
to use through a simplified interface. You can see this in the pattern’s class
diagram:

That’s it; you’ve got another pattern under your belt! Now, it’s time for that
new OO principle. Watch out, this one can challenge some assumptions!

The Principle of Least Knowledge
The Principle of Least Knowledge guides us to reduce the interactions
between objects to just a few close “friends.” The principle is usually stated
as:

DESIGN PRINCIPLE

Principle of Least Knowledge: talk only to your immediate friends.

But what does this mean in real terms? It means when you are designing a
system, for any object, be careful of the number of classes it interacts with
and also how it comes to interact with those classes.
This principle prevents us from creating designs that have a large number of
classes coupled together so that changes in one part of the system cascade to
other parts. When you build a lot of dependencies between many classes, you
are building a fragile system that will be costly to maintain and complex for
others to understand.

BRAIN POWER

How many classes is this code coupled to?
public float getTemp() {
 return station.getThermometer().getTemperature();
}

How NOT to Win Friends and Influence Objects
Okay, but how do you keep from doing this? The principle provides some
guidelines: take any object; now from any method in that object, the principle
tells us that we should only invoke methods that belong to:

The object itself
Objects passed in as a parameter to the method
Any object the method creates or instantiates

NOTE

Notice that these guidelines tell us not to call methods on objects that were returned
from calling other methods!!

Any components of the object

NOTE

Think of a “component” as any object that is referenced by an instance variable. In

other words, think of this as a HAS-A relationship.

This sounds kind of stringent doesn’t it? What’s the harm in calling the
method of an object we get back from another call? Well, if we were to do
that, then we’d be making a request of another object’s subpart (and
increasing the number of objects we directly know). In such cases, the
principle forces us to ask the object to make the request for us; that way we
don’t have to know about its component objects (and we keep our circle of
friends small). For example:

Keeping your method calls in bounds...
Here’s a Car class that demonstrates all the ways you can call methods and
still adhere to the Principle of Least Knowledge:

THERE ARE NO DUMB QUESTIONS

Q: Q: There is another principle called the Law of Demeter; how are they related?

A: A: The two are one and the same and you’ll encounter these terms being used interchangeably. We prefer to use
the Principle of Least Knowledge for a couple of reasons: (1) the name is more intuitive and (2) the use of the
word “Law” implies we always have to apply this principle. In fact, no principle is a law, all principles should be
used when and where they are helpful. All design involves tradeoffs (abstractions versus speed, space versus time,
and so on) and while principles provide guidance, all factors should be taken into account before applying them.

Q: Q: Are there any disadvantages to applying the Principle of Least Knowledge?

A: A: Yes; while the principle reduces the dependencies between objects and studies have shown this reduces
software maintenance, it is also the case that applying this principle results in more “wrapper” classes being
written to handle method calls to other components. This can result in increased complexity and development
time as well as decreased runtime performance.

SHARPEN YOUR PENCIL

Do either of these classes violate the Principle of Least Knowledge? Why or why not?

BRAIN POWER

Q: Can you think of a common use of Java that violates the Principle of Least Knowledge?
Should you care?

A: Answer: How about System.out.println()?

The Facade and the Principle of Least Knowledge

Tools for your Design Toolbox
Your toolbox is starting to get heavy! In this chapter we’ve added a couple of
patterns that allow us to alter interfaces and reduce coupling between clients
and the systems they use.

BULLET POINTS

When you need to use an existing class and its interface is not the one you need, use
an adapter.
When you need to simplify and unify a large interface or complex set of interfaces,
use a facade.
An adapter changes an interface into one a client expects.
A facade decouples a client from a complex subsystem.
Implementing an adapter may require little work or a great deal of work depending
on the size and complexity of the target interface.
Implementing a facade requires that we compose the facade with its subsystem and
use delegation to perform the work of the facade.
There are two forms of the Adapter Pattern: object and class adapters. Class adapters
require multiple inheritance.
You can implement more than one facade for a subsystem.
An adapter wraps an object to change its interface, a decorator wraps an object to
add new behaviors and responsibilities, and a facade “wraps” a set of objects to
simplify.

DESIGN PATTERNS CROSSWORD

Yes, it’s another crossword. All of the solution words are from this chapter.

Across Down

1. True or false? Adapters can wrap only one
object.

5. An Adapter __________ an interface.

6. Movie we watched (five words).

10. If in Britain, you might need one of these
(two words).

11. Adapter with two roles (two words).

14. Facade still ________ low-level access.

15. Ducks do it better than Turkeys.

16. Disadvantage of the Principle of Least
Knowledge: too many __________.

17. A __________ simplifies an interface.

19. New American dream (two words).

2. Decorator called Adapter this (three words).

3. One advantage of Facade.

4. Principle that wasn’t as easy as it sounded (two
words).

7. A __________ adds new behavior.

8. Masquerading as a Duck.

9. Example that violates the Principle of Least
Knowledge: System.out.__________.

12. No movie is complete without this.

13. Adapter client uses the __________ interface.

18. An Adapter and a Decorator can be said to
________ an object.

SHARPEN YOUR PENCIL SOLUTION

Let’s say we also need an Adapter that converts a Duck to a Turkey. Let’s call it
DuckAdapter. Here’s our solution:

SHARPEN YOUR PENCIL SOLUTION

Do either of these classes violate the Principle of Least Knowledge? Why or why not?

EXERCISE SOLUTION

You’ve seen how to implement an adapter that adapts an Enumeration to an Iterator;
now write an adapter that adapts an Iterator to an Enumeration.

WHO DOES WHAT? SOLUTION

Match each pattern with its intent:

DESIGN PATTERNS CROSSWORD SOLUTION

Chapter 8. The Template Method
Pattern: Encapsulating Algorithms

We’re on an encapsulation roll; we’ve encapsulated object creation,
method invocation, complex interfaces, ducks, pizzas...what could be
next? We’re going to get down to encapsulating pieces of algorithms so that
subclasses can hook themselves right into a computation anytime they want.
We’re even going to learn about a design principle inspired by Hollywood.

It’s time for some more caffeine

Some people can’t live without their coffee; some people can’t live without
their tea. The common ingredient? Caffeine, of course!
But there’s more; tea and coffee are made in very similar ways. Let’s check it
out:

Whipping up some coffee and tea classes (in Java)
Let’s play “coding barista” and write some code for creating coffee and tea.

Here’s the coffee:

And now the Tea...

DESIGN PUZZLE

You’ve seen that the Coffee and Tea classes have a fair bit of code duplication. Take
another look at the Coffee and Tea classes and draw a class diagram showing how you’d
redesign the classes to remove redundancy:

Sir, may I abstract your Coffee, Tea?
It looks like we’ve got a pretty straightforward design exercise on our hands
with the Coffee and Tea classes. Your first cut might have looked something
like this:

BRAIN POWER

Did we do a good job on the redesign? Hmmmm, take another look. Are we overlooking
some other commonality? What are other ways that Coffee and Tea are similar?

Taking the design further...
So what else do Coffee and Tea have in common? Let’s start with the recipes.

Notice that both recipes follow the same algorithm:
① Boil some water.

NOTE

These two are already abstracted into the base class.

② Use the hot water to extract the coffee or tea.

NOTE

These aren’t abstracted but are the same; they just apply to different beverages.

③ Pour the resulting beverage into a cup.
④ Add the appropriate condiments to the beverage.

So, can we find a way to abstract prepareRecipe() too? Yes, let’s find out...

Abstracting prepareRecipe()
Let’s step through abstracting prepareRecipe() from each subclass (that is, the
Coffee and Tea classes)...
① The first problem we have is that Coffee uses brewCoffeeGrinds() and
addSugarAndMilk() methods, while Tea uses steepTeaBag() and

addLemon() methods.

Let’s think through this: steeping and brewing aren’t so different; they’re
pretty analogous. So let’s make a new method name, say, brew(), and
we’ll use the same name whether we’re brewing coffee or steeping tea.
Likewise, adding sugar and milk is pretty much the same as adding a
lemon: both are adding condiments to the beverage. Let’s also make up a
new method name, addCondiments(), to handle this. So, our new
prepareRecipe() method will look like this:

void prepareRecipe() {
 boilWater();
 brew();
 pourInCup();
 addCondiments();
}

② Now we have a new prepareRecipe() method, but we need to fit it into
the code. To do this we are going to start with the CaffeineBeverage
superclass:

③ Finally, we need to deal with the Coffee and Tea classes. They now
rely on CaffeineBeverage to handle the recipe, so they just need to handle
brewing and condiments:

SHARPEN YOUR PENCIL

Draw the new class diagram now that we’ve moved the implementation of
prepareRecipe() into the CaffeineBeverage class:

What have we done?

Meet the Template Method

We’ve basically just implemented the Template Method Pattern. What’s that?
Let’s look at the structure of the CaffeineBeverage class; it contains the
actual “template method”:

The Template Method defines the steps of an algorithm and allows subclasses to
provide the implementation for one or more steps.

Let’s make some tea...

Behind the Scenes
Let’s step through making a tea and trace through how the template method
works. You’ll see that the template method controls the algorithm; at certain
points in the algorithm, it lets the subclass supply the implementation of the
steps...
① Okay, first we need a Tea object...

Tea myTea = new Tea();

② Then we call the template method:

which follows the algorithm for making caffeine beverages...
③ First we boil water:

which happens in CaffeineBeverage.
④ Next we need to brew the tea, which only the subclass knows how to
do:

brew();

⑤ Now we pour the tea in the cup; this is the same for all beverages so it
happens in CaffeineBeverage:

pourInCup();

⑥ Finally, we add the condiments, which are specific to each beverage, so
the subclass implements this:

addCondiments();

What did the Template Method get us?

Underpowered Tea & Coffee
implementation

New, hip CaffeineBeverage powered by Template
Method

Coffee and Tea are running
the show; they control the
algorithm.

The CaffeineBeverage class runs the show; it has the
algorithm, and protects it.

Code is duplicated across
Coffee and Tea.

The CaffeineBeverage class maximizes reuse among the
subclasses.

Code changes to the algorithm
require opening the subclasses
and making multiple changes.

The algorithm lives in one place and code changes only
need to be made there.

Classes are organized in a
structure that requires a lot of
work to add a new caffeine
beverage.

The Template Method version provides a framework that
other caffeine beverages can be plugged into. New
caffeine beverages only need to implement a couple of
methods.

Knowledge of the algorithm
and how to implement it is
distributed over many classes.

The CaffeineBeverage class concentrates knowledge
about the algorithm and relies on subclasses to provide
complete implementations.

Template Method Pattern defined

You’ve seen how the Template Method Pattern works in our Tea and Coffee
example; now, check out the official definition and nail down all the details:

NOTE

The Template Method Pattern defines the skeleton of an algorithm in a method,
deferring some steps to subclasses. Template Method lets subclasses redefine certain
steps of an algorithm without changing the algorithm’s structure.

This pattern is all about creating a template for an algorithm. What’s a
template? As you’ve seen it’s just a method; more specifically, it’s a method
that defines an algorithm as a set of steps. One or more of these steps is
defined to be abstract and implemented by a subclass. This ensures the
algorithm’s structure stays unchanged, while subclasses provide some part of
the implementation.
Let’s check out the class diagram:

CODE UP CLOSE

Let’s take a closer look at how the AbstractClass is defined, including the template
method and primitive operations.

CODE WAY UP CLOSE

Now we’re going to look even closer at the types of method that can go in the abstract
class:

Hooked on Template Method...
A hook is a method that is declared in the abstract class, but only given an
empty or default implementation. This gives subclasses the ability to “hook
into” the algorithm at various points, if they wish; a subclass is also free to
ignore the hook.

There are several uses of hooks; let’s take a look at one now. We’ll talk about
a few other uses later:

Using the hook
To use the hook, we override it in our subclass. Here, the hook controls
whether the CaffeineBeverage evaluates a certain part of the algorithm; that
is, whether it adds a condiment to the beverage.
How do we know whether the customer wants the condiment? Just ask!

Let’s run the Test Drive
Okay, the water’s boiling... Here’s the test code where we create a hot tea and
a hot coffee.

And let’s give it a run...

You know what? We agree with you. But you have to admit before you
thought of that, it was a pretty cool example of how a hook can be used to
conditionally control the flow of the algorithm in the abstract class. Right?
We’re sure you can think of many other more realistic scenarios where you
could use the template method and hooks in your own code.

THERE ARE NO DUMB QUESTIONS

Q: Q: When I’m creating a template method, how do I know when to use abstract methods and when to use
hooks?

A: A: Use abstract methods when your subclass MUST provide an implementation of the method or step in the
algorithm. Use hooks when that part of the algorithm is optional. With hooks, a subclass may choose to
implement that hook, but it doesn’t have to.

Q: Q: What are hooks really supposed to be used for?

A: A: There are a few uses of hooks. As we just said, a hook may provide a way for a subclass to implement an
optional part of an algorithm, or if it isn’t important to the subclass’s implementation, it can skip it. Another use is
to give the subclass a chance to react to some step in the template method that is about to happen, or just
happened. For instance, a hook method like justReOrderedList() allows the subclass to perform some activity
(such as redisplaying an onscreen representation) after an internal list is reordered. As you’ve seen, a hook can
also provide a subclass with the ability to make a decision for the abstract class.

Q: Q: Does a subclass have to implement all the abstract methods in the AbstractClass?

A: A: Yes, each concrete subclass defines the entire set of abstract methods and provides a complete implementation
of the undefined steps of the template method’s algorithm.

Q: Q: It seems like I should keep my abstract methods small in number; otherwise, it will be a big job to
implement them in the subclass.

A: A: That’s a good thing to keep in mind when you write template methods. Sometimes this can be done by not

making the steps of your algorithm too granular. But it’s obviously a trade off: the less granularity, the less
flexibility.
Remember, too, that some steps will be optional; so you can implement these as hooks rather than abstract
methods, easing the burden on the subclasses of your abstract class.

The Hollywood Principle
We’ve got another design principle for you; it’s called the Hollywood
Principle:

NOTE

The Hollywood Principle

Don’t call us, we’ll call you.

Easy to remember, right? But what has it got to do with OO design?
The Hollywood Principle gives us a way to prevent “dependency rot.”
Dependency rot happens when you have high-level components depending
on low-level components depending on high-level components depending on

sideways components depending on low-level components, and so on. When
rot sets in, no one can easily understand the way a system is designed.
With the Hollywood Principle, we allow low-level components to hook
themselves into a system, but the high-level components determine when
they are needed, and how. In other words, the high-level components give the
low-level components a “don’t call us, we’ll call you” treatment.

The Hollywood Principle and Template Method
The connection between the Hollywood Principle and the Template Method
Pattern is probably somewhat apparent: when we design with the Template
Method Pattern, we’re telling subclasses, “don’t call us, we’ll call you.”
How? Let’s take another look at our CaffeineBeverage design:

BRAIN POWER

What other patterns make use of the Hollywood Principle?

The Factory Method, Observer; any others?

THERE ARE NO DUMB QUESTIONS

Q: Q: How does the Hollywood Principle relate to the Dependency Inversion Principle that we learned a few
chapters back?

A: A: The Dependency Inversion Principle teaches us to avoid the use of concrete classes and instead work as much
as possible with abstractions. The Hollywood Principle is a technique for building frameworks or components so
that lower-level components can be hooked into the computation, but without creating dependencies between the
lower-level components and the higher-level layers. So, they both have the goal of decoupling, but the
Dependency Inversion Principle makes a much stronger and general statement about how to avoid dependencies
in design.
The Hollywood Principle gives us a technique for creating designs that allow low-level structures to interoperate
while preventing other classes from becoming too dependent on them.

Q: Q: Is a low-level component disallowed from calling a method in a higher-level component?

A: A: Not really. In fact, a low-level component will often end up calling a method defined above it in the
inheritance hierarchy purely through inheritance. But we want to avoid creating explicit circular dependencies
between the low-level component and the high-level ones.

WHO DOES WHAT?

Match each pattern with its description:

Pattern Description

Template
Method

Encapsulate interchangeable behaviors and use delegation to decide which
behavior to use.

Strategy Subclasses decide how to implement steps in an algorithm.

Factory
Method

Subclasses decide which concrete classes to instantiate.

Template Methods in the Wild
The Template Method Pattern is a very common pattern and you’re going to
find lots of it in the wild. You’ve got to have a keen eye, though, because
there are many implementations of the template methods that don’t quite look
like the textbook design of the pattern.
This pattern shows up so often because it’s a great design tool for creating
frameworks, where the framework controls how something gets done, but
leaves you (the person using the framework) to specify your own details
about what is actually happening at each step of the framework’s algorithm.
Let’s take a little safari through a few uses in the wild (well, okay, in the Java
API)...

Sorting with Template Method
What’s something we often need to do with arrays? Sort them!

Recognizing that, the designers of the Java Arrays class have provided us
with a handy template method for sorting. Let’s take a look at how this
method operates:

NOTE

We’ve pared down this code a little to make it easier to explain. If you’d like to see it all,
grab the Java source code and check it out...

We’ve got some ducks to sort...
Let’s say you have an array of ducks that you’d like to sort. How do you do
it? Well, the sort template method in Arrays gives us the algorithm, but you
need to tell it how to compare ducks, which you do by implementing the
compareTo() method... Make sense?

Good point. Here’s the deal: the designers of sort() wanted it to be useful
across all arrays, so they had to make sort() a static method that could be used
from anywhere. But that’s okay, it works almost the same as if it were in a
superclass. Now, here is one more detail: because sort() really isn’t defined in
our superclass, the sort() method needs to know that you’ve implemented the

compareTo() method, or else you don’t have the piece needed to complete the
sort algorithm.
To handle this, the designers made use of the Comparable interface. All you
have to do is implement this interface, which has one method (surprise):
compareTo().

What is compareTo()?
The compareTo() method compares two objects and returns whether one is
less than, greater than, or equal to the other. sort() uses this as the basis of its
comparison of objects in the array.

Comparing Ducks and Ducks
Okay, so you know that if you want to sort Ducks, you’re going to have to
implement this compareTo() method; by doing that you’ll give the Arrays
class what it needs to complete the algorithm and sort your ducks.
Here’s the duck implementation:

Let’s sort some Ducks
Here’s the test drive for sorting Ducks...

Let the sorting commence!

The making of the sorting duck machine

Behind the Scenes
① First, we need an array of Ducks:

Duck[] ducks = {new Duck("Daffy", 8), ... };

② Then we call the sort() template method in the Array class and pass it
our ducks:

The sort() method (and its helper mergeSort()) control the sort procedure.
③ To sort an array, you need to compare two items one by one until the
entire list is in sorted order.
When it comes to comparing two ducks, the sort method relies on the
Duck’s compareTo() method to know how to do this. The compareTo()
method is called on the first duck and passed the duck to be compared to:

④ If the Ducks are not in sorted order, they’re swapped with the concrete
swap() method in Arrays:

swap()

⑤ The sort() method continues comparing and swapping Ducks until the
array is in the correct order!

THERE ARE NO DUMB QUESTIONS

Q: Q: Is this really the Template Method Pattern, or are you trying too hard?

A: A: The pattern calls for implementing an algorithm and letting subclasses supply the implementation of the steps
— and the Arrays sort is clearly not doing that! But, as we know, patterns in the wild aren’t always just like the
textbook patterns. They have to be modified to fit the context and implementation constraints.
The designers of the Arrays sort() method had a few constraints. In general, you can’t subclass a Java array and
they wanted the sort to be used on all arrays (and each array is a different class). So they defined a static method
and deferred the comparison part of the algorithm to the items being sorted.
So, while it’s not a textbook template method, this implementation is still in the spirit of the Template Method
Pattern. Also, by eliminating the requirement that you have to subclass Arrays to use this algorithm, they’ve made
sorting in some ways more flexible and useful.

Q: Q: This implementation of sorting actually seems more like the Strategy Pattern than the Template Method
Pattern. Why do we consider it Template Method?

A: A: You’re probably thinking that because the Strategy Pattern uses object composition. You’re right in a way —
we’re using the Arrays object to sort our array, so that’s similar to Strategy. But remember, in Strategy, the class
that you compose with implements the entire algorithm. The algorithm that Arrays implements for sort is
incomplete; it needs a class to fill in the missing compareTo() method. So, in that way, it’s more like Template
Method.

Q: Q: Are there other examples of template methods in the Java API?

A: A: Yes, you’ll find them in a few places. For example, java.io has a read() method in InputStream that subclasses
must implement and is used by the template method read(byte b[], int off, int len).

BRAIN POWER

We know that we should favor composition over inheritance, right? Well, the
implementers of the sort() template method decided not to use inheritance and instead to
implement sort() as a static method that is composed with a Comparable at runtime.
How is this better? How is it worse? How would you approach this problem? Do Java
arrays make this particularly tricky?

BRAIN2 POWER

Think of another pattern that is a specialization of the template method. In this
specialization, primitive operations are used to create and return objects. What pattern is
this?

Swingin’ with Frames
Up next on our Template Method safari... keep your eye out for swinging
JFrames!

If you haven’t encountered JFrame, it’s the most basic Swing container and
inherits a paint() method. By default, paint() does nothing because it’s a
hook! By overriding paint(), you can insert yourself into JFrame’s algorithm
for displaying its area of the screen and have your own graphic output
incorporated into the JFrame. Here’s an embarrassingly simple example of
using a JFrame to override the paint() hook method:

Applets
Our final stop on the safari: the applet.

You probably know an applet is a small program that runs in a web page.
Any applet must subclass Applet, and this class provides several hooks. Let’s
take a look at a few of them:

Concrete applets make extensive use of hooks to supply their own behaviors.
Because these methods are implemented as hooks, the applet isn’t required to
implement them.

FIRESIDE CHATS

Tonight’s talk: Template Method and Strategy compare methods.

Template Method: Strategy:

Hey Strategy, what are you doing in my
chapter? I figured I’d get stuck with someone
boring like Factory Method.

 Nope, it’s me, although be careful — you and
Factory Method are related, aren’t you?

I was just kidding! But seriously, what are you

doing here? We haven’t heard from you in eight
chapters!

 I’d heard you were on the final draft of your
chapter and I thought I’d swing by to see how it
was going. We have a lot in common, so I
thought I might be able to help...

You might want to remind the reader what
you’re all about, since it’s been so long.

 I don’t know, since Chapter 1, people have been
stopping me in the street saying, “Aren’t you that
pattern...?” So I think they know who I am. But
for your sake: I define a family of algorithms and
make them interchangeable. Since each
algorithm is encapsulated, the client can use
different algorithms easily.

Hey, that does sound a lot like what I do. But
my intent’s a little different from yours; my job
is to define the outline of an algorithm, but let
my subclasses do some of the work. That way, I
can have different implementations of an
algorithm’s individual steps, but keep control
over the algorithm’s structure. Seems like you
have to give up control of your algorithms.

 I’m not sure I’d put it quite like that... and
anyway, I’m not stuck using inheritance for
algorithm implementations. I offer clients a
choice of algorithm implementation through
object composition.

I remember that. But I have more control over
my algorithm and I don’t duplicate code. In
fact, if every part of my algorithm is the same
except for, say, one line, then my classes are
much more efficient than yours. All my
duplicated code gets put into the superclass, so
all the subclasses can share it.

 You might be a little more efficient (just a little)
and require fewer objects. And you might also be
a little less complicated in comparison to my
delegation model, but I’m more flexible because
I use object composition. With me, clients can
change their algorithms at runtime simply by
using a different strategy object. Come on, they
didn’t choose me for Chapter 1 for nothing!

Yeah, well, I’m real happy for ya, but don’t
forget I’m the most used pattern around. Why?
Because I provide a fundamental method for
code reuse that allows subclasses to specify
behavior. I’m sure you can see that this is
perfect for creating frameworks.

 Yeah, I guess... but, what about dependency?
You’re way more dependent than me.

How’s that? My superclass is abstract.

 But you have to depend on methods implemented
in your subclasses, which are part of your
algorithm. I don’t depend on anyone; I can do the
entire algorithm myself!

Like I said, Strategy, I’m real happy for you.
Thanks for stopping by, but I’ve got to get the
rest of this chapter done.

 Okay, okay, don’t get touchy. I’ll let you work,
but let me know if you need my special
techniques anyway; I’m always glad to help.

Got it. Don’t call us, we’ll call you...

DESIGN PATTERNS CROSSWORD

It’s that time again....

Across Down

1. Strategy uses __________ rather than
inheritance.

4. Type of sort used in Arrays.

5. The JFrame hook method that we
overrode to print “I Rule”.

6. The Template Method Pattern uses
__________ to defer implementation to
other classes.

8. Coffee and ________.

9. “Don’t call us, we’ll call you” is known
as the __________ Principle.

12. A template method defines the steps
of an ____________.

2. _____________ algorithm steps are implemented by
hook methods.

3. Factory Method is a __________ of Template
Method.

7. The steps in the algorithm that must be supplied by
the subclasses are usually declared ____________.

8. Huey, Louie, and Dewey all weigh ___________
pounds.

9. A method in the abstract superclass that does
nothing or provides default behavior is called a
____________ method.

10. Big-headed pattern.

11. Our favorite coffee shop in Objectville.

13. In this chapter, we give you more
________.

14. The template method is usually
defined in an __________ class.

16. Class that likes web pages.

15. The Arrays class implements its template method
as a __________ method.

Tools for your Design Toolbox
We’ve added Template Method to your toolbox. With Template Method you
can reuse code like a pro while keeping control of your algorithms.

BULLET POINTS

A “template method” defines the steps of an algorithm, deferring to subclasses for
the implementation of those steps.
The Template Method Pattern gives us an important technique for code reuse.
The template method’s abstract class may define concrete methods, abstract
methods, and hooks.
Abstract methods are implemented by subclasses.
Hooks are methods that do nothing or default behavior in the abstract class, but may
be overridden in the subclass.
To prevent subclasses from changing the algorithm in the template method, declare
the template method as final.
The Hollywood Principle guides us to put decision making in high-level modules
that can decide how and when to call low-level modules.
You’ll see lots of uses of the Template Method Pattern in real-world code, but don’t
expect it all (like any pattern) to be designed “by the book.”
The Strategy and Template Method Patterns both encapsulate algorithms, one by
inheritance and one by composition.
The Factory Method is a specialization of Template Method.

SHARPEN YOUR PENCIL SOLUTION

Draw the new class diagram now that we’ve moved prepareRecipe() into the
CaffeineBeverage class:

WHO DOES WHAT? SOLUTION

Match each pattern with its description:

DESIGN PATTERNS CROSSWORD SOLUTION

It’s that time again...

Chapter 9. The Iterator and
Composite Patterns: Well-Managed
Collections

There are lots of ways to stuff objects into a collection. Put them into an
Array, a Stack, a List, a Hashmap, take your pick. Each has its own
advantages and tradeoffs. But at some point your client is going to want to
iterate over those objects, and when he does, are you going to show him your
implementation? We certainly hope not! That just wouldn’t be professional.
Well, you don’t have to risk your career; you’re going to see how you can
allow your clients to iterate through your objects without ever getting a peek
at how you store your objects. You’re also going to learn how to create some
super collections of objects that can leap over some impressive data
structures in a single bound. And if that’s not enough, you’re also going to
learn a thing or two about object responsibility.

Breaking News: Objectville Diner and Objectville
Pancake House Merge
That’s great news! Now we can get those delicious pancake breakfasts at the
Pancake House and those yummy lunches at the Diner all in one place. But,
there seems to be a slight problem...

Check out the Menu Items
At least Lou and Mel agree on the implementation of the MenuItems. Let’s
check out the items on each menu, and also take a look at the
implementation.

Lou and Mel’s Menu implementations
Now let’s take a look at what Lou and Mel are arguing about. They both have
lots of time and code invested in the way they store their menu items in a
menu, and lots of other code that depends on it.

What’s the problem with having two different menu
representations?
To see why having two different menu representations complicates things,
let’s try implementing a client that uses the two menus. Imagine you have
been hired by the new company formed by the merger of the Diner and the
Pancake House to create a Java-enabled waitress (this is Objectville, after
all). The spec for the Java-enabled waitress specifies that she can print a
custom menu for customers on demand, and even tell you if a menu item is
vegetarian without having to ask the cook — now that’s an innovation!

Let’s check out the spec, and then step through what it might take to
implement her...

The Java-Enabled Waitress Specification

Let’s start by stepping through how we’d implement the printMenu() method:
① To print all the items on each menu, you’ll need to call the
getMenuItems() method on the PancakeHouseMenu and the DinerMenu to
retrieve their respective menu items. Note that each returns a different
type:

② Now, to print out the items from the PancakeHouseMenu, we’ll loop
through the items on the breakfastItems ArrayList. And to print out the
Diner items we’ll loop through the Array.

③ Implementing every other method in the Waitress is going to be a
variation of this theme. We’re always going to need to get both menus and
use two loops to iterate through their items. If another restaurant with a
different implementation is acquired then we’ll have three loops.

SHARPEN YOUR PENCIL

Based on our implementation of printMenu(), which of the following apply?

A. We are coding to the PancakeHouseMenu and DinerMenu concrete implementations, not
to an interface.

B. The Waitress doesn’t implement the Java Waitress API and so she isn’t adhering to a

standard.

C. If we decided to switch from using DinerMenu to another type of menu that implemented
its list of menu items with a Hashtable, we’d have to modify a lot of code in the Waitress.

D. The Waitress needs to know how each menu represents its internal collection of menu
items; this violates encapsulation.

E. We have duplicate code: the printMenu() method needs two separate loops to iterate over
the two different kinds of menus. And if we added a third menu, we’d have yet another
loop.

F. The implementation isn’t based on MXML (Menu XML) and so isn’t as interoperable as it
should be.

What now?
Mel and Lou are putting us in a difficult position. They don’t want to change
their implementations because it would mean rewriting a lot of code that is in
each respective menu class. But if one of them doesn’t give in, then we’re
going to have the job of implementing a Waitress that is going to be hard to
maintain and extend.
It would really be nice if we could find a way to allow them to implement the
same interface for their menus (they’re already close, except for the return
type of the getMenuItems() method). That way we can minimize the concrete
references in the Waitress code and also hopefully get rid of the multiple
loops required to iterate over both menus.
Sound good? Well, how are we going to do that?

Yes, using for each would allow us to hide the complexity of the different
kinds of iteration. But that doesn’t solve the real problem here: that we’ve
got two different implementations of the menus, and the Waitress has to
know how each kind of menu is implemented. That’s not really the
Waitress’s job. We want her to focus on being a waitress, and not have to
think about the type of the menus at all.

Our goal is to decouple the Waitress from the concrete implementations of

the menus completely. So hang in there, and you’ll see there’s a better way to
do this.

Can we encapsulate the iteration?
If we’ve learned one thing in this book, it’s encapsulate what varies. It’s
obvious what is changing here: the iteration caused by different collections of
objects being returned from the menus. But can we encapsulate this? Let’s
work through the idea...
① To iterate through the breakfast items we use the size() and get()
methods on the ArrayList:

② And to iterate through the lunch items we use the Array length field
and the array subscript notation on the MenuItem Array.

③ Now what if we create an object, let’s call it an Iterator, that

encapsulates the way we iterate through a collection of objects? Let’s try
this on the ArrayList

④ Let’s try that on the Array too:

Meet the Iterator Pattern
Well, it looks like our plan of encapsulating iteration just might actually

work; and as you’ve probably already guessed, it is a Design Pattern called
the Iterator Pattern.
The first thing you need to know about the Iterator Pattern is that it relies on
an interface called Iterator. Here’s one possible Iterator interface:

Now, once we have this interface, we can implement Iterators for any kind of
collection of objects: arrays, lists, hashmaps, ...pick your favorite collection
of objects. Let’s say we wanted to implement the Iterator for the Array used
in the DinerMenu. It would look like this:

Let’s go ahead and implement this Iterator and hook it into the DinerMenu to
see how this works...

Adding an Iterator to DinerMenu
To add an Iterator to the DinerMenu we first need to define the Iterator
Interface:

And now we need to implement a concrete Iterator that works for the Diner
menu:

Reworking the Diner Menu with Iterator
Okay, we’ve got the iterator. Time to work it into the DinerMenu; all we need
to do is add one method to create a DinerMenuIterator and return it to the
client:

EXERCISE

Go ahead and implement the PancakeHouseIterator yourself and make the changes
needed to incorporate it into the PancakeHouseMenu.

Fixing up the Waitress code
Now we need to integrate the iterator code into the Waitress. We should be
able to get rid of some of the redundancy in the process. Integration is pretty
straightforward: first we create a printMenu() method that takes an Iterator;
then we use the createIterator() method on each menu to retrieve the Iterator
and pass it to the new method.

Testing our code
It’s time to put everything to a test. Let’s write some test drive code and see
how the Waitress works...

Here’s the test run...

What have we done so far?
For starters, we’ve made our Objectville cooks very happy. They settled their
differences and kept their own implementations. Once we gave them a
PancakeHouseMenuIterator and a DinerMenuIterator, all they had to do was
add a createIterator() method and they were finished.
We’ve also helped ourselves in the process. The Waitress will be much easier
to maintain and extend down the road. Let’s go through exactly what we did
and think about the consequences:

Hard to Maintain Waitress
Implementation

New, Hip Waitress Powered by Iterator

The Menus are not well
encapsulated; we can see the
Diner is using an ArrayList and
the Pancake House an Array.

The Menu implementations are now encapsulated. The
Waitress has no idea how the Menus hold their
collection of menu items.

We need two loops to iterate
through the MenuItems.

All we need is a loop that polymorphically handles any
collection of items as long as it implements Iterator.

The Waitress is bound to
concrete classes (MenuItem[]
and ArrayList).

The Waitress now uses an interface (Iterator).

The Waitress is bound to two
different concrete Menu classes,
despite their interfaces being
almost identical.

The Menu interfaces are now exactly the same and, uh
oh, we still don’t have a common interface, which
means the Waitress is still bound to two concrete Menu
classes. We’d better fix that.

What we have so far...
Before we clean things up, let’s get a bird’s-eye view of our current design.

Making some improvements...
Okay, we know the interfaces of PancakeHouseMenu and DinerMenu are
exactly the same and yet we haven’t defined a common interface for them.
So, we’re going to do that and clean up the Waitress a little more.
You may be wondering why we’re not using the Java Iterator interface — we
did that so you could see how to build an iterator from scratch. Now that
we’ve done that, we’re going to switch to using the Java Iterator interface,
because we’ll get a lot of leverage by implementing that instead of our home-
grown Iterator interface. What kind of leverage? You’ll soon see.
First, let’s check out the java.util.Iterator interface:

This is going to be a piece of cake: we just need to change the interface that
both PancakeHouseMenuIterator and DinerMenuIterator extend, right?
Almost... actually, it’s even easier than that. Not only does java.util have its
own Iterator interface, but ArrayList has an iterator() method that returns an
iterator. In other words, we never needed to implement our own iterator for
ArrayList. However, we’ll still need our implementation for the DinerMenu
because it relies on an Array, which doesn’t support the iterator() method (or
any other way to create an array iterator).

THERE ARE NO DUMB QUESTIONS

Q: Q: What if I don’t want to provide the ability to remove something from the underlying collection of
objects?

A: A: The remove() method is considered optional. You don’t have to provide remove functionality. But, you should
provide the method because it’s part of the Iterator interface. If you’re not going to allow remove() in your iterator
you’ll want to throw the runtime exception java.lang.UnsupportedOperationException. The Iterator API
documentation specifies that this exception may be thrown from remove() and any client that is a good citizen
will check for this exception when calling the remove() method.

Q: Q: How does remove() behave under multiple threads that may be using different iterators over the same
collection of objects?

A: A: The behavior of the remove() is unspecified if the collection changes while you are iterating over it. So you
should be careful in designing your own multithreaded code when accessing a collection concurrently.

Cleaning things up with java.util.Iterator
Let’s start with the PancakeHouseMenu. Changing it over to java.util.Iterator
is going to be easy. We just delete the PancakeHouseMenuIterator class, add
an import java.util.Iterator to the top of PancakeHouseMenu and change one
line of the PancakeHouseMenu:

And that’s it, PancakeHouseMenu is done.
Now we need to make the changes to allow the DinerMenu to work with
java.util.Iterator.

We are almost there...
We just need to give the Menus a common interface and rework the Waitress
a little. The Menu interface is quite simple: we might want to add a few more
methods to it eventually, like addItem(), but for now we will let the chefs
control their menus by keeping that method out of the public interface:

Now we need to add an implements Menu to both the PancakeHouseMenu

and the DinerMenu class definitions and update the Waitress:

What does this get us?
The PancakeHouseMenu and DinerMenu classes implement an interface,
Menu. Waitress can refer to each menu object using the interface rather than
the concrete class. So, we’re reducing the dependency between the Waitress
and the concrete classes by “programming to an interface, not an
implementation.”

NOTE

This solves the problem of the Waitress depending on the concrete Menus.

The new Menu interface has one method, createIterator(), that is implemented
by PancakeHouseMenu and DinerMenu. Each menu class assumes the

responsibility of creating a concrete Iterator that is appropriate for its internal
implementation of the menu items.

NOTE

This solves the problem of the Waitress depending on the implementation of the
MenuItems.

Iterator Pattern defined
You’ve already seen how to implement the Iterator Pattern with your very
own iterator. You’ve also seen how Java supports iterators in some of its
collection oriented classes (the ArrayList). Now it’s time to check out the
official definition of the pattern:

NOTE

The Iterator Pattern provides a way to access the elements of an aggregate object
sequentially without exposing its underlying representation.

This makes a lot of sense: the pattern gives you a way to step through the
elements of an aggregate without having to know how things are represented
under the covers. You’ve seen that with the two implementations of Menus.
But the effect of using iterators in your design is just as important: once you
have a uniform way of accessing the elements of all your aggregate objects,
you can write polymorphic code that works with any of these aggregates —
just like the printMenu() method, which doesn’t care if the menu items are
held in an Array or ArrayList (or anything else that can create an Iterator), as
long as it can get hold of an Iterator.

The Iterator Pattern allows traversal of the elements of an aggregate without
exposing the underlying implementation.
It also places the task of traversal on the iterator object, not on the aggregate,
which simplifies the aggregate interface and implementation, and places the
responsibility where it should be.

The other important impact on your design is that the Iterator Pattern takes
the responsibility of traversing elements and gives that responsibility to the
iterator object, not the aggregate object. This not only keeps the aggregate
interface and implementation simpler, it removes the responsibility for
iteration from the aggregate and keeps the aggregate focused on the things it
should be focused on (managing a collection of objects), not on iteration.
Let’s check out the class diagram to put all the pieces in context...

BRAIN POWER

The class diagram for the Iterator Pattern looks very similar to another pattern you’ve
studied; can you think of what it is? Hint: a subclass decides which object to create.

THERE ARE NO DUMB QUESTIONS

Q: Q: I’ve seen other books show the Iterator class diagram with the methods first(), next(), isDone() and
currentItem(). Why are these methods different?

A: A: Those are the “classic” method names that have been used. These names have changed over time and we now
have next(), hasNext() and even remove() in java.util.Iterator.
Let’s look at the classic methods. The next() and currentItem() have been merged into one method in java.util.
The isDone() method has obviously become hasNext(); but we have no method corresponding to first(). That’s
because in Java we tend to just get a new iterator whenever we need to start the traversal over. Nevertheless, you
can see there is very little difference in these interfaces. In fact, there is a whole range of behaviors you can give
your iterators. The remove() method is an example of an extension in java.util.Iterator.

Q: Q: I’ve heard about “internal” iterators and “external” iterators. What are they? Which kind did we
implement in the example?

A: A: We implemented an external iterator, which means that the client controls the iteration by calling next() to get
the next element. An internal iterator is controlled by the iterator itself. In that case, because it’s the iterator that’s
stepping through the elements, you have to tell the iterator what to do with those elements as it goes through
them. That means you need a way to pass an operation to an iterator. Internal iterators are less flexible than
external iterators because the client doesn’t have control of the iteration. However, some might argue that they are
easier to use because you just hand them an operation and tell them to iterate, and they do all the work for you.

Q: Q: Could I implement an Iterator that can go backwards as well as forwards?

A: A: Definitely. In that case, you’d probably want to add two methods, one to get to the previous element, and one
to tell you when you’re at the beginning of the collection of elements. Java’s Collection Framework provides
another type of iterator interface called ListIterator. This iterator adds previous() and a few other methods to the
standard Iterator interface. It is supported by any Collection that implements the List interface.

Q: Q: Who defines the ordering of the iteration in a collection like Hashtable, which are inherently
unordered?

A: A: Iterators imply no ordering. The underlying collections may be unordered as in a hashtable or in a bag; they
may even contain duplicates. So ordering is related to both the properties of the underlying collection and to the
implementation. In general, you should make no assumptions about ordering unless the Collection documentation
indicates otherwise.

Q: Q: You said we can write “polymorphic code” using an iterator; can you explain that more?

A: A: When we write methods that take Iterators as parameters, we are using polymorphic iteration. That means we
are creating code that can iterate over any collection as long as it supports Iterator. We don’t care about how the
collection is implemented, we can still write code to iterate over it.

Q: Q: If I’m using Java, won’t I always want to use the java.util.Iterator interface so I can use my own iterator
implementations with classes that are already using the Java iterators?

A: A: Probably. If you have a common Iterator interface, it will certainly make it easier for you to mix and match
your own aggregates with Java aggregates like ArrayList and Vector. But remember, if you need to add
functionality to your Iterator interface for your aggregates, you can always extend the Iterator interface.

Q: Q: I’ve seen an Enumeration interface in Java; does that implement the Iterator Pattern?

A: A: We talked about this in the Adapter Pattern chapter (Chapter 7). Remember? The java.util.Enumeration is an
older implementation of Iterator that has since been replaced by java.util. Iterator. Enumeration has two methods,
hasMoreElements(), corresponding to hasNext(), and nextElement(), corresponding to next(). However, you’ll
probably want to use Iterator over Enumeration as more Java classes support it. If you need to convert from one to
another, review Chapter 7 again where you implemented the adapter for Enumeration and Iterator.

Single Responsibility
What if we allowed our aggregates to implement their internal collections and
related operations AND the iteration methods? Well, we already know that
would expand the number of methods in the aggregate, but so what? Why is
that so bad?
Well, to see why, you first need to recognize that when we allow a class to
not only take care of its own business (managing some kind of aggregate) but
also take on more responsibilities (like iteration) then we’ve given the class
two reasons to change. Two? Yup, two: it can change if the collection
changes in some way, and it can change if the way we iterate changes. So
once again our friend CHANGE is at the center of another design principle:

DESIGN PRINCIPLE

A class should have only one reason to change.

Every responsibility of a class is an area of potential change. More than one
responsibility means more than one area of change.
This principle guides us to keep each class to a single responsibility.

We know we want to avoid change in a class like the plague — modifying
code provides all sorts of opportunities for problems to creep in. Having two
ways to change increases the probability the class will change in the future,
and when it does, it’s going to affect two aspects of your design.
The solution? The principle guides us to assign each responsibility to one
class, and only one class.
That’s right, it’s as easy as that, and then again it’s not: separating
responsibility in design is one of the most difficult things to do. Our brains
are just too good at seeing a set of behaviors and grouping them together
even when there are actually two or more responsibilities. The only way to
succeed is to be diligent in examining your designs and to watch out for
signals that a class is changing in more than one way as your system grows.

Cohesion is a term you’ll hear used as a measure of how closely a class or a module
supports a single purpose or responsibility.

We say that a module or class has high cohesion when it is designed around a set of
related functions, and we say it has low cohesion when it is designed around a set of
unrelated functions.

Cohesion is a more general concept than the Single Responsibility Principle, but the two
are closely related. Classes that adhere to the principle tend to have high cohesion and
are more maintainable than classes that take on multiple responsibilities and have low
cohesion.

BRAIN POWER

Examine these classes and determine which ones have multiple responsibilities.

HARD HAT AREA. WATCH OUT FOR FALLING ASSUMPTIONS

BRAIN2 POWER

Determine if these classes have low or high cohesion.

Taking a look at the Café Menu

Here’s the café menu. It doesn’t look like too much trouble to integrate the
CafeMenu class into our framework... let’s check it out.

SHARPEN YOUR PENCIL

Before looking at the next page, quickly jot down the three things we have to do to this
code to fit it into our framework:

1. ___
2. ___
3. ___

Reworking the Café Menu code
Integrating the CafeMenu into our framework is easy. Why? Because
HashMap is one of those Java collections that supports Iterator. But it’s not
quite the same as ArrayList...

CODE UP CLOSE

HashMap is a little more complex than the ArrayList because it supports both keys and
values, but we can still get an Iterator for the values (which are the MenuItems).

Adding the Café Menu to the Waitress
That was easy; how about modifying the Waitress to support our new Menu?
Now that the Waitress expects Iterators, that should be easy too.

Breakfast, lunch AND dinner
Let’s update our test drive to make sure this all works.

Here’s the test run; check out the new dinner menu
from the Café!

What did we do?

We decoupled the Waitress....

... and we made the Waitress more extensible

But there’s more!

Iterators and Collections
We’ve been using a couple of classes that are part of the Java Collections
Framework. This “framework” is just a set of classes and interfaces,
including ArrayList, which we’ve been using, and many others like Vector,

LinkedList, Stack, and PriorityQueue. Each of these classes implements the
java.util.Collection interface, which contains a bunch of useful methods for
manipulating groups of objects.

Let’s take a quick look at the interface:

WATCH IT!

Hashtable is one of a few classes that indirectly supports Iterator.

As you saw when we implemented the CafeMenu, you could get an Iterator from it, but
only by first retrieving its Collection called values. If you think about it, this makes
sense: the HashMap holds two sets of objects: keys and values. If we want to iterate over

its values, we first need to retrieve them from the HashMap, and then obtain the iterator.

CODE MAGNETS

The Chefs have decided that they want to be able to alternate their lunch menu items; in
other words, they will offer some items on Monday, Wednesday, Friday, and Sunday,
and other items on Tuesday, Thursday, and Saturday. Someone already wrote the code
for a new “Alternating” DinerMenu Iterator so that it alternates the menu items, but she
scrambled it up and put it on the fridge in the Diner as a joke. Can you put it back
together? Some of the curly braces fell on the floor and they were too small to pick up,
so feel free to add as many of those as you need.

Is the Waitress ready for prime time?
The Waitress has come a long way, but you’ve gotta admit those three calls
to printMenu() are looking kind of ugly.
Let’s be real — every time we add a new menu we are going to have to open
up the Waitress implementation and add more code. Can you say “violating

the Open Closed Principle”?

It’s not the Waitress’ fault. We have done a great job of decoupling the menu
implementation and extracting the iteration into an iterator. But we still are
handling the menus with separate, independent objects — we need a way to
manage them together.

BRAIN POWER

The Waitress still needs to make three calls to printMenu(), one for each menu. Can you
think of a way to combine the menus so that only one call needs to be made? Or perhaps
so that one Iterator is passed to the Waitress to iterate over all the menus?

Sounds like the chef is on to something. Let’s give it a try:

This looks pretty good, although we’ve lost the names of the menus, but we
could add the names to each menu.

Just when we thought it was safe...
Now they want to add a dessert submenu.
Okay, now what? Now we have to support not only multiple menus, but
menus within menus.
It would be nice if we could just make the dessert menu an element of the
DinerMenu collection, but that won’t work as it is now implemented.
What we want (something like this):

We can’t assign a dessert menu to a MenuItem array.
Time for a change!

What do we need?
The time has come to make an executive decision to rework the chef’s
implementation into something that is general enough to work over all the
menus (and now submenus). That’s right, we’re going to tell the chefs that
the time has come for us to reimplement their menus.
The reality is that we’ve reached a level of complexity such that if we don’t

rework the design now, we’re never going to have a design that can
accommodate further acquisitions or submenus.
So, what is it we really need out of our new design?

We need some kind of a tree-shaped structure that will accommodate menus,
submenus, and menu items.

We need to make sure we maintain a way to traverse the items in each menu that is at
least as convenient as what we are doing now with iterators.

We may need to traverse the items in a more flexible manner. For instance, we might
need to iterate over only the Diner’s dessert menu, or we might need to iterate over the
Diner’s entire menu, including the dessert submenu.

NOTE

Because we need to represent menus, nested submenus and menu items, we can
naturally fit them in a tree-like structure.

BRAIN POWER

How would you handle this new wrinkle to our design requirements? Think about it
before turning the page.

The Composite Pattern defined
That’s right; we’re going to introduce another pattern to solve this problem.
We didn’t give up on Iterator — it will still be part of our solution —
however, the problem of managing menus has taken on a new dimension that
Iterator doesn’t solve. So, we’re going to step back and solve it with the

Composite Pattern.
We’re not going to beat around the bush on this pattern; we’re going to go
ahead and roll out the official definition now:

NOTE

Here’s a tree structure.

NOTE

The Composite Pattern allows you to compose objects into tree structures to represent
part-whole hierarchies. Composite lets clients treat individual objects and compositions
of objects uniformly.

Let’s think about this in terms of our menus: this pattern gives us a way to
create a tree structure that can handle a nested group of menus and menu
items in the same structure. By putting menus and items in the same structure
we create a part-whole hierarchy; that is, a tree of objects that is made of
parts (menus and menu items) but that can be treated as a whole, like one big
über menu.
Once we have our über menu, we can use this pattern to treat “individual
objects and compositions uniformly.” What does that mean? It means if we

have a tree structure of menus, submenus, and perhaps subsubmenus along
with menu items, then any menu is a “composition” because it can contain
both other menus and menu items. The individual objects are just the menu
items — they don’t hold other objects. As you’ll see, using a design that
follows the Composite Pattern is going to allow us to write some simple code
that can apply the same operation (like printing!) over the entire menu
structure.

NOTE

We can create arbitrarily complex trees.

NOTE

Operations can be applied to the whole.

NOTE

Or the parts.

The Composite Pattern allows us to build structures of objects in the form of trees
that contain both compositions of objects and individual objects as nodes.
Using a composite structure, we can apply the same operations over both
composites and individual objects. In other words, in most cases we can ignore
the differences between compositions of objects and individual objects.

THERE ARE NO DUMB QUESTIONS

Q: Q: Component, Composite, Trees? I’m confused.

A: A: A composite contains components. Components come in two flavors: composites and leaf elements. Sound
recursive? It is. A composite holds a set of children; those children may be other composites or leaf elements.
When you organize data in this way you end up with a tree structure (actually an upside-down tree structure) with
a composite at the root and branches of composites growing up to leaf nodes.

Q: Q: How does this relate to iterators?

A: A: Remember, we’re taking a new approach. We’re going to re-implement the menus with a new solution: the
Composite Pattern. So don’t look for some magical transformation from an iterator to a composite. That said, the
two work very nicely together. You’ll soon see that we can use iterators in a couple of ways in the composite
implementation.

Designing Menus with Composite
So, how do we apply the Composite Pattern to our menus? To start with, we
need to create a component interface; this acts as the common interface for

both menus and menu items and allows us to treat them uniformly. In other
words, we can call the same method on menus or menu items.
Now, it may not make sense to call some of the methods on a menu item or a
menu, but we can deal with that, and we will in just a moment. But for now,
let’s take a look at a sketch of how the menus are going to fit into a
Composite Pattern structure:

Implementing the Menu Component
Okay, we’re going to start with the MenuComponent abstract class;
remember, the role of the menu component is to provide an interface for the
leaf nodes and the composite nodes. Now you might be asking, “Isn’t the
MenuComponent playing two roles?” It might well be and we’ll come back

to that point. However, for now we’re going to provide a default
implementation of the methods so that if the MenuItem (the leaf) or the Menu
(the composite) doesn’t want to implement some of the methods (like
getChild() for a leaf node) they can fall back on some basic behavior:

NOTE

All components must implement the MenuComponent interface; however, because
leaves and nodes have different roles we can’t always define a default
implementation for each method that makes sense. Sometimes the best you can do
is throw a runtime exception.

NOTE

Because some of these methods only make sense for MenuItems, and some only make
sense for Menus, the default implementation is UnsupportedOperationException. That
way, if MenuItem or Menu doesn’t support an operation, they don’t have to do anything;
they can just inherit the default implementation.

Implementing the Menu Item
Okay, let’s give the MenuItem class a shot. Remember, this is the leaf class
in the Composite diagram and it implements the behavior of the elements of
the composite.

Implementing the Composite Menu
Now that we have the MenuItem, we just need the composite class, which
we’re calling Menu. Remember, the composite class can hold MenuItems or
other Menus. There’s a couple of methods from MenuComponent this class
doesn’t implement: getPrice() and isVegetarian(), because those don’t make a
lot of sense for a Menu.

Excellent catch. Because menu is a composite and contains both MenuItems
and other Menus, its print() method should print everything it contains. If it
didn’t we’d have to iterate through the entire composite and print each item
ourselves. That kind of defeats the purpose of having a composite structure.
As you’re going to see, implementing print() correctly is easy because we can
rely on each component to be able to print itself. It’s all wonderfully
recursive and groovy. Check it out:

Fixing the print() method

NOTE

NOTE: If, during this iteration, we encounter another Menu object, its print() method
will start another iteration, and so on.

Getting ready for a test drive...
It’s about time we took this code for a test drive, but we need to update the
Waitress code before we do — after all she’s the main client of this code:

Okay, one last thing before we write our test drive. Let’s get an idea of what
the menu composite is going to look like at runtime:

Now for the test drive...
Okay, now we just need a test drive. Unlike our previous version, we’re
going to handle all the menu creation in the test drive. We could ask each
chef to give us his new menu, but let’s get it all tested first. Here’s the code:

Getting ready for a test drive...

NOTE

NOTE: this output is based on the complete source.

There is some truth to that observation. We could say that the Composite
Pattern takes the Single Responsibility design principle and trades it for
transparency. What’s transparency? Well, by allowing the Component
interface to contain the child management operations and the leaf operations,
a client can treat both composites and leaf nodes uniformly; so whether an
element is a composite or leaf node becomes transparent to the client.
Now given we have both types of operations in the Component class, we lose
a bit of safety because a client might try to do something inappropriate or
meaningless on an element (like try to add a menu to a menu item). This is a
design decision; we could take the design in the other direction and separate
out the responsibilities into interfaces. This would make our design safe, in
the sense that any inappropriate calls on elements would be caught at compile
time or runtime, but we’d lose transparency and our code would have to use
conditionals and the instanceof operator.

So, to return to your question, this is a classic case of tradeoff. We are guided
by design principles, but we always need to observe the effect they have on
our designs. Sometimes we purposely do things in a way that seems to violate
the principle. In some cases, however, this is a matter of perspective; for
instance, it might seem incorrect to have child management operations in the
leaf nodes (like add(), remove() and getChild()), but then again you can
always shift your perspective and see a leaf as a node with zero children.

Flashback to Iterator
We promised you a few pages back that we’d show you how to use Iterator
with a Composite. You know that we are already using Iterator in our internal
implementation of the print() method, but we can also allow the Waitress to
iterate over an entire composite if she needs to — for instance, if she wants to
go through the entire menu and pull out vegetarian items.
To implement a Composite iterator, let’s add a createIterator() method in
every component. We’ll start with the abstract MenuComponent class:

Now we need to implement this method in the Menu and MenuItem classes:

The Composite Iterator
The CompositeIterator is a SERIOUS iterator. It’s got the job of iterating
over the MenuItems in the component, and of making sure all the child
Menus (and child child Menus, and so on) are included.
Here’s the code. Watch out. This isn’t a lot of code, but it can be a little mind
bending. As you go through it just repeat to yourself “recursion is my friend,
recursion is my friend.”

WATCH OUT: RECURSION ZONE AHEAD

When we wrote the print() method in the MenuComponent class we used an
iterator to step through each item in the component, and if that item was a
Menu (rather than a MenuItem), then we recursively called the print() method
to handle it. In other words, the MenuComponent handled the iteration itself,
internally.
With this code we are implementing an external iterator so there is a lot more
to keep track of. For starters, an external iterator must maintain its position in
the iteration so that an outside client can drive the iteration by calling
hasNext() and next(). But in this case, our code also needs to maintain that
position over a composite, recursive structure. That’s why we use stacks to
maintain our position as we move up and down the composite hierarchy.

BRAIN POWER

Draw a diagram of the Menus and MenuItems. Then pretend you are the
CompositeIterator, and your job is to handle calls to hasNext() and next(). Trace the way
the CompositeIterator traverses the structure as this code is executed:

public void testCompositeIterator(MenuComponent component) {
 CompositeIterator iterator = new CompositeIterator(component.iterator);

 while(iterator.hasNext()) {
 MenuComponent component = iterator.next();
 }
}

The Null Iterator
Okay, now what is this Null Iterator all about? Think about it this way: a
MenuItem has nothing to iterate over, right? So how do we handle the
implementation of its createIterator() method? Well, we have two choices:

NOTE

NOTE: Another example of the Null Object “Design Pattern.”

Choice one:
Return null
We could return null from createIterator(), but then we’d need conditional
code in the client to see if null was returned or not.

Choice two:
Return an iterator that always returns false when hasNext() is called
This seems like a better plan. We can still return an iterator, but the client
doesn’t have to worry about whether or not null is ever returned. In effect,
we’re creating an iterator that is a “no op.”

The second choice certainly seems better. Let’s call it NullIterator and
implement it.

Give me the vegetarian menu
Now we’ve got a way to iterate over every item of the Menu. Let’s take that
and give our Waitress a method that can tell us exactly which items are
vegetarian.

The magic of Iterator & Composite together...
Whooo! It’s been quite a development effort to get our code to this point.
Now we’ve got a general menu structure that should last the growing Diner
empire for some time. Now it’s time to sit back and order up some veggie
food:

Let’s take a look at what you’re talking about:

In general we agree; try/catch is meant for error handling, not program logic.
What are our other options? We could have checked the runtime type of the
menu component with instanceof to make sure it’s a MenuItem before
making the call to isVegetarian(). But in the process we’d lose transparency
because we wouldn’t be treating Menus and MenuItems uniformly.
We could also change isVegetarian() in the Menus so that it returns false.
This provides a simple solution and we keep our transparency.

In our solution we are going for clarity: we really want to communicate that
this is an unsupported operation on the Menu (which is different than saying
isVegetarian() is false). It also allows for someone to come along and actually
implement a reasonable isVegetarian() method for Menu and have it work
with the existing code.
That’s our story and we’re stickin’ to it.

PATTERNS EXPOSED

This week’s interview: The Composite Pattern, on implementation issues

HeadFirst: We’re here tonight speaking with the Composite Pattern. Why don’t you tell
us a little about yourself, Composite?

Composite: Sure... I’m the pattern to use when you have collections of objects with
whole-part relationships and you want to be able to treat those objects uniformly.

HeadFirst: Okay, let’s dive right in here... what do you mean by whole-part
relationships?

Composite: Imagine a graphical user interface; there you’ll often find a top level
component like a Frame or a Panel, containing other components, like menus, text
panes, scrollbars and buttons. So your GUI consists of several parts, but when you
display it, you generally think of it as a whole. You tell the top level component to
display, and count on that component to display all its parts. We call the components
that contain other components, composite objects, and components that don’t contain
other components, leaf objects.

HeadFirst: Is that what you mean by treating the objects uniformly? Having common
methods you can call on composites and leaves?

Composite: Right. I can tell a composite object to display or a leaf object to display and
it will do the right thing. The composite object will display by telling all its components
to display.

HeadFirst: That implies that every object has the same interface. What if you have
objects in your composite that do different things?

Composite: In order for the composite to work transparently to the client, you must
implement the same interface for all objects in the composite; otherwise, the client has to
worry about which interface each object is implementing, which kind of defeats the
purpose. Obviously that means that at times you’ll have objects for which some of the
method calls don’t make sense.

HeadFirst: So how do you handle that?

Composite: Well, there are a couple of ways to handle it; sometimes you can just do
nothing, or return null or false — whatever makes sense in your application. Other times

you’ll want to be more proactive and throw an exception. Of course, then the client has
to be willing to do a little work and make sure that the method call didn’t do something
unexpected.

HeadFirst: But if the client doesn’t know which kind of object they’re dealing with,
how would they ever know which calls to make without checking the type?

Composite: If you’re a little creative you can structure your methods so that the default
implementations do something that does make sense. For instance, if the client is calling
getChild(), on the composite this makes sense. And it makes sense on a leaf too, if you
think of the leaf as an object with no children.

HeadFirst: Ah... smart. But, I’ve heard some clients are so worried about this issue, that
they require separate interfaces for different objects so they aren’t allowed to make
nonsensical method calls. Is that still the Composite Pattern?

Composite: Yes. It’s a much safer version of the Composite Pattern, but it requires the
client to check the type of every object before making a call so the object can be cast
correctly.

HeadFirst: Tell us a little more about how these composite and leaf objects are
structured.

Composite: Usually it’s a tree structure, some kind of hierarchy. The root is the top-
level composite, and all its children are either composites or leaf nodes.

HeadFirst: Do children ever point back up to their parents?

Composite: Yes, a component can have a pointer to a parent to make traversal of the
structure easier. And, if you have a reference to a child, and you need to delete it, you’ll
need to get the parent to remove the child. Having the parent reference makes that easier
too.

HeadFirst: There’s really quite a lot to consider in your implementation. Are there other
issues we should think about when implementing the Composite Pattern?

Composite: Actually there are... one is the ordering of children. What if you have a
composite that needs to keep its children in a particular order? Then you’ll need a more
sophisticated management scheme for adding and removing children, and you’ll have to
be careful about how you traverse the hierarchy.

HeadFirst: A good point I hadn’t thought of.

Composite: And did you think about caching?

HeadFirst: Caching?

Composite: Yeah, caching. Sometimes, if the composite structure is complex or
expensive to traverse, it’s helpful to implement caching of the composite nodes. For
instance, if you are constantly traversing a composite and all its children to compute
some result, you could implement a cache that stores the result temporarily to save

traversals.

HeadFirst: Well, there’s a lot more to the Composite Patterns than I ever would have
guessed. Before we wrap this up, one more question: what do you consider your greatest
strength?

Composite: I think I’d definitely have to say simplifying life for my clients. My clients
don’t have to worry about whether they’re dealing with a composite object or a leaf
object, so they don’t have to write if statements everywhere to make sure they’re calling
the right methods on the right objects. Often, they can make one method call and execute
an operation over an entire structure.

HeadFirst: That does sound like an important benefit. There’s no doubt you’re a useful
pattern to have around for collecting and managing objects. And, with that, we’re out of
time... Thanks so much for joining us and come back soon for another Patterns Exposed.

DESIGN PATTERNS CROSSWORD

Wrap your brain around this composite crossword.

Across Down

5. Third company acquired. 1. A class should have only one reason to do

6. This class indirectly supports Iterator.

12. HashMap and ArrayList both implement this
interface.

13. A separate object that can traverse a collection.

15. We deleted PancakeHouseMenuIterator because
this class already provides an Iterator.

16. Has no children.

17. Name of principle that states only one
responsibility per class (two words).

19. CompositeIterator used a lot of this.

this.

2. We encapsulated this.

3. The Iterator Pattern decouples the client
from the aggregate’s _________.

4. Merged with the Diner (two words).

7. User interface packages often use this
pattern for their components.

8. Collection and Iterator are in this
package.

9. Iterators are usually created using this
pattern (two words).

10. A composite holds this.

11. We Java-enabled her.

14. This menu caused us to change our
entire implementation.

18. A component can be a composite or this.

WHO DOES WHAT?

Match each pattern with its description:

Pattern Description

Strategy Clients treat collections of objects and individual objects uniformly

Adapter Provides a way to traverse a collection of objects without exposing the collection’s
implementation

Iterator Simplifies the interface of a group of classes

Facade Changes the interface of one or more classes

Composite Allows a group of objects to be notified when some state changes

Observer Encapsulates interchangeable behaviors and uses delegation to decide which one to
use

Tools for your Design Toolbox
Two new patterns for your toolbox — two great ways to deal with collections
of objects.

BULLET POINTS

An Iterator allows access to an aggregate’s elements without exposing its internal
structure.
An Iterator takes the job of iterating over an aggregate and encapsulates it in another
object.
When using an Iterator, we relieve the aggregate of the responsibility of supporting
operations for traversing its data.
An Iterator provides a common interface for traversing the items of an aggregate,
allowing you to use polymorphism when writing code that makes use of the items of
the aggregate.
We should strive to assign only one responsibility to each class.
The Composite Pattern provides a structure to hold both individual objects and
composites.
The Composite Pattern allows clients to treat composites and individual objects
uniformly.
A Component is any object in a Composite structure. Components may be other
composites or leaf nodes.
There are many design tradeoffs in implementing Composite. You need to balance
transparency and safety with your needs.

SHARPEN YOUR PENCIL SOLUTION

Based on our implementation of printMenu(), which of the following apply?

A. We are coding to the PancakeHouseMenu and DinerMenu concrete implementations, not
to an interface.

B. The Waitress doesn’t implement the Java Waitress API and so she isn’t adhering to a
standard.

C. If we decided to switch from using DinerMenu to another type of menu that implemented
its list of menu items with a Hashtable, we’d have to modify a lot of code in the Waitress.

D. The Waitress needs to know how each menu represents its internal collection of menu
items; this violates encapsulation.

E. We have duplicate code: the printMenu() method needs two separate loops to iterate over
the two different kinds of menus. And if we added a third menu, we’d have yet another
loop.

F. The implementation isn’t based on MXML (Menu XML) and so isn’t as interoperable as
it should be.

SHARPEN YOUR PENCIL SOLUTION

Before looking at the next page, quickly jot down the three things we have to do to this
code to fit it into our framework:

1. implement the Menu
interface___

2. get rid of
getItems()__

3. add createIterator() and return an Iterator that can step through the Hashtable
values___

CODE MAGNETS SOLUTION

The unscrambled “Alternating” DinerMenu Iterator.

WHO DOES WHAT? SOLUTION

Match each pattern with its description:

DESIGN PATTERNS CROSSWORD SOLUTION

Wrap your brain around this composite crossword. Here’s our solution.

Chapter 10. The State Pattern: The
State of Things

A little-known fact: the Strategy and State Patterns were twins separated
at birth. As you know, the Strategy Pattern went on to create a wildly
successful business around interchangeable algorithms. State, however, took
the perhaps more noble path of helping objects to control their behavior by
changing their internal state. He’s often overheard telling his object clients,
“Just repeat after me: I’m good enough, I’m smart enough, and doggonit...”

Jawva Breakers

Java toasters are so ’90s. Today people are building Java into real devices,
like gumball machines. That’s right, gumball machines have gone high tech;
the major manufacturers have found that by putting CPUs into their
machines, they can increase sales, monitor inventory over the network and
measure customer satisfaction more accurately.

NOTE

At least that’s their story – we think they just got bored with the circa 1800’s technology
and needed to find a way to make their jobs more exciting.

But these manufacturers are gumball machine experts, not software
developers, and they’ve asked for your help:

Cubicle Conversation

Judy: This diagram looks like a state diagram.
Joe: Right, each of those circles is a state...
Judy: ... and each of the arrows is a state transition.
Frank: Slow down, you two, it’s been too long since I studied state
diagrams. Can you remind me what they’re all about?
Judy: Sure, Frank. Look at the circles; those are states. “No Quarter” is
probably the starting state for the gumball machine because it’s just sitting
there waiting for you to put your quarter in. All states are just different
configurations of the machine that behave in a certain way and need some
action to take them to another state.
Joe: Right. See, to go to another state, you need to do something like put a
quarter in the machine. See the arrow from “No Quarter” to “Has Quarter”?
Frank: Yes...
Joe: That just means that if the gumball machine is in the “No Quarter” state
and you put a quarter in, it will change to the “Has Quarter” state. That’s the
state transition.
Frank: Oh, I see! And if I’m in the “Has Quarter” state, I can turn the crank

and change to the “Gumball Sold” state, or eject the quarter and change back
to the “No Quarter” state.
Judy: You got it!
Frank: This doesn’t look too bad then. We’ve obviously got four states, and I
think we also have four actions: “inserts quarter,” “ejects quarter,” “turns
crank” and “dispense.” But... when we dispense, we test for zero or more
gumballs in the “Gumball Sold” state, and then either go to the “Out of
Gumballs” state or the “No Quarter” state. So we actually have five
transitions from one state to another.
Judy: That test for zero or more gumballs also implies we’ve got to keep
track of the number of gumballs too. Any time the machine gives you a
gumball, it might be the last one, and if it is, we need to transition to the “Out
of Gumballs” state.
Joe: Also, don’t forget that you could do nonsensical things, like try to eject
the quarter when the gumball machine is in the “No Quarter” state, or insert
two quarters.
Frank: Oh, I didn’t think of that; we’ll have to take care of those too.
Joe: For every possible action we’ll just have to check to see which state
we’re in and act appropriately. We can do this! Let’s start mapping the state
diagram to code...

State machines 101
How are we going to get from that state diagram to actual code? Here’s a
quick introduction to implementing state machines:
① First, gather up your states:

② Next, create an instance variable to hold the current state, and define
values for each of the states:

③ Now we gather up all the actions that can happen in the system:

④ Now we create a class that acts as the state machine. For each action,
we create a method that uses conditional statements to determine what
behavior is appropriate in each state. For instance, for the insert quarter
action, we might write a method like this:

With that quick review, let’s go implement the Gumball Machine!

Writing the code
It’s time to implement the Gumball Machine. We know we’re going to have
an instance variable that holds the current state. From there, we just need to
handle all the actions, behaviors and state transitions that can happen. For
actions, we need to implement inserting a quarter, removing a quarter,
turning the crank, and dispensing a gumball; we also have the empty Gumball
Machine condition to implement.

In-house testing
That feels like a nice solid design using a well-thought-out methodology,
doesn’t it? Let’s do a little in-house testing before we hand it off to Mighty
Gumball to be loaded into their actual gumball machines. Here’s our test

harness:

You knew it was coming... a change request!
Mighty Gumball, Inc., has loaded your code into their newest machine
and their quality assurance experts are putting it through its paces. So
far, everything’s looking great from their perspective.
In fact, things have gone so smoothly they’d like to take things to the
next level...

DESIGN PUZZLE

Draw a state diagram for a Gumball Machine that handles the 1 in 10 contest. In this
contest, 10% of the time the Sold state leads to two balls being released, not one. Check
your answer with ours (at the end of the chapter) to make sure we agree before you go
further...

The messy STATE of things...
Just because you’ve written your gumball machine using a well-thought-out
methodology doesn’t mean it’s going to be easy to extend. In fact, when you
go back and look at your code and think about what you’ll have to do to
modify it, well...

SHARPEN YOUR PENCIL

Which of the following describe the state of our implementation? (Choose all that
apply.)

A. This code certainly isn’t adhering to the Open Closed Principle.

B. This code would make a FORTRAN programmer proud.

C. This design isn’t even very object-oriented.

D. State transitions aren’t explicit; they are buried in the middle of a bunch of conditional
statements.

E. We haven’t encapsulated anything that varies here.

F. Further additions are likely to cause bugs in working code.

Frank: You’re right about that! We need to refactor this code so that it’s easy
to maintain and modify.
Judy: We really should try to localize the behavior for each state so that if we
make changes to one state, we don’t run the risk of messing up the other
code.
Frank: Right; in other words, follow that ol’ “encapsulate what varies”
principle.
Judy: Exactly.
Frank: If we put each state’s behavior in its own class, then every state just
implements its own actions.
Judy: Right. And maybe the Gumball Machine can just delegate to the state
object that represents the current state.
Frank: Ah, you’re good: favor composition... more principles at work.
Judy: Cute. Well, I’m not 100% sure how this is going to work, but I think

we’re on to something.
Frank: I wonder if this will make it easier to add new states?
Judy: I think so... We’ll still have to change code, but the changes will be
much more limited in scope because adding a new state will mean we just
have to add a new class and maybe change a few transitions here and there.
Frank: I like the sound of that. Let’s start hashing out this new design!

The new design
It looks like we’ve got a new plan: instead of maintaining our existing code,
we’re going to rework it to encapsulate state objects in their own classes and
then delegate to the current state when an action occurs.
We’re following our design principles here, so we should end up with a
design that is easier to maintain down the road. Here’s how we’re going to do
it:
① First, we’re going to define a State interface that contains a method
for every action in the Gumball Machine.
② Then we’re going to implement a State class for every state of the
machine. These classes will be responsible for the behavior of the
machine when it is in the corresponding state.
③ Finally, we’re going to get rid of all of our conditional code and
instead delegate to the State class to do the work for us.

Not only are we following design principles, as you’ll see, we’re actually
implementing the State Pattern. But we’ll get to all the official State Pattern
stuff after we rework our code...

Defining the State interfaces and classes
First let’s create an interface for State, which all our states implement:

Then take each state in our design and encapsulate it in a class that
implements the State interface.

SHARPEN YOUR PENCIL

To implement our states, we first need to specify the behavior of the classes when each
action is called. Annotate the diagram below with the behavior of each action in each
class; we’ve already filled in a few for you.

Implementing our State classes
Time to implement a state: we know what behaviors we want; we just need to
get it down in code. We’re going to closely follow the state machine code we
wrote, but this time everything is broken out into different classes.
Let’s start with the NoQuarterState:

Reworking the Gumball Machine
Before we finish the State classes, we’re going to rework the Gumball
Machine — that way you can see how it all fits together. We’ll start with the
state-related instance variables and switch the code from using integers to

using state objects:

Now, let’s look at the complete GumballMachine class...

Implementing more states
Now that you’re starting to get a feel for how the Gumball Machine and the
states fit together, let’s implement the HasQuarterState and the SoldState
classes...

Now, let’s check out the SoldState class...

BRAIN POWER

Look back at the GumballMachine implementation. If the crank is turned and not
successful (say the customer didn’t insert a quarter first), we call dispense anyway, even
though it’s unnecessary. How might you fix this?

SHARPEN YOUR PENCIL

We have one remaining class we haven’t implemented: SoldOutState. Why don’t you
implement it? To do this, carefully think through how the Gumball Machine should
behave in each situation. Check your answer before moving on...

public class SoldOutState implements _______________ {
 GumballMachine gumballMachine;

 public SoldOutState(GumballMachine gumballMachine) {

 }

 public void insertQuarter() {

 }

 public void ejectQuarter() {

 }

 public void turnCrank() {

 }

 public void dispense() {

 }
}

Let’s take a look at what we’ve done so far...
For starters, you now have a Gumball Machine implementation that is
structurally quite different from your first version, and yet functionally it is
exactly the same. By structurally changing the implemention, you’ve:

Localized the behavior of each state into its own class.
Removed all the troublesome if statements that would have been difficult
to maintain.
Closed each state for modification, and yet left the Gumball Machine open
to extension by adding new state classes (and we’ll do this in a second).
Created a code base and class structure that maps much more closely to
the Mighty Gumball diagram and is easier to read and understand.

Now let’s look a little more at the functional aspect of what we did:

SHARPEN YOUR PENCIL

Behind the Scenes: Self-Guided Tour

Trace the steps of the Gumball Machine starting with the NoQuarter state. Also annotate
the diagram with actions and output of the machine. For this exercise you can assume
there are plenty of gumballs in the machine.

The State Pattern defined
Yes, it’s true, we just implemented the State Pattern! So now, let’s take a
look at what it’s all about:

NOTE

The State Pattern allows an object to alter its behavior when its internal state changes.
The object will appear to change its class.

The first part of this description makes a lot of sense, right? Because the
pattern encapsulates state into separate classes and delegates to the object
representing the current state, we know that behavior changes along with the
internal state. The Gumball Machine provides a good example: when the
gumball machine is in the NoQuarterState and you insert a quarter, you get
different behavior (the machine accepts the quarter) than if you insert a
quarter when it’s in the HasQuarterState (the machine rejects the quarter).
What about the second part of the definition? What does it mean for an object
to “appear to change its class”? Think about it from the perspective of a
client: if an object you’re using can completely change its behavior, then it
appears to you that the object is actually instantiated from another class. In
reality, however, you know that we are using composition to give the
appearance of a class change by simply referencing different state objects.
Okay, now it’s time to check out the State Pattern class diagram:

You’ve got a good eye! Yes, the class diagrams are essentially the same, but

the two patterns differ in their intent.
With the State Pattern, we have a set of behaviors encapsulated in state
objects; at any time the context is delegating to one of those states. Over
time, the current state changes across the set of state objects to reflect the
internal state of the context, so the context’s behavior changes over time as
well. The client usually knows very little, if anything, about the state objects.
With Strategy, the client usually specifies the strategy object that the context
is composed with. Now, while the pattern provides the flexibility to change
the strategy object at runtime, often there is a strategy object that is most
appropriate for a context object. For instance, in Chapter 1, some of our
ducks were configured to fly with typical flying behavior (like mallard
ducks), while others were configured with a fly behavior that kept them
grounded (like rubber ducks and decoy ducks).
In general, think of the Strategy Pattern as a flexible alternative to
subclassing; if you use inheritance to define the behavior of a class, then
you’re stuck with that behavior even if you need to change it. With Strategy
you can change the behavior by composing with a different object.
Think of the State Pattern as an alternative to putting lots of conditionals in
your context; by encapsulating the behaviors within state objects, you can
simply change the state object in context to change its behavior.

THERE ARE NO DUMB QUESTIONS

Q: Q: In the GumballMachine, the states decide what the next state should be. Do the ConcreteStates always
decide what state to go to next?

A: A: No, not always. The alternative is to let the Context decide on the flow of state transitions.

As a general guideline, when the state transitions are fixed they are appropriate for putting in the Context;
however, when the transitions are more dynamic, they are typically placed in the state classes themselves (for
instance, in the GumballMachine the choice of the transition to NoQuarter or SoldOut depended on the runtime
count of gumballs).

The disadvantage of having state transitions in the state classes is that we create dependencies between the state
classes. In our implementation of the GumballMachine we tried to minimize this by using getter methods on the
Context, rather than hardcoding explicit concrete state classes.

Notice that by making this decision, you are making a decision as to which classes are closed for modification —
the Context or the state classes — as the system evolves.

Q: Q: Do clients ever interact directly with the states?

A: A: No. The states are used by the Context to represent its internal state and behavior, so all requests to the states
come from the Context. Clients don’t directly change the state of the Context. It is the Context’s job to oversee its
state, and you don’t usually want a client changing the state of a Context without that Context’s knowledge.

Q: Q: If I have lots of instances of the Context in my application, is it possible to share the state objects across
them?

A: A: Yes, absolutely, and in fact this is a very common scenario. The only requirement is that your state objects do
not keep their own internal context; otherwise, you’d need a unique instance per context.

To share your states, you’ll typically assign each state to a static instance variable. If your state needs to make use
of methods or instance variables in your Context, you’ll also have to give it a reference to the Context in each
handler() method.

Q: Q: It seems like using the State Pattern always increases the number of classes in our designs. Look how
many more classes our GumballMachine had than the original design!

A: A: You’re right, by encapsulating state behavior into separate state classes, you’ll always end up with more
classes in your design. That’s often the price you pay for flexibility. Unless your code is some “one off”
implementation you’re going to throw away (yeah, right), consider building it with the additional classes and
you’ll probably thank yourself down the road. Note that often what is important is the number of classes that you
expose to your clients, and there are ways to hide these extra classes from your clients (say, by declaring them
package visible).

Also, consider the alternative: if you have an application that has a lot of state and you decide not to use separate
objects, you’ll instead end up with very large, monolithic conditional statements. This makes your code hard to
maintain and understand. By using objects, you make states explicit and reduce the effort needed to understand
and maintain your code.

Q: Q: The State Pattern class diagram shows that State is an abstract class. But didn’t you use an interface in
the implementation of the gumball machine’s state?

A: A: Yes. Given we had no common functionality to put into an abstract class, we went with an interface. In your
own implementation, you might want to consider an abstract class. Doing so has the benefit of allowing you to
add methods to the abstract class later, without breaking the concrete state implementations.

We still need to finish the Gumball 1 in 10 game
Remember, we’re not done yet. We’ve got a game to implement, but now
that we’ve got the State Pattern implemented, it should be a breeze. First, we
need to add a state to the GumballMachine class:

Now let’s implement the WinnerState class; it’s remarkably similar to the
SoldState class:

Finishing the game
We’ve just got one more change to make: we need to implement the random
chance game and add a transition to the WinnerState. We’re going to add
both to the HasQuarterState since that is where the customer turns the crank:

Wow, that was pretty simple to implement! We just added a new state to the
GumballMachine and then implemented it. All we had to do from there was
to implement our chance game and transition to the correct state. It looks like
our new code strategy is paying off...

Demo for the CEO of Mighty Gumball, Inc.
The CEO of Mighty Gumball has dropped by for a demo of your new
gumball game code. Let’s hope those states are all in order! We’ll keep the
demo short and sweet (the short attention span of CEOs is well documented),
but hopefully long enough so that we’ll win at least once.

THERE ARE NO DUMB QUESTIONS

Q: Q: Why do we need the WinnerState? Couldn’t we just have the SoldState dispense two gumballs?

A: A: That’s a great question. SoldState and WinnerState are almost identical, except that WinnerState dispenses two
gumballs instead of one. You certainly could put the code to dispense two gumballs into the SoldState. The
downside is, of course, that now you’ve got TWO states represented in one State class: the state in which you’re a
winner, and the state in which you’re not. So you are sacrificing clarity in your State class to reduce code
duplication. Another thing to consider is the principle you learned in the previous chapter: One class, One
responsibility. By putting the WinnerState responsibility into the SoldState, you’ve just given the SoldState TWO
responsibilities. What happens when the promotion ends? Or the stakes of the contest change? So, it’s a tradeoff
and comes down to a design decision.

Sanity check...
Yes, the CEO of Mighty Gumball probably needs a sanity check, but that’s
not what we’re talking about here. Let’s think through some aspects of the
GumballMachine that we might want to shore up before we ship the gold
version:

We’ve got a lot of duplicate code in the Sold and Winning states and we
might want to clean those up. How would we do it? We could make State
into an abstract class and build in some default behavior for the methods;
after all, error messages like, “You already inserted a quarter,” aren’t
going to be seen by the customer. So all “error response” behavior could
be generic and inherited from the abstract State class.

NOTE

Dammit Jim, I’m a gumball machine, not a computer!

The dispense() method always gets called, even if the crank is turned
when there is no quarter. While the machine operates correctly and
doesn’t dispense unless it’s in the right state, we could easily fix this by
having turnCrank() return a boolean, or by introducing exceptions. Which

do you think is a better solution?
All of the intelligence for the state transitions is in the State classes. What
problems might this cause? Would we want to move that logic into the
Gumball Machine? What would be the advantages and disadvantages of
that?
Will you be instantiating a lot of GumballMachine objects? If so, you may
want to move the state instances into static instance variables and share
them. What changes would this require to the GumballMachine and the
States?

FIRESIDE CHATS

Tonight’s talk: A Strategy and State Pattern Reunion.

Strategy: State:

Hey bro. Did you hear I was in
Chapter 1?

 Yeah, word is definitely getting around.

I was just over giving the Template
Method guys a hand — they needed
me to help them finish off their
chapter. So, anyway, what is my noble
brother up to?

 Same as always — helping classes to exhibit different
behaviors in different states.

I don’t know, you always sound like
you’ve just copied what I do and
you’re using different words to
describe it. Think about it: I allow
objects to incorporate different
behaviors or algorithms through
composition and delegation. You’re
just copying me.

 I admit that what we do is definitely related, but my intent
is totally different than yours. And, the way I teach my
clients to use composition and delegation is totally
different.

Oh yeah? How so? I don’t get it.

 Well, if you spent a little more time thinking about

something other than yourself, you might. Anyway, think
about how you work: you have a class you’re instantiating
and you usually give it a strategy object that implements
some behavior. Like, in Chapter 1 you were handing out
quack behaviors, right? Real ducks got a real quack;
rubber ducks got a quack that squeaked.

Yeah, that was some fine work... and
I’m sure you can see how that’s more
powerful than inheriting your
behavior, right?

 Yes, of course. Now, think about how I work; it’s totally
different.

Sorry, you’re going to have to explain
that.

 Okay, when my Context objects get created, I may tell
them the state to start in, but then they change their own
state over time.

Hey, come on, I can change behavior
at runtime too; that’s what
composition is all about!

 Sure you can, but the way I work is built around discrete
states; my Context objects change state over time
according to some well-defined state transitions. In other
words, changing behavior is built in to my scheme — it’s
how I work!

Well, I admit, I don’t encourage my
objects to have a well-defined set of
transitions between states. In fact, I
typically like to control what strategy
my objects are using.

 Look, we’ve already said we’re alike in structure, but
what we do is quite different in intent. Face it, the world
has uses for both of us.

Yeah, yeah, keep living your pipe
dreams, brother. You act like you’re a
big pattern like me, but check it out:
I’m in Chapter 1; they stuck you way
out in Chapter 10. I mean, how many
people are actually going to read this
far?

Are you kidding? This is a Head First book and Head First
readers rock. Of course they’re going to get to Chapter 10!

That’s my brother, always the
dreamer.

We almost forgot!

SHARPEN YOUR PENCIL

We need you to write the refill() method for the Gumball machine. It has one argument
— the number of gumballs you’re adding to the machine — and should update the
gumball machine count and reset the machine’s state.

WHO DOES WHAT?

Match each pattern with its description:

Pattern Description

State Encapsulate interchangeable behaviors and use delegation to decide which
behavior to use.

Strategy Subclasses decide how to implement steps in an algorithm.

Template
Method

Encapsulate state-based behavior and delegate behavior to the current state.

Tools for your Design Toolbox
It’s the end of another chapter; you’ve got enough patterns here to breeze
through any job interview!

BULLET POINTS

The State Pattern allows an object to have many different behaviors that are based on
its internal state.
Unlike a procedural state machine, the State Pattern represents state as a full-blown
class.
The Context gets its behavior by delegating to the current state object it is composed
with.
By encapsulating each state into a class, we localize any changes that will need to be
made.
The State and Strategy Patterns have the same class diagram, but they differ in
intent.
Strategy Pattern typically configures Context classes with a behavior or algorithm.
State Pattern allows a Context to change its behavior as the state of the Context
changes.
State transitions can be controlled by the State classes or by the Context classes.
Using the State Pattern will typically result in a greater number of classes in your
design.
State classes may be shared among Context instances.

DESIGN PUZZLE SOLUTION

Draw a state diagram for a Gumball Machine that handles the 1-in-10 contest. In this
contest, 10% of the time the Sold state leads to two balls being released, not one. Here’s
our solution.

SHARPEN YOUR PENCIL SOLUTION

Which of the following describe the state of our implementation? (Choose all that
apply.) Here’s our solution.

A. This code certainly isn’t adhering to the Open Closed Principle.

B. This code would make a FORTRAN programmer proud.

C. This design isn’t even very object-oriented.

D. State transitions aren’t explicit; they are buried in the middle of a bunch of conditional
statements.

E. We haven’t encapsulated anything that varies here.

F. Further additions are likely to cause bugs in working code.

SHARPEN YOUR PENCIL SOLUTION

We have one remaining class we haven’t implemented: SoldOutState. Why don’t you
implement it? To do this, carefully think through how the Gumball Machine should
behave in each situation. Here’s our solution.

public class SoldOutState implements State {
 GumballMachine gumballMachine;

 public SoldOutState(GumballMachine gumballMachine) {
 this.gumballMachine = gumballMachine;
 }

 public void insertQuarter() {
 System.out.println("You can't insert a quarter, the machine is sold
out");
 }

 public void ejectQuarter() {
 System.out.println("You can't eject, you haven't inserted a quarter
yet");
 }

 public void turnCrank() {
 System.out.println("You turned, but there are no gumballs");
 }

 public void dispense() {
 System.out.println("No gumball dispensed");
 }

 public String toString() {
 return "sold out";
 }
}

NOTE

In the Sold Out state, we really can’t do anything until someone
refills the Gumball Machine.

SHARPEN YOUR PENCIL SOLUTION

To implement the states, we first need to define what the behavior will be when the
corresponding action is called. Annotate the diagram below with the behavior of each
action in each class; here’s our solution.

BEHIND THE SCENES: SELF-GUIDED TOUR SOLUTION

WHO DOES WHAT? SOLUTION

Match each pattern with its description:

SHARPEN YOUR PENCIL SOLUTION

To refill the Gumball Machine, we add a refill() method to the State interface, which
each State must implement. In every state except the SoldOutState, the method does
nothing. In SoldOutState, refill() transitions to NoQuarterState. We also add a refill()
method to GumballMachine that adds to the count of gumballs, and then calls the current
state’s refill() method.

Chapter 11. The Proxy Pattern:
Controlling Object Access

Ever play good cop, bad cop? You’re the good cop and you provide all your
services in a nice and friendly manner, but you don’t want everyone asking
you for services, so you have the bad cop control access to you. That’s what
proxies do: control and manage access. As you’re going to see, there are lots
of ways in which proxies stand in for the objects they proxy. Proxies have
been known to haul entire method calls over the Internet for their proxied
objects; they’ve also been known to patiently stand in the place for some
pretty lazy objects.

Sounds easy enough. If you remember, we’ve already got methods in the
gumball machine code for getting the count of gumballs (getCount()), and
getting the current state of the machine (getState()).
All we need to do is create a report that can be printed out and sent back to
the CEO. Hmmm, we should probably add a location field to each gumball
machine as well; that way the CEO can keep the machines straight.
Let’s just jump in and code this. We’ll impress the CEO with a very fast
turnaround.

Coding the Monitor
Let’s start by adding support to the GumballMachine class so that it can
handle locations:

Now let’s create another class, GumballMonitor, that retrieves the machine’s
location, inventory of gumballs, and current machine state and prints them in
a nice little report:

Testing the Monitor
We implemented that in no time. The CEO is going to be thrilled and amazed
by our development skills.
Now we just need to instantiate a GumballMonitor and give it a machine to
monitor:

Frank: A remote what?
Joe: Remote proxy. Think about it: we’ve already got the monitor code
written, right? We give the GumballMonitor a reference to a machine and it
gives us a report. The problem is that the monitor runs in the same JVM as
the gumball machine and the CEO wants to sit at his desk and remotely
monitor the machines! So what if we left our GumballMonitor class as is, but
handed it a proxy to a remote object?
Frank: I’m not sure I get it.
Jim: Me neither.
Joe: Let’s start at the beginning... a proxy is a stand in for a real object. In
this case, the proxy acts just like it is a Gumball Machine object, but behind
the scenes it is communicating over the network to talk to the real, remote
GumballMachine.
Jim: So you’re saying we keep our code as it is, and we give the monitor a
reference to a proxy version of the GumballMachine...
Frank: And this proxy pretends it’s the real object, but it’s really just
communicating over the net to the real object.
Joe: Yeah, that’s pretty much the story.

Frank: It sounds like something that is easier said than done.
Joe: Perhaps, but I don’t think it’ll be that bad. We have to make sure that the
gumball machine can act as a service and accept requests over the network;
we also need to give our monitor a way to get a reference to a proxy object,
but we’ve got some great tools already built into Java to help us. Let’s talk a
little more about remote proxies first...

The role of the ‘remote proxy’
A remote proxy acts as a local representative to a remote object. What’s a
“remote object”? It’s an object that lives in the heap of a different Java
Virtual Machine (or more generally, a remote object that is running in a
different address space). What’s a “local representative”? It’s an object that
you can call local methods on and have them forwarded on to the remote
object.

Your client object acts like it’s making remote method calls. But what it’s really
doing is calling methods on a heap-local ‘proxy’ object that handles all the low-
level details of network communication.

BRAIN POWER

Before going further, think about how you’d design a system to enable remote method
invocation. How would you make it easy on the developer so that she has to write as
little code as possible? How would you make the remote invocation look seamless?

BRAIN POWER

Should making remote calls be totally transparent? Is that a good idea? What might be a
problem with that approach?

Adding a remote proxy to the Gumball Machine
monitoring code
On paper this looks good, but how do we create a proxy that knows how to
invoke a method on an object that lives in another JVM?

Hmmm. Well, you can’t get a reference to something on another heap, right?
In other words, you can’t say:

Duck d = <object in another heap>

Whatever the variable d is referencing must be in the same heap space as the
code running the statement. So how do we approach this? Well, that’s where
Java’s Remote Method Invocation comes in... RMI gives us a way to find
objects in a remote JVM and allows us to invoke their methods.
You may have encountered RMI in Head First Java; if not, take a slight
detour and get up to speed on RMI before adding the proxy support to the
Gumball Machine code.
So, here’s what we’re going to do:
① First, we’re going to take the RMI Detour and check RMI out.
Even if you are familiar with RMI, you might want to follow along
and check out the scenery.

② Then we’re going to take our GumballMachine and make it a
remote service that provides a set of methods calls that can be invoked
remotely.
③ Then, we going to create a proxy that can talk to a remote
GumballMachine, again using RMI, and put the monitoring system
back together so that the CEO can monitor any number of remote
machines.

Remote methods 101

Let’s say we want to design a system that allows us to call a local object that
forwards each request to a remote object. How would we design it? We’d
need a couple of helper objects that actually do the communicating for us.
The helpers make it possible for the client to act as though it’s calling a
method on a local object (which in fact, it is). The client calls a method on the
client helper, as if the client helper were the actual service. The client helper
then takes care of forwarding that request for us.
In other words, the client object thinks it’s calling a method on the remote
service, because the client helper is pretending to be the service object.
Pretending to be the thing with the method the client wants to call.
But the client helper isn’t really the remote service. Although the client
helper acts like it (because it has the same method that the service is
advertising), the client helper doesn’t have any of the actual method logic the
client is expecting. Instead, the client helper contacts the server, transfers
information about the method call (e.g., name of the method, arguments,
etc.), and waits for a return from the server.
On the server side, the service helper receives the request from the client
helper (through a Socket connection), unpacks the information about the call,
and then invokes the real method on the real service object. So, to the service
object, the call is local. It’s coming from the service helper, not a remote
client.
The service helper gets the return value from the service, packs it up, and
ships it back (over a Socket’s output stream) to the client helper. The client
helper unpacks the information and returns the value to the client object.

NOTE

This should look familiar...

How the method call happens
① Client object calls doBigThing() on the client helper object.

② Client helper packages up information about the call (arguments,
method name, etc.) and ships it over the network to the service helper.

③ Service helper unpacks the information from the client helper, finds out
which method to call (and on which object) and invokes the real method
on the real service object.

④ The method is invoked on the service object, which returns some result
to the service helper.

⑤ Service helper packages up information returned from the call and
ships it back over the network to the client helper.

⑥ Client helper unpackages the returned values and returns them to the
client object. To the client object, this was all transparent.

Java RMI, the Big Picture
Okay, you’ve got the gist of how remote methods work; now you just need to
understand how to use RMI to enable remote method invocation.
What RMI does for you is build the client and service helper objects, right
down to creating a client helper object with the same methods as the remote
service. The nice thing about RMI is that you don’t have to write any of the
networking or I/O code yourself. With your client, you call remote methods
(i.e., the ones the Real Service has) just like normal method calls on objects
running in the client’s own local JVM.
RMI also provides all the runtime infrastructure to make it all work,
including a lookup service that the client can use to find and access the
remote objects.
There is one difference between RMI calls and local (normal) method calls.
Remember that even though to the client it looks like the method call is local,
the client helper sends the method call across the network. So there is
networking and I/O. And what do we know about networking and I/O
methods?
They’re risky! They can fail! And so, they throw exceptions all over the
place. As a result, the client does have to acknowledge the risk. We’ll see
how in a few pages.
RMI Nomenclature: in RMI, the client helper is a ‘stub’ and the service
helper is a ‘skeleton’.

Now let’s go through all the steps needed to make an object into a service
that can accept remote calls and also the steps needed to allow a client to
make remote calls.
You might want to make sure your seat belt is fastened; there are a lot of
steps and a few bumps and curves — but nothing to be too worried about.
Making the Remote service

This is an overview of the five steps for making the remote service. In other
words, the steps needed to take an ordinary object and supercharge it so it can
be called by a remote client. We’ll be doing this later to our
GumballMachine. For now, let’s get the steps down and then we’ll explain
each one in detail.
Step one:

Make a Remote Interface
The remote interface defines the methods that a client can call remotely.
It’s what the client will use as the class type for your service. Both the
Stub and actual service will implement this!

Step two:
Make a Remote Implementation
This is the class that does the Real Work. It has the real implementation of
the remote methods defined in the remote interface. It’s the object that the
client wants to call methods on (e.g., our GumballMachine!).

Step three:
Start the RMI registry (rmiregistry)
The rmiregistry is like the white pages of a phone book. It’s where the
client goes to get the proxy (the client stub/helper object).

Step four:
Start the remote service
You have to get the service object up and running. Your service
implementation class instantiates an instance of the service and registers it
with the RMI registry. Registering it makes the service available for
clients.

Step one: make a Remote interface
① Extend java.rmi.Remote
Remote is a ‘marker’ interface, which means it has no methods. It has
special meaning for RMI, though, so you must follow this rule. Notice that
we say ‘extends’ here. One interface is allowed to extend another
interface.

② Declare that all methods throw a RemoteException
The remote interface is the one the client uses as the type for the service.
In other words, the client invokes methods on something that implements
the remote interface. That something is the stub, of course, and since the
stub is doing networking and I/O, all kinds of Bad Things can happen. The
client has to acknowledge the risks by handling or declaring the remote
exceptions. If the methods in an interface declare exceptions, any code
calling methods on a reference of that type (the interface type) must
handle or declare the exceptions.

③ Be sure arguments and return values are primitives or Serializable
Arguments and return values of a remote method must be either primitive
or Serializable. Think about it. Any argument to a remote method has to
be packaged up and shipped across the network, and that’s done through
Serialization. Same thing with return values. If you use primitives, Strings,
and the majority of types in the API (including arrays and collections),
you’ll be fine. If you are passing around your own types, just be sure that
you make your classes implement Serializable.

NOTE

Check out Head First Java if you need to refresh your memory on Serializable.

Step two: make a Remote implementation

① Implement the Remote interface
Your service has to implement the remote interface — the one with the
methods your client is going to call.

② Extend UnicastRemoteObject
In order to work as a remote service object, your object needs some
functionality related to ‘being remote’. The simplest way is to extend
UnicastRemoteObject (from the java.rmi.server package) and let that class
(your superclass) do the work for you.

③ Write a no-arg constructor that declares a RemoteException
Your new superclass, UnicastRemoteObject, has one little problem — its
constructor throws a RemoteException. The only way to deal with this is
to declare a constructor for your remote implementation, just so that you
have a place to declare the RemoteException. Remember, when a class is
instantiated, its superclass constructor is always called. If your superclass
constructor throws an exception, you have no choice but to declare that
your constructor also throws an exception.

④ Register the service with the RMI registry
Now that you’ve got a remote service, you have to make it available to
remote clients. You do this by instantiating it and putting it into the RMI
registry (which must be running or this line of code fails). When you
register the implementation object, the RMI system actually puts the stub
in the registry, since that’s what the client really needs. Register your
service using the static rebind() method of the java.rmi.Naming class.

Step three: run rmiregistry
① Bring up a terminal and start the rmiregistry.
Be sure you start it from a directory that has access to your classes. The
simplest way is to start it from your classes directory.

Step four: start the service
① Bring up another terminal and start your service
This might be from a main() method in your remote implementation class,
or from a separate launcher class. In this simple example, we put the
starter code in the implementation class, in a main method that instantiates
the object and registers it with RMI registry.

WATCH IT!

Before Java 5, we had to generate static stubs and skeletons using rmic. Now, we
don’t have to do this anymore and in fact, we shouldn’t do it anymore, because
static stubs and skeletons are deprecated.

Instead, stubs and skeletons are generated dynamically. This happens automatically
when we subclass the UnicastRemoteObject (like we’re doing for the MyRemoteImpl
class).

THERE ARE NO DUMB QUESTIONS

Q: Q: Why are you showing stubs and skeletons in the diagrams for the RMI code? I thought we got rid of
those way back.

A: A: You’re right; for the skeleton, the RMI runtime can dispatch the client calls directly to the remote service
using reflection, and stubs are generated dynamically using Dynamic Proxy (which you’ll learn more about a bit
later in the chapter). The remote object’s stub is a java.lang.reflect.Proxy instance (with an invocation handler)
that is automatically generated to handle all the details of getting the local method calls by the client to the remote
object. But we like to show both the stub and skeleton, because conceptually it helps you to understand that there
is something under the covers that’s making that communication between the client stub and the remote service
happen.

Complete code for the server side

The Remote interface:

The Remote service (the implementation):

How does the client get the stub object?
The client has to get the stub object (our proxy), since that’s the thing the

client will call methods on. And that’s where the RMI registry comes in. The
client does a ‘lookup’, like going to the white pages of a phone book, and
essentially says, “Here’s a name, and I’d like the stub that goes with that
name.”
Let’s take a look at the code we need to look-up and retrieve a stub object.

CODE UP CLOSE

NOTE

Here’s how it works.

How it works...
① Client does a lookup on the RMI registry

Naming.lookup("rmi://127.0.0.1/RemoteHello");

② RMI registry returns the stub object
(as the return value of the lookup method) and RMI deserializes the stub
automatically.
③ Client invokes a method on the stub, as if the stub IS the real
service

Complete client code

WATCH IT!

The things programmers do wrong with RMI are:

1. Forget to start rmiregistry before starting remote service (when the service is
registered using Naming.rebind(), the rmiregistry must be running!)

2. Forget to make arguments and return types serializable (you won’t know until
runtime; this is not something the compiler will detect.)

Back to our GumballMachine remote proxy
Okay, now that you have the RMI basics down, you’ve got the tools you need
to implement the gumball machine remote proxy. Let’s take a look at how the
GumballMachine fits into this framework:

Getting the GumballMachine ready to be a remote
service
The first step in converting our code to use the remote proxy is to enable the
GumballMachine to service remote requests from clients. In other words,
we’re going to make it into a service. To do that, we need to:

1. Create a remote interface for the GumballMachine. This will provide a
set of methods that can be called remotely.

2. Make sure all the return types in the interface are serializable.
3. Implement the interface in a concrete class.

We’ll start with the remote interface:

We have one return type that isn’t Serializable: the State class. Let’s fix it
up...

Actually, we’re not done with Serializable yet; we have one problem with
State. As you may remember, each State object maintains a reference to a
gumball machine so that it can call the gumball machine’s methods and
change its state. We don’t want the entire gumball machine serialized and
transferred with the State object. There is an easy way to fix this:

We’ve already implemented our GumballMachine, but we need to make sure

it can act as a service and handle requests coming from over the network. To
do that, we have to make sure the GumballMachine is doing everything it
needs to implement the GumballMachineRemote interface.
As you’ve already seen in the RMI detour, this is quite simple; all we need to
do is add a couple of things...

Registering with the RMI registry...
That completes the gumball machine service. Now we just need to fire it up
so it can receive requests. First, we need to make sure we register it with the
RMI registry so that clients can locate it.
We’re going to add a little code to the test drive that will take care of this for
us:

Let’s go ahead and get this running...

Now for the GumballMonitor client...
Remember the GumballMonitor? We wanted to reuse it without having to
rewrite it to work over a network. Well, we’re pretty much going to do that,
but we do need to make a few changes.

Writing the Monitor test drive
Now we’ve got all the pieces we need. We just need to write some code so
the CEO can monitor a bunch of gumball machines:

CODE UP CLOSE

Another demo for the CEO of Mighty Gumball...
Okay, it’s time to put all this work together and give another demo. First let’s
make sure a few gumball machines are running the new code:

And now let’s put the monitor in the hands of the CEO.
Hopefully, this time he’ll love it

By invoking methods on the proxy, we make a remote call across the wire, and get
back a String, an integer, and a State object. Because we are using a proxy, the
GumballMonitor doesn’t know, or care, that calls are remote (other than having
to worry about remote exceptions).

BEHIND THE SCENES

① The CEO runs the monitor, which first grabs the proxies to the remote gumball
machines and then calls getState() on each one (along with getCount() and
getLocation()).

② getState() is called on the proxy, which forwards the call to the remote service.
The skeleton receives the request and then forwards it to the gumball machine.

③ GumballMachine returns the state to the skeleton, which serializes it and transfers
it back over the wire to the proxy. The proxy deserializes it and returns it as an object
to the monitor.

NOTE

We also have a small bit of code to register and locate stubs using
the RMI registry. But no matter what, if we were writing
something to work over the Internet, we’d need some kind of
locator service.

The Proxy Pattern defined
We’ve already put a lot of pages behind us in this chapter; as you can see,
explaining the Remote Proxy is quite involved. Despite that, you’ll see that
the definition and class diagram for the Proxy Pattern is actually fairly

straightforward. Note that Remote Proxy is one implementation of the
general Proxy Pattern; there are actually quite a few variations of the pattern,
and we’ll talk about them later. For now, let’s get the details of the general
pattern down.
Here’s the Proxy Pattern definition:

Use the Proxy Pattern to create a representative object that controls access to
another object, which may be remote, expensive to create, or in need of securing.

NOTE

The Proxy Pattern provides a surrogate or placeholder for another object to control
access to it.

Well, we’ve seen how the Proxy Pattern provides a surrogate or placeholder
for another object. We’ve also described the proxy as a “representative” for
another object.
But what about a proxy controlling access? That sounds a little strange. No
worries. In the case of the gumball machine, just think of the proxy
controlling access to the remote object. The proxy needed to control access
because our client, the monitor, didn’t know how to talk to a remote object.
So in some sense the remote proxy controlled access so that it could handle
the network details for us. As we just discussed, there are many variations of
the Proxy Pattern, and the variations typically revolve around the way the
proxy “controls access.” We’re going to talk more about this later, but for
now here are a few ways proxies control access:

As we know, a remote proxy controls access to a remote object.
A virtual proxy controls access to a resource that is expensive to create.
A protection proxy controls access to a resource based on access rights.

Now that you’ve got the gist of the general pattern, check out the class
diagram...

Let’s step through the diagram...
First we have a Subject, which provides an interface for the RealSubject and
the Proxy. By implementing the same interface, the Proxy can be substituted
for the RealSubject anywhere it occurs.
The RealSubject is the object that does the real work. It’s the object that the
Proxy represents and controls access to.
The Proxy holds a reference to the RealSubject. In some cases, the Proxy
may be responsible for creating and destroying the RealSubject. Clients
interact with the RealSubject through the Proxy. Because the Proxy and
RealSubject implement the same interface (Subject), the Proxy can be
substituted anywhere the subject can be used. The Proxy also controls access
to the RealSubject; this control may be needed if the Subject is running on a
remote machine, if the Subject is expensive to create in some way or if access
to the subject needs to be protected in some way.
Now that you understand the general pattern, let’s look at some other ways of

using proxy beyond the Remote Proxy...

Get ready for Virtual Proxy
Okay, so far you’ve seen the definition of the Proxy Pattern and you’ve taken
a look at one specific example: the Remote Proxy. Now we’re going to take a
look at a different type of proxy, the Virtual Proxy. As you’ll discover, the
Proxy Pattern can manifest itself in many forms, yet all the forms follow
roughly the general proxy design. Why so many forms? Because the Proxy
Pattern can be applied to a lot of different use cases. Let’s check out the
Virtual Proxy and compare it to Remote Proxy:

Remote Proxy
With Remote Proxy, the proxy acts as a local representative for an object that
lives in a different JVM. A method call on the proxy results in the call being
transferred over the wire, invoked remotely, and the result being returned
back to the proxy and then to the Client.

Virtual Proxy
Virtual Proxy acts as a representative for an object that may be expensive to
create. The Virtual Proxy often defers the creation of the object until it is
needed; the Virtual Proxy also acts as a surrogate for the object before and
while it is being created. After that, the proxy delegates requests directly to
the RealSubject.

Displaying CD covers
Let’s say you want to write an application that displays your favorite compact
disc covers. You might create a menu of the CD titles and then retrieve the
images from an online service like Amazon.com. If you’re using Swing, you
might create an Icon and ask it to load the image from the network. The only
problem is, depending on the network load and the bandwidth of your
connection, retrieving a CD cover might take a little time, so your application
should display something while you are waiting for the image to load. We
also don’t want to hang up the entire application while it’s waiting on the
image. Once the image is loaded, the message should go away and you
should see the image.
An easy way to achieve this is through a virtual proxy. The virtual proxy can
stand in place of the icon, manage the background loading, and before the
image is fully retrieved from the network, display “Loading CD cover, please
wait...”. Once the image is loaded, the proxy delegates the display to the Icon.

Designing the CD cover Virtual Proxy
Before writing the code for the CD Cover Viewer, let’s look at the class
diagram. You’ll see this looks just like our Remote Proxy class diagram, but
here the proxy is used to hide an object that is expensive to create (because
we need to retrieve the data for the Icon over the network) as opposed to an
object that actually lives somewhere else on the network.

How ImageProxy is going to work
① ImageProxy first creates an ImageIcon and starts loading it from a
network URL.
② While the bytes of the image are being retrieved, ImageProxy
displays “Loading CD cover, please wait...”.
③ When the image is fully loaded, ImageProxy delegates all method
calls to the image icon, including paintIcon(), getWidth() and
getHeight().
④ If the user requests a new image, we’ll create a new proxy and
start the process over.

Writing the Image Proxy

CODE UP CLOSE

CODE WAY UP CLOSE

NOTE

So, the next time the display is painted after the ImageIcon is instantiated, the paintIcon
method will paint the image, not the loading message.

DESIGN PUZZLE

The ImageProxy class appears to have two states that are controlled by conditional
statements. Can you think of another pattern that might clean up this code? How would
you redesign ImageProxy?

Testing the CD Cover Viewer

READY BAKE CODE

Okay, it’s time to test out this fancy new virtual proxy. Behind the scenes we’ve been
baking up a new ImageProxyTestDrive that sets up the window, creates a frame, installs
the menus and creates our proxy. We don’t go through all that code in gory detail here,
but you can always grab the source code and have a look, or check it out at the end of
the chapter where we list all the source code for the Virtual Proxy.

Here’s a partial view of the test drive code:

Now let’s run the test drive:

Things to try...
① Use the menu to load different CD covers; watch the proxy display
“loading” until the image has arrived.
② Resize the window as the “loading” message is displayed. Notice that
the proxy is handling the loading without hanging up the Swing window.
③ Add your own favorite CDs to the ImageProxyTestDrive.

What did we do?

BEHIND THE SCENES

① We created an ImageProxy for the display. The paintIcon() method is called and

ImageProxy fires off a thread to retrieve the image and create the ImageIcon.

② At some point the image is returned and the ImageIcon fully instantiated.
③ After the ImageIcon is created, the next time paintIcon() is called, the proxy
delegates to the ImageIcon.

THERE ARE NO DUMB QUESTIONS

Q: Q: The Remote Proxy and Virtual Proxy seem so different to me; are they really ONE pattern?

A: A: You’ll find a lot of variants of the Proxy Pattern in the real world; what they all have in common is that they
intercept a method invocation that the client is making on the subject. This level of indirection allows us to do
many things, including dispatching requests to a remote subject, providing a representative for an expensive

object as it is created, or, as you’ll see, providing some level of protection that can determine which clients should
be calling which methods. That’s just the beginning; the general Proxy Pattern can be applied in many different
ways, and we’ll cover some of the other ways at the end of the chapter.

Q: Q: ImageProxy seems just like a Decorator to me. I mean, we are basically wrapping one object with
another and then delegating the calls to the ImageIcon. What am I missing?

A: A: Sometimes Proxy and Decorator look very similar, but their purposes are different: a decorator adds behavior
to a class, while a proxy controls access to it. You might ask, “Isn’t the loading message adding behavior?” In
some ways it is; however, more importantly, the ImageProxy is controlling access to an ImageIcon. How does it
control access? Well, think about it this way: the proxy is decoupling the client from the ImageIcon. If they were
coupled the client would have to wait until each image is retrieved before it could paint its entire interface. The
proxy controls access to the ImageIcon so that before it is fully created, the proxy provides another on screen
representation. Once the ImageIcon is created the proxy allows access.

Q: Q: How do I make clients use the Proxy rather than the Real Subject?

A: A: Good question. One common technique is to provide a factory that instantiates and returns the subject.
Because this happens in a factory method we can then wrap the subject with a proxy before returning it. The client
never knows or cares that it’s using a proxy instead of the real thing.

Q: Q: I noticed in the ImageProxy example, you always create a new ImageIcon to get the image, even if the
image has already been retrieved. Could you implement something similar to the ImageProxy that caches
past retrievals?

A: A: You are talking about a specialized form of a Virtual Proxy called a Caching Proxy. A caching proxy
maintains a cache of previously created objects and when a request is made it returns cached object, if possible.
We’re going to look at this and at several other variants of the Proxy Pattern at the end of the chapter.

Q: Q: I see how Decorator and Proxy relate, but what about Adapter? An adapter seems very similar as well.

A: A: Both Proxy and Adapter sit in front of other objects and forward requests to them. Remember that Adapter
changes the interface of the objects it adapts, while the Proxy implements the same interface.
There is one additional similarity that relates to the Protection Proxy. A Protection Proxy may allow or disallow a
client access to particular methods in an object based on the role of the client. In this way a Protection Proxy may
only provide a partial interface to a client, which is quite similar to some Adapters. We are going to take a look at
Protection Proxy in a few pages.

FIRESIDE CHATS

Tonight’s talk: Proxy and Decorator get intentional.

Proxy: Decorator:

Hello, Decorator. I presume you’re here because
people sometimes get us confused?

 Well, I think the reason people get us confused
is that you go around pretending to be an
entirely different pattern, when in fact, you’re
just a Decorator in disguise. I really don’t think
you should be copying all my ideas.

Me copying your ideas? Please. I control access
to objects. You just decorate them. My job is so
much more important than yours it’s just not
even funny.

 “Just” decorate? You think decorating is some
frivolous, unimportant pattern? Let me tell you
buddy, I add behavior. That’s the most
important thing about objects — what they do!

Fine, so maybe you’re not entirely frivolous...
but I still don’t get why you think I’m copying
all your ideas. I’m all about representing my
subjects, not decorating them.

 You can call it “representation” but if it looks
like a duck and walks like a duck... I mean, just
look at your Virtual Proxy; it’s just another way
of adding behavior to do something while some
big expensive object is loading, and your
Remote Proxy is a way of talking to remote
objects so your clients don’t have to bother with
that themselves. It’s all about behavior, just like
I said.

I don’t think you get it, Decorator. I stand in for
my Subjects; I don’t just add behavior. Clients
use me as a surrogate of a Real Subject, because
I can protect them from unwanted access, or
keep their GUIs from hanging up while they’re
waiting for big objects to load, or hide the fact
that their Subjects are running on remote
machines. I’d say that’s a very different intent
from yours!

 Call it what you want. I implement the same
interface as the objects I wrap; so do you.

Okay, let’s review that statement. You wrap an
object. While sometimes we informally say a
proxy wraps its Subject, that’s not really an
accurate term.

 Oh yeah? Why not?

Think about a remote proxy... what object am I
wrapping? The object I’m representing and
controlling access to lives on another machine!
Let’s see you do that.

 Okay, but we all know remote proxies are kinda
weird. Got a second example? I doubt it.

Sure, okay, take a virtual proxy... think about the
CD viewer example. When the client first uses

me as a proxy the subject doesn’t even exist! So
what am I wrapping there?

 Uh huh, and the next thing you’ll be saying is
that you actually get to create objects.

I never knew decorators were so dumb! Of
course I sometimes create objects. How do you
think a virtual proxy gets its subject?! Okay, you
just pointed out a big difference between us: we
both know decorators only add window
dressing; they never get to instantiate anything.

 Oh yeah? Instantiate this!

Hey, after this conversation I’m convinced
you’re just a dumb proxy!

 Dumb proxy? I’d like to see you recursively
wrap an object with 10 decorators and keep your
head straight at the same time.

Very seldom will you ever see a proxy get into
wrapping a subject multiple times; in fact, if
you’re wrapping something 10 times, you better
go back reexamine your design.

 Just like a proxy, acting all real when in fact you
just stand in for the objects doing the real work.
You know, I actually feel sorry for you.

Using the Java API’s Proxy to create a protection proxy
Java’s got its own proxy support right in the java.lang.reflect package. With
this package, Java lets you create a proxy class on the fly that implements one
or more interfaces and forwards method invocations to a class that you
specify. Because the actual proxy class is created at runtime, we refer to this
Java technology as a dynamic proxy.

We’re going to use Java’s dynamic proxy to create our next proxy
implementation (a protection proxy), but before we do that, let’s quickly look
at a class diagram that shows how dynamic proxies are put together. Like
most things in the real world, it differs slightly from the classic definition of
the pattern:

Because Java creates the Proxy class for you, you need a way to tell the
Proxy class what to do. You can’t put that code into the Proxy class like we
did before, because you’re not implementing one directly. So, if you can’t put
this code in the Proxy class, where do you put it? In an InvocationHandler.
The job of the InvocationHandler is to respond to any method calls on the
proxy. Think of the InvocationHandler as the object the Proxy asks to do all
the real work after it’s received the method calls.
Okay, let’s step through how to use the dynamic proxy...

Matchmaking in Objectville

Every town needs a matchmaking service, right? You’ve risen to the task and

implemented a dating service for Objectville. You’ve also tried to be
innovative by including a “Hot or Not” feature in the service where
participants can rate each other — you figure this keeps your customers
engaged and looking through possible matches; it also makes things a lot
more fun.
Your service revolves around a PersonBean that allows you to set and get
information about a person:

Now let’s check out the implementation...

The PersonBean implementation

While we suspect other factors may be keeping Elroy from getting dates, he
is right: you shouldn’t be able to vote for yourself or to change another
customer’s data. The way our PersonBean is defined, any client can call any
of the methods.
This is a perfect example of where we might be able to use a Protection
Proxy. What’s a Protection Proxy? It’s a proxy that controls access to an
object based on access rights. For instance, if we had an employee object, a
Protection Proxy might allow the employee to call certain methods on the
object, a manager to call additional methods (like setSalary()), and a human
resources employee to call any method on the object.
In our dating service we want to make sure that a customer can set his own

information while preventing others from altering it. We also want to allow
just the opposite with the HotOrNot ratings: we want the other customers to
be able to set the rating, but not that particular customer. We also have a
number of getter methods in the PersonBean, and because none of these
return private information, any customer should be able to call them.

Five-minute drama: protecting subjects

The Internet bubble seems a distant memory; those were the days when all
you needed to do to find a better, higher-paying job was to walk across the
street. Even agents for software developers were in vogue...

Big Picture: creating a Dynamic Proxy for the
PersonBean
We have a couple of problems to fix: customers shouldn’t be changing their
own HotOrNot rating and customers shouldn’t be able to change other
customers’ personal information. To fix these problems we’re going to create
two proxies: one for accessing your own PersonBean object and one for
accessing another customer’s PersonBean object. That way, the proxies can
control what requests can be made in each circumstance.

To create these proxies we’re going to use the Java API’s dynamic proxy that
you saw a few pages back. Java will create two proxies for us; all we need to
do is supply the handlers that know what to do when a method is invoked on
the proxy.

Step one:
Create two InvocationHandlers.
InvocationHandlers implement the behavior of the proxy. As you’ll see,
Java will take care of creating the actual proxy class and object; we just
need to supply a handler that knows what to do when a method is called
on it.

Step two:
Write the code that creates the dynamic proxies.
We need to write a little bit of code to generate the proxy class and
instantiate it. We’ll step through this code in just a bit.

Step three:
Wrap any PersonBean object with the appropriate proxy.
When we need to use a PersonBean object, either it’s the object of the
customer himself (in that case, will call him the “owner”), or it’s another
user of the service that the customer is checking out (in that case we’ll call
him “non-owner”).
In either case, we create the appropriate proxy for the PersonBean.

Step one: creating Invocation Handlers
We know we need to write two invocation handlers, one for the owner and
one for the non-owner. But what are invocation handlers? Here’s the way to
think about them: when a method call is made on the proxy, the proxy
forwards that call to your invocation handler, but not by calling the
invocation handler’s corresponding method. So, what does it call? Have a
look at the InvocationHandler interface:

There’s only one method, invoke(), and no matter what methods get called on
the proxy, the invoke() method is what gets called on the handler. Let’s see
how this works:

Creating Invocation Handlers continued...
When invoke() is called by the proxy, how do you know what to do with the
call? Typically, you’ll examine the method that was called on the proxy and
make decisions based on the method’s name and possibly its arguments.
Let’s implement the OwnerInvocationHandler to see how this works:

EXERCISE

The NonOwnerInvocationHandler works just like the OwnerInvocationHandler except
that it allows calls to setHotOrNotRating() and it disallows calls to any other set method.
Go ahead and write this handler yourself:

Step two: creating the Proxy class and instantiating the
Proxy object
Now, all we have left is to dynamically create the Proxy class and instantiate
the proxy object. Let’s start by writing a method that takes a PersonBean and

knows how to create an owner proxy for it. That is, we’re going to create the
kind of proxy that forwards its method calls to the OwnerInvocationHandler.
Here’s the code:

SHARPEN YOUR PENCIL

While it is a little complicated, there isn’t much to creating a dynamic proxy. Why don’t
you write getNonOwnerProxy(), which returns a proxy for the
NonOwnerInvocationHandler:

Take it further: can you write one method getProxy() that takes a handler and a person
and returns a proxy that uses that handler?

Testing the matchmaking service
Let’s give the matchmaking service a test run and see how it controls access
to the setter methods based on the proxy that is used.

Running the code...

THERE ARE NO DUMB QUESTIONS

Q: Q: So what exactly is the “dynamic” aspect of dynamic proxies? Is it that I’m instantiating the proxy and
setting it to a handler at runtime?

A: A: No, the proxy is dynamic because its class is created at runtime. Think about it: before your code runs there is
no proxy class; it is created on demand from the set of interfaces you pass it.

Q: Q: My InvocationHandler seems like a very strange proxy, it doesn’t implement any of the methods of the
class it’s proxying.

A: A: That is because the InvocationHandler isn’t a proxy — it is a class that the proxy dispatches to for handling
method calls. The proxy itself is created dynamically at runtime by the static Proxy.newProxyInstance() method.

Q: Q: Is there any way to tell if a class is a Proxy class?

A: A: Yes. The Proxy class has a static method called isProxyClass(). Calling this method with a class will return
true if the class is a dynamic proxy class. Other than that, the proxy class will act like any other class that
implements a particular set of interfaces.

Q: Q: Are there any restrictions on the types of interfaces I can pass into newProxyInstance()?

A: A: Yes, there are a few. First, it is worth pointing out that we always pass newProxyInstance() an array of
interfaces — only interfaces are allowed, no classes. The major restrictions are that all non-public interfaces need
to be from the same package. You also can’t have interfaces with clashing method names (that is, two interfaces
with a method with the same signature). There are a few other minor nuances as well, so at some point you should
take a look at the fine print on dynamic proxies in the javadoc.

WHO DOES WHAT?

Match each pattern with its description:

Pattern Description

Decorator Wraps another object and provides a different interface to it.

Facade Wraps another object and provides additional behavior for it.

Proxy Wraps another object to control access to it.

Adapter Wraps a bunch of objects to simplify their interface.

The Proxy Zoo
Welcome to the Objectville Zoo!

You now know about the remote, virtual and protection proxies, but out in
the wild you’re going to see lots of mutations of this pattern. Over here in the
Proxy corner of the zoo we’ve got a nice collection of wild proxy patterns
that we’ve captured for your study.
Our job isn’t done; we are sure you’re going to see more variations of this
pattern in the real world, so give us a hand in cataloging more proxies. Let’s
take a look at the existing collection:

NOTE

Field Notes: please add your observations of other proxies in the wild here:

__
__
__
__
__

DESIGN PATTERNS CROSSWORD

It’s been a LONG chapter. Why not unwind by doing a crossword puzzle before it ends?

Across Down

1. Our first mistake: the gumball machine
reporting was not _________.

5. Commonly used proxy for web services
(two words).

7. Objectville matchmaking gimmick (three
words).

11. A _______ proxy class is created at
runtime.

13. Java’s dynamic proxy forwards all
requests to this (two words).

16. In RMI, the object that takes the
network requests on the service side.

17. The CD viewer used this kind of proxy.

2. Remote _________ was used to implement the
gumball machine monitor (two words).

3. Similar to proxy, but with a different purpose.

4. Place to learn about the many proxy variants.

6. Proxy that protects method calls from
unauthorized callers.

8. This utility acts as a lookup service for RMI.

9. Why Elroy couldn’t get dates.

10. Software developer agent was being this kind of
proxy.

12. In RMI, the proxy is called this.

14. Proxy that stands in for expensive objects.

15. We took one of these to learn RMI.

Tools for your Design Toolbox

Your design toolbox is almost full; you’re prepared for almost any design
problem that comes your way.

BULLET POINTS

The Proxy Pattern provides a representative for another object in order to control the
client’s access to it. There are a number of ways it can manage that access.
A Remote Proxy manages interaction between a client and a remote object.
A Virtual Proxy controls access to an object that is expensive to instantiate.
A Protection Proxy controls access to the methods of an object based on the caller.
Many other variants of the Proxy Pattern exist including caching proxies,
synchronization proxies, firewall proxies, copy-on-write proxies, and so on.
Proxy is structurally similar to Decorator, but the two differ in their purpose.
The Decorator Pattern adds behavior to an object, while a Proxy controls access.
Java’s built-in support for Proxy can build a dynamic proxy class on demand and
dispatch all calls on it to a handler of your choosing.
Like any wrapper, proxies will increase the number of classes and objects in your
designs.

EXERCISE SOLUTION

The NonOwnerInvocationHandler works just like the OwnerInvocationHandler except
that it allows calls to setHotOrNotRating() and it disallows calls to any other set method.
Here’s our solution:

import java.lang.reflect.*;

public class NonOwnerInvocationHandler implements InvocationHandler {
 PersonBean person;

 public NonOwnerInvocationHandler(PersonBean person) {
 this.person = person;
 }

 public Object invoke(Object proxy, Method method, Object[] args)
 throws IllegalAccessException {

 try {
 if (method.getName().startsWith("get")) {
 return method.invoke(person, args);
 } else if (method.getName().equals("setHotOrNotRating")) {
 return method.invoke(person, args);
 } else if (method.getName().startsWith("set")) {
 throw new IllegalAccessException();
 }
 } catch (InvocationTargetException e) {
 e.printStackTrace();
 }
 return null;
 }
}

DESIGN PUZZLE SOLUTION

The ImageProxy class appears to have two states that are controlled by conditional
statements. Can you think of another pattern that might clean up this code? How would
you redesign ImageProxy?

Use State Pattern: implement two states, ImageLoaded and ImageNotLoaded. Then put
the code from the if statements into their respective states. Start in the ImageNotLoaded
state and then transition to the ImageLoaded state once the ImageIcon had been
retrieved.

SHARPEN YOUR PENCIL SOLUTION

While it is a little complicated, there isn’t much to creating a dynamic proxy. Why don’t
you write getNonOwnerProxy(), which returns a proxy for the
NonOwnerInvocationHandler. Here’s our solution:

PersonBean getNonOwnerProxy(PersonBean person) {

 return (PersonBean) Proxy.newProxyInstance(
 person.getClass().getClassLoader(),
 person.getClass().getInterfaces(),
 new NonOwnerInvocationHandler(person));
}

DESIGN PATTERNS CROSSWORD SOLUTION

WHO DOES WHAT? SOLUTION

Match each pattern with its description:

The code for the CD Cover Viewer

READY BAKE CODE
package headfirst.designpatterns.proxy.virtualproxy;

import java.net.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.util.*;
public class ImageProxyTestDrive {
 ImageComponent imageComponent;
 JFrame frame = new JFrame("CD Cover Viewer");
 JMenuBar menuBar;
 JMenu menu;
 Hashtable<String, String> cds = new Hashtable<String, String>();

 public static void main (String[] args) throws Exception {
 ImageProxyTestDrive testDrive = new ImageProxyTestDrive();
 }

 public ImageProxyTestDrive() throws Exception{
 cds.put("Buddha

Bar","http://images.amazon.com/images/P/B00009XBYK.01.LZZZZZZZ.
jpg");

cds.put("Ima","http://images.amazon.com/images/P/B000005IRM.01.LZZZZZZZ.jpg");

cds.put("Karma","http://images.amazon.com/images/P/B000005DCB.01.LZZZZZZZ.gif");
 cds.put("MCMXC
A.D.","http://images.amazon.com/images/P/B000002URV.01.LZZZZZZZ.
jpg");
 cds.put("Northern
Exposure","http://images.amazon.com/images/P/B000003SFN.01.
LZZZZZZZ.jpg");
 cds.put("Selected Ambient Works, Vol.
2","http://images.amazon.com/images/P/
B000002MNZ.01.LZZZZZZZ.jpg");

 URL initialURL = new URL((String)cds.get("Selected Ambient Works, Vol.
2"));
 menuBar = new JMenuBar();
 menu = new JMenu("Favorite CDs");
 menuBar.add(menu);
 frame.setJMenuBar(menuBar);
 for(Enumeration e = cds.keys(); e.hasMoreElements();) {
 String name = (String)e.nextElement();
 JMenuItem menuItem = new JMenuItem(name);
 menu.add(menuItem);
 menuItem.addActionListener(event -> {
 imageComponent.setIcon(new
ImageProxy(getCDUrl(event.getActionCommand())));
 frame.repaint();
 });
 }

 // set up frame and menus

 Icon icon = new ImageProxy(initialURL);
 imageComponent = new ImageComponent(icon);
 frame.getContentPane().add(imageComponent);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setSize(800,600);
 frame.setVisible(true);

 }
 URL getCDUrl(String name) {
 try {
 return new URL((String)cds.get(name));
 } catch (MalformedURLException e) {
 e.printStackTrace();
 return null;
 }
 }
}
package headfirst.designpatterns.proxy.virtualproxy;

import java.net.*;
import java.awt.*;
import javax.swing.*;

class ImageProxy implements Icon {
 volatile ImageIcon imageIcon;
 final URL imageURL;

 Thread retrievalThread;
 boolean retrieving = false;

 public ImageProxy(URL url) { imageURL = url; }

 public int getIconWidth() {
 if (imageIcon != null) {
 return imageIcon.getIconWidth();
 } else {
 return 800;
 }
 }

 public int getIconHeight() {
 if (imageIcon != null) {
 return imageIcon.getIconHeight();
 } else {
 return 600;
 }
 }

 synchronized void setImageIcon(ImageIcon imageIcon) {
 this.imageIcon = imageIcon;
 }

 public void paintIcon(final Component c, Graphics g, int x, int y) {
 if (imageIcon != null) {
 imageIcon.paintIcon(c, g, x, y);
 } else {
 g.drawString("Loading CD cover, please wait...", x+300, y+190);
 if (!retrieving) {
 retrieving = true;
 retrievalThread = new Thread(new Runnable() {
 public void run() {
 try {
 setImageIcon(new ImageIcon(imageURL, "CD Cover"));
 c.repaint();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 });
 retrievalThread.start();
 }
 }
 }
}
package headfirst.designpatterns.proxy.virtualproxy;

import java.awt.*;
import javax.swing.*;

class ImageComponent extends JComponent {
 private Icon icon;

 public ImageComponent(Icon icon) {
 this.icon = icon;
 }

 public void setIcon(Icon icon) {
 this.icon = icon;

 }

 public void paintComponent(Graphics g) {
 super.paintComponent(g);
 int w = icon.getIconWidth();
 int h = icon.getIconHeight();
 int x = (800 - w)/2;
 int y = (600 - h)/2;
 icon.paintIcon(this, g, x, y);
 }
}

Chapter 12. Compound Patterns:
Patterns of Patterns

Who would have ever guessed that Patterns could work together?
You’ve already witnessed the acrimonious Fireside Chats (and you haven’t
even seen the Pattern Death Match pages that the editor forced us to remove
from the book[2]), so who would have thought patterns can actually get along
well together? Well, believe it or not, some of the most powerful OO designs
use several patterns together. Get ready to take your pattern skills to the next
level; it’s time for compound patterns.

Working together
One of the best ways to use patterns is to get them out of the house so they
can interact with other patterns. The more you use patterns the more you’re
going to see them showing up together in your designs. We have a special

name for a set of patterns that work together in a design that can be applied
over many problems: a compound pattern. That’s right, we are now talking
about patterns made of patterns!

You’ll find a lot of compound patterns in use in the real world. Now that
you’ve got patterns in your brain, you’ll see that they are really just patterns
working together, and that makes them easier to understand.
We’re going to start this chapter by revisiting our friendly ducks in the
SimUDuck duck simulator. It’s only fitting that the ducks should be here
when we combine patterns; after all, they’ve been with us throughout the
entire book and they’ve been good sports about taking part in lots of patterns.
The ducks are going to help you understand how patterns can work together
in the same solution. But just because we’ve combined some patterns doesn’t
mean we have a solution that qualifies as a compound pattern. For that, it has
to be a general-purpose solution that can be applied to many problems. So, in
the second half of the chapter we’ll visit a real compound pattern: that’s
right, Mr. Model-View-Controller himself. If you haven’t heard of him, you
will, and you’ll find this compound pattern is one of the most powerful
patterns in your design toolbox.

Patterns are often used together and combined within the same design solution.
A compound pattern combines two or more patterns into a solution that solves a
recurring or general problem.

Duck reunion
As you’ve already heard, we’re going to get to work with the ducks again.
This time the ducks are going to show you how patterns can coexist and even
cooperate within the same solution.

We’re going to rebuild our duck simulator from scratch and give it some
interesting capabilities by using a bunch of patterns. Okay, let’s get started...
① First, we’ll create a Quackable interface.
Like we said, we’re starting from scratch. This time around, the Ducks are
going to implement a Quackable interface. That way we’ll know what
things in the simulator can quack() — like Mallard Ducks, Redhead
Ducks, Duck Calls, and we might even see the Rubber Duck sneak back
in.

② Now, some Ducks that implement Quackable
What good is an interface without some classes to implement it? Time to
create some concrete ducks (but not the “lawn art” kind, if you know what
we mean).

This wouldn’t be much fun if we didn’t add other kinds of Ducks too.
Remember last time? We had duck calls (those things hunters use — they
are definitely quackable) and rubber ducks.

③ Okay, we’ve got our ducks; now all we need is a simulator.
Let’s cook up a simulator that creates a few ducks and makes sure their
quackers are working...

NOTE

They all implement the same Quackable interface, but their implementations allow
them to quack in their own way.

It looks like everything is working; so far, so good.
④ When ducks are around, geese can’t be far.
Where there is one waterfowl, there are probably two. Here’s a Goose
class that has been hanging around the simulator.

BRAIN POWER

Let’s say we wanted to be able to use a Goose anywhere we’d want to use a Duck.
After all, geese make noise; geese fly; geese swim. Why can’t we have Geese in the
simulator?

What pattern would allow Geese to easily intermingle with Ducks?

⑤ We need a goose adapter.
Our simulator expects to see Quackable interfaces. Since geese aren’t
quackers (they’re honkers), we can use an adapter to adapt a goose to a
duck.

⑥ Now geese should be able to play in the simulator, too.
All we need to do is create a Goose, wrap it in an adapter that implements
Quackable, and we should be good to go.

⑦ Now let’s give this a quick run....
This time when we run the simulator, the list of objects passed to the
simulate() method includes a Goose wrapped in a duck adapter. The
result? We should see some honking!

QUACKOLOGY

Quackologists are fascinated by all aspects of Quackable behavior. One thing
Quackologists have always wanted to study is the total number of quacks made by a
flock of ducks.

How can we add the ability to count duck quacks without having to change the duck
classes?

Can you think of a pattern that would help?

⑧ We’re going to make those Quackologists happy and give them
some quack counts.
How? Let’s create a decorator that gives the ducks some new behavior
(the behavior of counting) by wrapping them with a decorator object. We
won’t have to change the Duck code at all.

⑨ We need to update the simulator to create decorated ducks.
Now, we must wrap each Quackable object we instantiate in a
QuackCounter decorator. If we don’t, we’ll have ducks running around
making uncounted quacks.

You have to decorate objects to get decorated behavior.
He’s right, that’s the problem with wrapping objects: you have to make
sure they get wrapped or they don’t get the decorated behavior.
Why don’t we take the creation of ducks and localize it in one place; in
other words, let’s take the duck creation and decorating and encapsulate it.
What pattern does that sound like?
⑩ We need a factory to produce ducks!
Okay, we need some quality control to make sure our ducks get wrapped.
We’re going to build an entire factory just to produce them. The factory
should produce a family of products that consists of different types of
ducks, so we’re going to use the Abstract Factory Pattern.
Let’s start with the definition of the AbstractDuckFactory:

Let’s start by creating a factory that creates ducks without decorators, just
to get the hang of the factory:

Now let’s create the factory we really want, the CountingDuckFactory:

⑪ Let’s set up the simulator to use the factory.
Remember how Abstract Factory works? We create a polymorphic
method that takes a factory and uses it to create objects. By passing in
different factories, we get to use different product families in the method.
We’re going to alter the simulate() method so that it takes a factory and
uses it to create ducks.

NOTE

Here’s the output using the factory...

SHARPEN YOUR PENCIL

We’re still directly instantiating Geese by relying on concrete classes. Can you write an
Abstract Factory for Geese? How should it handle creating “goose ducks”?

Ah, he wants to manage a flock of ducks.
Here’s another good question from Ranger Brewer: Why are we managing
ducks individually?

What we need is a way to talk about collections of ducks and even sub-
collections of ducks (to deal with the family request from Ranger Brewer). It
would also be nice if we could apply operations across the whole set of
ducks.
What pattern can help us?
⑫ Let’s create a flock of ducks (well, actually a flock of Quackables).
Remember the Composite Pattern that allows us to treat a collection of
objects in the same way as individual objects? What better composite than
a flock of Quackables!
Let’s step through how this is going to work:

CODE UP CLOSE

Did you notice that we tried to sneak a Design Pattern by you without mentioning it?

⑬ Now we need to alter the simulator.
Our composite is ready; we just need some code to round up the ducks
into the composite structure.

Let’s give it a spin...

SAFETY VERSUS TRANSPARENCY

You might remember that in the Composite Pattern chapter the composites (the Menus)
and the leaf nodes (the MenuItems) had the same exact set of methods, including the
add() method. Because they had the same set of methods, we could call methods on
MenuItems that didn’t really make sense (like trying to add something to a MenuItem by
calling add()). The benefit of this was that the distinction between leaves and composites
was transparent: the client didn’t have to know whether it was dealing with a leaf or a
composite; it just called the same methods on both.

Here, we’ve decided to keep the composite’s child maintenance methods separate from
the leaf nodes: that is, only Flocks have the add() method. We know it doesn’t make
sense to try to add something to a Duck, and in this implementation, you can’t. You can
only add() to a Flock. So this design is safer — you can’t call methods that don’t make
sense on components — but it’s less transparent. Now the client has to know that a
Quackable is a Flock in order to add Quackables to it.

As always, there are trade-offs when you do OO design and you need to consider them

as you create your own composites.

Can you say “observer”?
It sounds like the Quackologist would like to observe individual duck
behavior. That leads us right to a pattern made for observing the behavior of
objects: the Observer Pattern.
⑭ First we need an Observable interface.
Remember that an Observable is the object being observed. An
Observable needs methods for registering and notifying observers. We
could also have a method for removing observers, but we’ll keep the
implementation simple here and leave that out.

Now we need to make sure all Quackables implement this interface...

⑮ Now, we need to make sure all the concrete classes that implement
Quackable can handle being a QuackObservable.
We could approach this by implementing registration and notification in
each and every class (like we did in Chapter 2). But we’re going to do it a
little differently this time: we’re going to encapsulate the registration and
notification code in another class, call it Observable, and compose it with
a QuackObservable. That way, we only write the real code once and the
QuackObservable just needs enough code to delegate to the helper class
Observable.
Let’s begin with the Observable helper class.

⑯ Integrate the helper Observable with the Quackable classes.
This shouldn’t be too bad. All we need to do is make sure the Quackable
classes are composed with an Observable and that they know how to
delegate to it. After that, they’re ready to be Observables. Here’s the
implementation of MallardDuck; the other ducks are the same.

SHARPEN YOUR PENCIL

We haven’t changed the implementation of one Quackable, the QuackCounter decorator.
We need to make it an Observable too. Why don’t you write that one:

⑰ We’re almost there! We just need to work on the Observer side of
the pattern.
We’ve implemented everything we need for the Observables; now we
need some Observers. We’ll start with the Observer interface:

Now we need an Observer: where are those Quackologists?!

SHARPEN YOUR PENCIL

What if a Quackologist wants to observe an entire flock? What does that mean anyway?
Think about it like this: if we observe a composite, then we’re observing everything in
the composite. So, when you register with a flock, the flock composite makes sure you
get registered with all its children (sorry, all its little quackers), which may include other
flocks.

Go ahead and write the Flock observer code before we go any further.

⑱ We’re ready to observe. Let’s update the simulator and give it a
try:

This is the big finale. Five, no, six patterns have come together to create this
amazing Duck Simulator. Without further ado, we present the
DuckSimulator!

THERE ARE NO DUMB QUESTIONS

Q: Q: So this was a compound pattern?

A: A: No, this was just a set of patterns working together. A compound pattern is a set of a few patterns that are
combined to solve a general problem. We’re just about to take a look at the Model-View-Controller compound
pattern; it’s a collection of a few patterns that has been used over and over in many design solutions.

Q: Q: So the real beauty of Design Patterns is that I can take a problem, and start applying patterns to it until
I have a solution. Right?

A: A: Wrong. We went through this exercise with Ducks to show you how patterns can work together. You’d never
actually want to approach a design like we just did. In fact, there may be solutions to parts of the Duck Simulator
for which some of these patterns were big time overkill. Sometimes just using good OO design principles can
solve a problem well enough on its own.
We’re going to talk more about this in the next chapter, but you only want to apply patterns when and where they
make sense. You never want to start out with the intention of using patterns just for the sake of it. You should
consider the design of the Duck Simulator to be forced and artificial. But hey, it was fun and gave us a good idea
of how several patterns can fit into a solution.

What did we do?
We started with a bunch of Quackables...
A goose came along and wanted to act like a Quackable too. So we used

the Adapter Pattern to adapt the goose to a Quackable. Now, you can call
quack() on a goose wrapped in the adapter and it will honk!
Then, the Quackologists decided they wanted to count quacks. So we
used the Decorator Pattern to add a QuackCounter decorator that keeps track
of the number of times quack() is called, and then delegates the quack to the
Quackable it’s wrapping.
But the Quackologists were worried they’d forget to add the
QuackCounter decorator. So we used the Abstract Factory Pattern to
create ducks for them. Now, whenever they want a duck, they ask the factory
for one, and it hands back a decorated duck. (And don’t forget, they can also
use another duck factory if they want an un-decorated duck!)
We had management problems keeping track of all those ducks and
geese and quackables. So we used the Composite Pattern to group
Quackables into Flocks. The pattern also allows the Quackologist to create
sub-Flocks to manage duck families. We used the Iterator Pattern in our
implementation by using java.util’s iterator in ArrayList.
The Quackologists also wanted to be notified when any Quackable
quacked. So we used the Observer Pattern to let the Quackologists register
as Quackable Observers. Now they’re notified every time any Quackable
quacks. We used iterator again in this implementation. The Quackologists
can even use the Observer Pattern with their composites.

A duck’s eye view: the class diagram
We’ve packed a lot of patterns into one small duck simulator! Here’s the big
picture of what we did:

The King of Compound Patterns
If Elvis were a compound pattern, his name would be
Model-View-Controller, and he’d be singing a little song
like this...

Model, View, Controller

Lyrics and music by James Dempsey.

Model a bottle of fine Chardonnay

Model all the glottal stops people
say

Model the coddling of boiling eggs

You can model the waddle in
Hexley’s legs

MVC’s a paradigm for factoring your code into
functional segments, so your brain does not
explode.

To achieve reusability, you gotta keep those
boundaries clean

Model on the one side, View on the other, the
Controller’s in between.

Model View, you can model all the
models that pose for GQ

Model View Controller

NOTE

So does Java!

View objects tend to be controls
used to display and edit

Cocoa’s got a lot of those, well
written to its credit.

Take an NSTextView, hand it any
old Unicode string

The user can interact with it, it can
hold most anything

But the view don’t know about the
Model

That string could be a phone
number or the works of Aristotle

Keep the coupling loose and so
achieve a massive level of reuse

So does Java!

Model View, it’s got three layers like Oreos do

Model View Controller

Model View, Model View, Model View Controller

Model View, all rendered very
nicely in Aqua blue

Model View Controller

Model objects represent your application’s raison
d’être

Custom objects that contain data, logic, and et
cetera

You create custom classes, in your app’s problem
domain you can choose to reuse them with all the
views but the model objects stay the same.

You’re probably wondering now

You’re probably wondering how

Data flows between Model and
View

The Controller has to mediate

Between each layer’s changing state

To synchronize the data of the two

It pulls and pushes every changed
value

You can model a throttle and a manifold

Model the toddle of a two year old

Model View, mad props to the
smalltalk crew!

Model View Controller

Model View, it’s pronounced Oh Oh not Ooo Ooo

Model View Controller

Model View

How we gonna deep six all that glue

Model View Controller

There’s a little left to this story

A few more miles upon this road

Nobody seems to get much glory

From writing the controller code

Controllers know the Model and
View very intimately

They often use hardcoding which
can be foreboding for reusability

But now you can connect each
model key that you select to any
view property

Well the model’s mission critical

And gorgeous is the view

I might be lazy, but sometimes it’s just crazy

How much code I write is just glue

And it wouldn’t be so tragic

But the code ain’t doing magic

It’s just moving values through

And once you start binding

I think you’ll be finding less code in
your source tree

Yeah I know I was elated by the
stuff they’ve automated and the
things you get for free

And I don’t mean to be vicious

But it gets repetitious

Doing all the things controllers do

And I think it bears repeating all the
code you won’t be needing when
you hook it up in

And I wish I had a dime

For every single time

I sent a TextField StringValue.

Model View, even handles multiple
selections too

Model View Controller

Model View, bet I ship my
application before you

Model View Controller

EAR POWER

Don’t just read! After all, this is a Head First book... grab your iPod, hit this URL:

http://www.youtube.com/watch?v=YYvOGPMLVDo

Sit back and give it a listen.

No. Design Patterns are your key to the MVC.
We were just trying to whet your appetite. Tell you what, after you finish
reading this chapter, go back and listen to the song again — you’ll have even
more fun.
It sounds like you’ve had a bad run-in with MVC before? Most of us have.
You’ve probably had other developers tell you it’s changed their lives and
could possibly create world peace. It’s a powerful compound pattern, for
sure, and while we can’t claim it will create world peace, it will save you
hours of writing code once you know it.
But first you have to learn it, right? Well, there’s going to be a big difference
this time around because now you know patterns!

http://www.youtube.com/watch?v=YYvOGPMLVDo

That’s right, patterns are the key to MVC. Learning MVC from the top down
is difficult; not many developers succeed. Here’s the secret to learning MVC:
it’s just a few patterns put together. When you approach learning MVC by
looking at the patterns, all of a sudden it starts to make sense.
Let’s get started. This time around you’re going to nail MVC!

Meet the Model-View-Controller
Imagine you’re using your favorite MP3 player, like iTunes. You can use its
interface to add new songs, manage playlists and rename tracks. The player
takes care of maintaining a little database of all your songs along with their
associated names and data. It also takes care of playing the songs and, as it
does, the user interface is constantly updated with the current song title, the
running time, and so on.
Well, underneath it all sits the Model-View-Controller...

A closer look...
The MP3 player description gives us a high-level view of MVC, but it really
doesn’t help you understand the nitty gritty of how the compound pattern
works, how you’d build one yourself, or why it’s such a good thing. Let’s
start by stepping through the relationships among the model, view and
controller, and then we’ll take second look from the perspective of Design
Patterns.

① You’re the user — you interact with the view.
The view is your window to the model. When you do something to the
view (like click the Play button) then the view tells the controller what
you did. It’s the controller’s job to handle that.
② The controller asks the model to change its state.
The controller takes your actions and interprets them. If you click on a
button, it’s the controller’s job to figure out what that means and how the
model should be manipulated based on that action.
③ The controller may also ask the view to change.
When the controller receives an action from the view, it may need to tell
the view to change as a result. For example, the controller could enable or
disable certain buttons or menu items in the interface.
④ The model notifies the view when its state has changed.

When something changes in the model, based either on some action you
took (like clicking a button) or some other internal change (like the next
song in the playlist has started), the model notifies the view that its state
has changed.
⑤ The view asks the model for state.
The view gets the state it displays directly from the model. For instance,
when the model notifies the view that a new song has started playing, the
view requests the song name from the model and displays it. The view
might also ask the model for state as the result of the controller requesting
some change in the view.

THERE ARE NO DUMB QUESTIONS

Q: Q: Does the controller ever become an observer of the model?

A: A: Sure. In some designs the controller registers with the model and is notified of changes. This can be the case
when something in the model directly affects the user interface controls. For instance, certain states in the model
may dictate that some interface items be enabled or disabled. If so, it is really controller’s job to ask the view to
update its display accordingly.

Q: Q: All the controller does is take user input from the view and send it to the model, correct? Why have it at
all if that is all it does? Why not just have the code in the view itself? In most cases isn’t the controller just
calling a method on the model?

A: A: The controller does more than just “send it to the model”; it is responsible for interpreting the input and
manipulating the model based on that input. But your real question is probably “why can’t I just do that in the
view code?”
You could; however, you don’t want to for two reasons. First, you’ll complicate your view code because it now
has two responsibilities: managing the user interface and dealing with the logic of how to control the model.
Second, you’re tightly coupling your view to the model. If you want to reuse the view with another model, forget
it. The controller separates the logic of control from the view and decouples the view from the model. By keeping
the view and controller loosely coupled, you are building a more flexible and extensible design, one that can more
easily accommodate change down the road.

Looking at MVC through patterns-colored glasses

We’ve already told you the best path to learning the MVC is to see it for what
it is: a set of patterns working together in the same design.
Let’s start with the model. As you might have guessed, the model uses

Observer to keep the views and controllers updated on the latest state
changes. The view and the controller, on the other hand, implement the
Strategy Pattern. The controller is the behavior of the view, and it can be
easily exchanged with another controller if you want different behavior. The
view itself also uses a pattern internally to manage the windows, buttons and
other components of the display: the Composite Pattern.
Let’s take a closer look:

Observer

Strategy

NOTE

The view only worries about presentation. The controller worries about translating user
input to actions on the model.

Composite

Using MVC to control the beat...

It’s your time to be the DJ. When you’re a DJ it’s all about the beat. You
might start your mix with a slowed, downtempo groove at 95 beats per
minute (BPM) and then bring the crowd up to a frenzied 140 BPM of trance
techno. You’ll finish off your set with a mellow 80 BPM ambient mix.
How are you going to do that? You have to control the beat and you’re going
to build the tool to get you there.

Meet the Java DJ View
Let’s start with the view of the tool. The view allows you to create a driving
drum beat and tune its beats per minute...

NOTE

Here are a few more ways to control the DJ View...

The controller is in the middle...
The controller sits between the view and model. It takes your input, like
selecting “Start” from the DJ Control menu, and turns it into an action on the
model to start the beat generation.

Let’s not forget about the model underneath it all...
You can’t see the model, but you can hear it. The model sits underneath
everything else, managing the beat and driving the speakers with MIDI.

Putting the pieces together

Building the pieces
Okay, you know the model is responsible for maintaining all the data, state
and any application logic. So what’s the BeatModel got in it? Its main job is
managing the beat, so it has state that maintains the current beats per minute
and lots of code that generates MIDI events to create the beat that we hear. It
also exposes an interface that lets the controller manipulate the beat and lets

the view and controller obtain the model’s state. Also, don’t forget that the
model uses the Observer Pattern, so we also need some methods to let objects
register as observers and send out notifications.

Let’s check out the BeatModelInterface before looking
at the implementation

Now let’s have a look at the concrete BeatModel class

READY BAKE CODE

This model uses Java’s MIDI support to generate beats. You can check out the complete
implementation of all the DJ classes in the Java source files available on the
wickedlysmart.com site, or look at the code at the end of the chapter.

The View
Now the fun starts; we get to hook up a view and visualize the BeatModel!
The first thing to notice about the view is that we’ve implemented it so that it
is displayed in two separate windows. One window contains the current BPM

and the pulse; the other contains the interface controls. Why? We wanted to
emphasize the difference between the interface that contains the view of the
model and the rest of the interface that contains the set of user controls. Let’s
take a closer look at the two parts of the view:

BRAIN POWER

Our BeatModel makes no assumptions about the view. The model is implemented using
the Observer Pattern, so it just notifies any view registered as an observer when its state
changes. The view uses the model’s API to get access to the state. We’ve implemented
one type of view; can you think of other views that could make use of the notifications
and state in the BeatModel?

A lightshow that is based on the real-time
beat.___

A textual view that displays a music genre based on the BPM (ambient, downbeat,
techno, etc.).

__

__

__

Implementing the View
The two parts of the view — the view of the model, and the view with the
user interface controls — are displayed in two windows, but live together in

one Java class. We’ll first show you just the code that creates the view of the
model, which displays the current BPM and the beat bar. Then we’ll come
back on the next page and show you just the code that creates the user
interface controls, which displays the BPM text entry field, and the buttons.

WATCH IT!

The code on these two pages is just an outline!

What we’ve done here is split ONE class into TWO, showing you one part of the view on
this page, and the other part on the next page. All this code is really in ONE class —
DJView.java. It’s all listed at the end of the chapter.

Implementing the View, continued...

Now, we’ll look at the code for the user interface controls part of the view.
This view lets you control the model by telling the controller what to do,
which in turn, tells the model what to do. Remember, this code is in the same
class file as the other view code.

Now for the Controller
It’s time to write the missing piece: the controller. Remember the controller is
the strategy that we plug into the view to give it some smarts.
Because we are implementing the Strategy Pattern, we need to start with an

interface for any Strategy that might be plugged into the DJ View. We’re
going to call it ControllerInterface.

DESIGN PUZZLE

You’ve seen that the view and controller together make use of the Strategy Pattern. Can
you draw a class diagram of the two that represents this pattern?

And here’s the implementation of the controller

Putting it all together...
We’ve got everything we need: a model, a view, and a controller. Now it’s
time to put them all together into a MVC! We’re going to see and hear how
well they work together.

All we need is a little code to get things started; it won’t take much:

And now for a test run...

Things to do
① Start the beat generation with the Start menu item; notice the
controller disables the item afterwards.
② Use the text entry along with the increase and decrease buttons to
change the BPM. Notice how the view display reflects the changes
despite the fact that it has no logical link to the controls.
③ Notice how the beat bar always keeps up with the beat since it’s an
observer of the model.
④ Put on your favorite song and see if you can beat match the beat by
using the increase and decrease controls.
⑤ Stop the generator. Notice how the controller disables the Stop
menu item and enables the Start menu item.

Exploring Strategy
Let’s take the Strategy Pattern just a little further to get a better feel for how it
is used in MVC. We’re going to see another friendly pattern pop up too — a
pattern you’ll often see hanging around the MVC trio: the Adapter Pattern.

Think for a second about what the DJ View does: it displays a beat rate and a

pulse. Does that sound like something else? How about a heartbeat? It just so
happens that we have a heart monitor class; here’s the class diagram:

BRAIN POWER

It certainly would be nice to reuse our current view with the HeartModel, but we need a
controller that works with this model. Also, the interface of the HeartModel doesn’t
match what the view expects because it has a getHeartRate() method rather than a
getBPM(). How would you design a set of classes to allow the view to be reused with
the new model? Jot down your class design ideas below.

Adapting the Model
For starters, we’re going to need to adapt the HeartModel to a BeatModel. If
we don’t, the view won’t be able to work with the model, because the view
only knows how to getBPM(), and the equivalent heart model method is
getHeartRate(). How are we going to do this? We’re going to use the Adapter
Pattern, of course! It turns out that this is a common technique when working
with the MVC: use an adapter to adapt a model to work with existing
controllers and views.
Here’s the code to adapt a HeartModel to a BeatModel:

Now we’re ready for a HeartController
With our HeartAdapter in hand we should be ready to create a controller and
get the view running with the HeartModel. Talk about reuse!

And that’s it! Now it’s time for some test code...

And now for a test run...

Things to do
① Notice that the display works great with a heart! The beat bar
looks just like a pulse. Because the HeartModel also supports BPM
and Beat Observers we can get beat updates just like with the DJ
beats.
② As the heartbeat has natural variation, notice the display is
updated with the new beats per minute.
③ Each time we get a BPM update the adapter is doing its job of
translating getBPM() calls to getHeartRate() calls.
④ The Start and Stop menu items are not enabled because the
controller disabled them.
⑤ The other buttons still work but have no effect because the
controller implements no ops for them. The view could be changed to
support the disabling of these items.

MVC and the Web
It wasn’t long after the Web was spun that developers started adapting the
MVC to fit the browser/server model. The prevailing adaptation is known
simply as “Model 2” and uses a combination of servlet and JSP technology to
achieve the same separation of model, view and controller that we see in
conventional GUIs.
Let’s check out how Model 2 works:

① You make an HTTP request, which is received by a servlet.

Using your web browser you make an HTTP request. This typically involves sending
along some form data, like your username and password. A servlet receives this form
data and parses it.

② The servlet acts as the controller.

The servlet plays the role of the controller and processes your request, most likely
making requests on the model (usually a database). The result of processing the
request is usually bundled up in the form of a JavaBean.

③ The controller forwards control to the view.

The View is represented by a JSP. The JSP’s only job is to generate the page
representing the view of model (❹ which it obtains via the JavaBean) along with any
controls needed for further actions.

④ The view returns a page to the browser via HTTP.

A page is returned to the browser, where it is displayed as the view. The user submits
further requests, which are processed in the same fashion.

Model 2 is more than just a clean design.
The benefits of the separation of the view, model and controller are pretty
clear to you now. But you need to know the “rest of the story” with Model 2
— that it saved many web shops from sinking into chaos.
How? Well, Model 2 not only provides a separation of components in terms
of design, it also provides a separation in production responsibilities. Let’s
face it, in the old days, anyone with access to your JSPs could get in and
write any Java code they wanted, right? And that included a lot of people
who didn’t know a jar file from a jar of peanut butter. The reality is that most
web producers know about content and HTML, not software.
Luckily Model 2 came to the rescue. With Model 2 we can leave the
developer jobs to the men & women who know their servlets and let the web
producers loose on simple Model 2-style JSPs where all the producers have
access to is HTML and simple JavaBeans.

Model 2: DJ’ing from a cell phone
You didn’t think we’d try to skip out without moving that great BeatModel
over to the Web, did you? Just think, you can control your entire DJ session

through a web page on your cellular phone. So now you can get out of that
DJ booth and get down in the crowd. What are you waiting for? Let’s write
that code!

The plan
① Fix up the model.
Well, actually, we don’t have to fix the model; it’s fine just like it is!
② Create a servlet controller
We need a simple servlet that can receive our HTTP requests and perform
a few operations on the model. All it needs to do is stop, start and change
the beats per minute.
③ Create a HTML view.
We’ll create a simple view with a JSP. It’s going to receive a JavaBean
from the controller that will tell it everything it needs to display. The JSP
will then generate an HTML interface.

GEEK BITS

Setting up your servlet environment

Showing you how to set up your servlet environment is a little bit off topic for a book on

Design Patterns, at least if you don’t want the book to weigh more than you do!

Fire up your web browser and head straight to http://jakarta.apache.org/tomcat/ for the
Apache Jakarta Project’s Tomcat Servlet Container. You’ll find everything you need
there to get you up and running.

You’ll also want to check out Head First Servlets & JSP by Bryan Basham, Kathy Sierra
and Bert Bates.

http://jakarta.apache.org/tomcat/

Step one: the model
Remember that in MVC, the model doesn’t know anything about the views or
controllers. In other words, it is totally decoupled. All it knows is that it may
have observers it needs to notify. That’s the beauty of the Observer Pattern. It
also provides an interface the views and controllers can use to get and set its
state.
Now all we need to do is adapt it to work in the web environment, but, given
that it doesn’t depend on any outside classes, there is really no work to be
done. We can use our BeatModel off the shelf without changes. So, let’s be
productive and move on to step two!

Step two: the controller servlet
Remember, the servlet is going to act as our controller; it will receive web
browser input in a HTTP request and translate it into actions that can be
applied to the model.
Then, given the way the Web works, we need to return a view to the browser.
To do this we’ll pass control to the view, which takes the form of a JSP.
We’ll get to that in step three.
Here’s the outline of the servlet; on the next page, we’ll look at the full
implementation.

Here’s the implementation of the doGet() method from the page before:

Now we need a view...
All we need is a view and we’ve got our browser-based beat generator ready
to go! In Model 2, the view is just a JSP. All the JSP knows about is the bean
it receives from the controller. In our case, that bean is just the model and the
JSP is only going to use its BPM property to extract the current beats per
minute. With that data in hand, it creates the view and also the user interface
controls.

NOTE

NOTICE that just like MVC, in Model 2 the view doesn’t alter the model (that’s the
controller’s job); all it does is use its state!

Putting Model 2 to the test...
It’s time to start your web browser, hit the DJView Servlet and give the
system a spin...

Things to do

① First, hit the web page; you’ll see the beats per minute at 0. Go
ahead and click the “on” button.
② Now you should see the beats per minute at the default setting: 90
BPM. You should also hear a beat on the machine the server is
running on.
③ Enter a specific beat, say, 120, and click the “set” button. The page
should refresh with a beats per minute of 120 (and you should hear
the beat increase).
④ Now play with the increase/decrease buttons to adjust the beat up
and down.
⑤ Think about how each step of the system works. The HTML
interface makes a request to the servlet (the controller); the servlet
parses the user input and then makes requests to the model. The
servlet then passes control to the JSP (the view), which creates the
HTML view that is returned and displayed.

Design Patterns and Model 2
After implementing the DJ control for the Web using Model 2, you might be
wondering where the patterns went. We have a view created in HTML from a
JSP, but the view is no longer a listener of the model. We have a controller
that’s a servlet that receives HTTP requests, but are we still using the
Strategy Pattern? And what about Composite? We have a view that is made
from HTML and displayed in a web browser. Is that still the Composite
Pattern?

Model 2 is an adaptation of MVC to the Web
Even though Model 2 doesn’t look exactly like “textbook” MVC, all the parts
are still there; they’ve just been adapted to reflect the idiosyncrasies of the
web browser model. Let’s take another look...

Observer
The view is no longer an observer of the model in the classic sense; that is, it
doesn’t register with the model to receive state change notifications.
However, the view does receive the equivalent of notifications indirectly
from the controller when the model has been changed. The controller even
passes the view a bean that allows the view to retrieve the model’s state.

If you think about the browser model, the view only needs an update of state
information when an HTTP response is returned to the browser; notifications
at any other time would be pointless. Only when a page is being created and
returned does it make sense to create the view and incorporate the model’s
state.

Strategy
In Model 2, the Strategy object is still the controller servlet; however, it’s not
directly composed with the view in the classic manner. That said, it is an

object that implements behavior for the view, and we can swap it out for
another controller if we want different behavior.

Composite
Like our Swing GUI, the view is ultimately made up of a nested set of
graphical components. In this case, they are rendered by a web browser from
an HTML description; however, underneath there is an object system that
most likely forms a composite.

NOTE

The controller still provides the view behavior, even if it isn’t composed with the view
using object composition.

THERE ARE NO DUMB QUESTIONS

Q: Q: It seems like you are really hand-waving the fact that the Composite Pattern is really in MVC. Is it
really there?

A: A: Yes, Virginia, there really is a Composite Pattern in MVC. But, actually, this is a very good question. Today
GUI packages, like Swing, have become so sophisticated that we hardly notice the internal structure and the use
of Composite in the building and update of the display. It’s even harder to see when we have web browsers that
can take markup language and convert it into a user interface.
Back when MVC was first discovered, creating GUIs required a lot more manual intervention and the pattern was
more obviously part of the MVC.

Q: Q: Does the controller ever implement any application logic?

A: A: No, the controller implements behavior for the view. It is the smarts that translates the actions from the view to
actions on the model. The model takes those actions and implements the application logic to decide what to do in
response to those actions. The controller might have to do a little work to determine what method calls to make on
the model, but that’s not considered the “application logic.” The application logic is the code that manages and
manipulates your data and it lives in your model.

Q: Q: I’ve always found the word “model” hard to wrap my head around. I now get that it’s the guts of the
application, but why was such a vague, hard-to-understand word used to describe this aspect of the MVC?

A: A: When MVC was named they needed a word that began with a “M” or otherwise they couldn’t have called it
MVC.
But seriously, we agree with you. Everyone scratches their head and wonders what a model is. But then everyone
comes to the realization that they can’t think of a better word either.

Q: Q: You’ve talked a lot about the state of the model. Does this mean it has the State Pattern in it?

A: A: No, we mean the general idea of state. But certainly some models do use the State Pattern to manage their
internal states.

Q: Q: I’ve seen descriptions of the MVC where the controller is described as a “mediator” between the view
and the model. Is the controller implementing the Mediator Pattern?

A: A: We haven’t covered the Mediator Pattern (although you’ll find a summary of the pattern in the appendix), so
we won’t go into too much detail here, but the intent of the mediator is to encapsulate how objects interact and
promote loose coupling by keeping two objects from referring to each other explicitly. So, to some degree, the
controller can be seen as a mediator, since the view never sets state directly on the model, but rather always goes
through the controller. Remember, however, that the view does have a reference to the model to access its state. If
the controller were truly a mediator, the view would have to go through the controller to get the state of the model
as well.

Q: Q: Does the view always have to ask the model for its state? Couldn’t we use the push model and send the
model’s state with the update notification?

A: A: Yes, the model could certainly send its state with the notification, and in fact, if you look again at the
JSP/HTML view, that’s exactly what we’re doing. We’re sending the entire model in a bean, which the view uses
to access the state it needs using the bean properties. We could do something similar with the BeatModel by
sending just the state that the view is interested in. If you remember the Observer Pattern chapter, however, you’ll
also remember that there’s a couple of disadvantages to this. If you don’t, go back and have a second look.

Q: Q: If I have more than one view, do I always need more than one controller?

A: A: Typically, you need one controller per view at runtime; however, the same controller class can easily manage
many views.

Q: Q: The view is not supposed to manipulate the model; however, I noticed in your implementation that the

view has full access to the methods that change the model’s state. Is this dangerous?

A: A: You are correct; we gave the view full access to the model’s set of methods. We did this to keep things simple,
but there may be circumstances where you want to give the view access to only part of your model’s API. There’s
a great design pattern that allows you to adapt an interface to only provide a subset. Can you think of it?

Tools for your Design Toolbox
You could impress anyone with your design toolbox. Wow, look at all those
principles, patterns and now, compound patterns!

BULLET POINTS

The Model View Controller Pattern (MVC) is a compound pattern consisting of the
Observer, Strategy and Composite patterns.
The model makes use of the Observer Pattern so that it can keep observers updated
yet stay decoupled from them.
The controller is the strategy for the view. The view can use different
implementations of the controller to get different behavior.
The view uses the Composite Pattern to implement the user interface, which usually
consists of nested components like panels, frames and buttons.
These patterns work together to decouple the three players in the MVC model, which
keeps designs clear and flexible.
The Adapter Pattern can be used to adapt a new model to an existing view and
controller.
Model 2 is an adaptation of MVC for web applications.
In Model 2, the controller is implemented as a servlet and JSP & HTML implement
the view.

Exercise Solutions

SHARPEN YOUR PENCIL SOLUTION

The QuackCounter is a Quackable too. When we change Quackable to extend
QuackObservable, we have to change every class that implements Quackable, including
QuackCounter:

SHARPEN YOUR PENCIL SOLUTION

What if our Quackologist wants to observe an entire flock? What does that mean
anyway? Think about it like this: if we observe a composite, then we’re observing
everything in the composite. So, when you register with a flock, the flock composite
makes sure you get registered with all its children, which may include other flocks.

SHARPEN YOUR PENCIL SOLUTION

We’re still directly instantiating Geese by relying on concrete classes. Can you write an
Abstract Factory for Geese? How should it handle creating “goose ducks”?

You could add a createGooseDuck() method to the existing Duck Factories. Or, you
could create a completely separate Factory for creating families of Geese.

DESIGN PUZZLE SOLUTION

You’ve seen that the view and controller together make use of the Strategy Pattern. Can

you draw a class diagram of the two that represents this pattern?

READY BAKE CODE

Here’s the complete implementation of the DJView. It shows all the MIDI code to
generate the sound, and all the Swing components to create the view. You can also
download this code at http://www.wickedlysmart.com. Have fun!

package headfirst.designpatterns.combined.djview;

public class DJTestDrive {

 public static void main (String[] args) {
 BeatModelInterface model = new BeatModel();
 ControllerInterface controller = new BeatController(model);
 }
}

The Beat Model
package headfirst.designpatterns.combined.djview;

public interface BeatModelInterface {
 void initialize();

 void on();

 void off();

 void setBPM(int bpm);

 int getBPM();

 void registerObserver(BeatObserver o);

http://www.wickedlysmart.com

 void removeObserver(BeatObserver o);

 void registerObserver(BPMObserver o);

 void removeObserver(BPMObserver o);
}
package headfirst.designpatterns.combined.djview;

import javax.sound.midi.*;

import java.util.*;

public class BeatModel implements BeatModelInterface, MetaEventListener {
 Sequencer sequencer;
 ArrayList<BeatObserver> beatObservers = new ArrayList<BeatObserver>();
 ArrayList<BPMObserver> bpmObservers = new ArrayList<BPMObserver>();
 int bpm = 90;
 Sequence sequence;
 Track track;

 public void initialize() {
 setUpMidi();
 buildTrackAndStart();
 }

 public void on() {
 System.out.println("Starting the sequencer");
 sequencer.start();
 setBPM(90);
 }

 public void off() {
 setBPM(0);
 sequencer.stop();
 }

 public void setBPM(int bpm) {
 this.bpm = bpm;
 sequencer.setTempoInBPM(getBPM());
 notifyBPMObservers();
 }

 public int getBPM() {
 return bpm;
 }

 void beatEvent() {
 notifyBeatObservers();
 }

 public void registerObserver(BeatObserver o) {
 beatObservers.add(o);
 }

 public void notifyBeatObservers() {
 for(int i = 0; i < beatObservers.size(); i++) {
 BeatObserver observer = (BeatObserver)beatObservers.get(i);
 observer.updateBeat();
 }
 }

 public void registerObserver(BPMObserver o) {

 bpmObservers.add(o);
 }

 public void notifyBPMObservers() {
 for(int i = 0; i < bpmObservers.size(); i++) {
 BPMObserver observer = (BPMObserver)bpmObservers.get(i);
 observer.updateBPM();
 }
 }

 public void removeObserver(BeatObserver o) {
 int i = beatObservers.indexOf(o);
 if (i >= 0) {
 beatObservers.remove(i);
 }
 }

 public void removeObserver(BPMObserver o) {
 int i = bpmObservers.indexOf(o);
 if (i >= 0) {
 bpmObservers.remove(i);
 }
 }

 public void meta(MetaMessage message) {
 if (message.getType() == 47) {
 beatEvent();
 sequencer.start();
 setBPM(getBPM());
 }
 }

 public void setUpMidi() {
 try {
 sequencer = MidiSystem.getSequencer();
 sequencer.open();
 sequencer.addMetaEventListener(this);
 sequence = new Sequence(Sequence.PPQ,4);
 track = sequence.createTrack();
 sequencer.setTempoInBPM(getBPM());
 sequencer.setLoopCount(Sequencer.LOOP_CONTINUOUSLY);
 } catch(Exception e) {
 e.printStackTrace();
 }
 }

 public void buildTrackAndStart() {
 int[] trackList = {35, 0, 46, 0};

 sequence.deleteTrack(null);
 track = sequence.createTrack();

 makeTracks(trackList);
 track.add(makeEvent(192,9,1,0,4));
 try {
 sequencer.setSequence(sequence);
 } catch(Exception e) {
 e.printStackTrace();
 }
 }

 public void makeTracks(int[] list) {

 for (int i = 0; i < list.length; i++) {
 int key = list[i];

 if (key != 0) {
 track.add(makeEvent(144,9,key, 100, i));
 track.add(makeEvent(128,9,key, 100, i+1));
 }
 }
 }

 public MidiEvent makeEvent(int comd, int chan, int one, int two, int tick)
{
 MidiEvent event = null;
 try {
 ShortMessage a = new ShortMessage();
 a.setMessage(comd, chan, one, two);
 event = new MidiEvent(a, tick);

 } catch(Exception e) {
 e.printStackTrace();
 }
 return event;
 }
}

The View
package headfirst.designpatterns.combined.djview;

public interface BeatObserver {
 void updateBeat();
}

package headfirst.designpatterns.combined.djview;

public interface BPMObserver {
 void updateBPM();
}

package headfirst.designpatterns.combined.djview;

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class DJView implements ActionListener, BeatObserver, BPMObserver {
 BeatModelInterface model;
 ControllerInterface controller;
 JFrame viewFrame;
 JPanel viewPanel;
 BeatBar beatBar;
 JLabel bpmOutputLabel;
 JFrame controlFrame;
 JPanel controlPanel;
 JLabel bpmLabel;
 JTextField bpmTextField;
 JButton setBPMButton;
 JButton increaseBPMButton;
 JButton decreaseBPMButton;

 JMenuBar menuBar;
 JMenu menu;
 JMenuItem startMenuItem;
 JMenuItem stopMenuItem;

 public DJView(ControllerInterface controller, BeatModelInterface model) {
 this.controller = controller;
 this.model = model;
 model.registerObserver((BeatObserver)this);
 model.registerObserver((BPMObserver)this);
 }

public void createView() {
 // Create all Swing components here
 viewPanel = new JPanel(new GridLayout(1, 2));
 viewFrame = new JFrame("View");
 viewFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 viewFrame.setSize(new Dimension(100, 80));
 bpmOutputLabel = new JLabel("offline", SwingConstants.CENTER);
 beatBar = new BeatBar();
 beatBar.setValue(0);
 JPanel bpmPanel = new JPanel(new GridLayout(2, 1));
 bpmPanel.add(beatBar);
 bpmPanel.add(bpmOutputLabel);
 viewPanel.add(bpmPanel);
 viewFrame.getContentPane().add(viewPanel, BorderLayout.CENTER);
 viewFrame.pack();
 viewFrame.setVisible(true);
}

public void createControls() {
 // Create all Swing components here
 JFrame.setDefaultLookAndFeelDecorated(true);
 controlFrame = new JFrame("Control");
 controlFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 controlFrame.setSize(new Dimension(100, 80));

 controlPanel = new JPanel(new GridLayout(1, 2));

 menuBar = new JMenuBar();
 menu = new JMenu("DJ Control");
 startMenuItem = new JMenuItem("Start");
 menu.add(startMenuItem);
 startMenuItem.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 controller.start();
 }
 });
 stopMenuItem = new JMenuItem("Stop");
 menu.add(stopMenuItem);
 stopMenuItem.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 controller.stop();
 }
 });
 JMenuItem exit = new JMenuItem("Quit");
 exit.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 System.exit(0);
 }
 });

 menu.add(exit);
 menuBar.add(menu);
 controlFrame.setJMenuBar(menuBar);

 bpmTextField = new JTextField(2);
 bpmLabel = new JLabel("Enter BPM:", SwingConstants.RIGHT);
 setBPMButton = new JButton("Set");
 setBPMButton.setSize(new Dimension(10,40));
 increaseBPMButton = new JButton(">>");
 decreaseBPMButton = new JButton("<<");
 setBPMButton.addActionListener(this);
 increaseBPMButton.addActionListener(this);
 decreaseBPMButton.addActionListener(this);

 JPanel buttonPanel = new JPanel(new GridLayout(1, 2));

 buttonPanel.add(decreaseBPMButton);
 buttonPanel.add(increaseBPMButton);

 JPanel enterPanel = new JPanel(new GridLayout(1, 2));
 enterPanel.add(bpmLabel);
 enterPanel.add(bpmTextField);
 JPanel insideControlPanel = new JPanel(new GridLayout(3, 1));
 insideControlPanel.add(enterPanel);
 insideControlPanel.add(setBPMButton);
 insideControlPanel.add(buttonPanel);
 controlPanel.add(insideControlPanel);

 bpmLabel.setBorder(BorderFactory.createEmptyBorder(5,5,5,5));
 bpmOutputLabel.setBorder(BorderFactory.createEmptyBorder(5,5,5,5));

 controlFrame.getRootPane().setDefaultButton(setBPMButton);
 controlFrame.getContentPane().add(controlPanel, BorderLayout.CENTER);

 controlFrame.pack();
 controlFrame.setVisible(true);
 }

 public void enableStopMenuItem() {
 stopMenuItem.setEnabled(true);
 }

 public void disableStopMenuItem() {
 stopMenuItem.setEnabled(false);
 }

 public void enableStartMenuItem() {
 startMenuItem.setEnabled(true);
 }

 public void disableStartMenuItem() {
 startMenuItem.setEnabled(false);
 }

 public void actionPerformed(ActionEvent event) {
 if (event.getSource() == setBPMButton) {
 int bpm = Integer.parseInt(bpmTextField.getText());
 controller.setBPM(bpm);
 } else if (event.getSource() == increaseBPMButton) {
 controller.increaseBPM();
 } else if (event.getSource() == decreaseBPMButton) {

 controller.decreaseBPM();
 }
 }

 public void updateBPM() {
 int bpm = model.getBPM();
 if (bpm == 0) {
 bpmOutputLabel.setText("offline");
 } else {
 bpmOutputLabel.setText("Current BPM: " + model.getBPM());
 }
 }

 public void updateBeat() {
 beatBar.setValue(100);
 }
}

The Controller
package headfirst.designpatterns.combined.djview;

public interface ControllerInterface {
 void start();
 void stop();
 void increaseBPM();
 void decreaseBPM();
 void setBPM(int bpm);
}

package headfirst.designpatterns.combined.djview;

public class BeatController implements ControllerInterface {
 BeatModelInterface model;
 DJView view;

 public BeatController(BeatModelInterface model) {
 this.model = model;
 view = new DJView(this, model);
 view.createView();
 view.createControls();
 view.disableStopMenuItem();
 view.enableStartMenuItem();
 model.initialize();
 }

 public void start() {
 model.on();
 view.disableStartMenuItem();
 view.enableStopMenuItem();
 }

 public void stop() {
 model.off();
 view.disableStopMenuItem();
 view.enableStartMenuItem();
 }

 public void increaseBPM() {
 int bpm = model.getBPM();
 model.setBPM(bpm + 1);
 }

 public void decreaseBPM() {
 int bpm = model.getBPM();
 model.setBPM(bpm - 1);
 }

 public void setBPM(int bpm) {
 model.setBPM(bpm);
 }
}

The Heart Model
package headfirst.designpatterns.combined.djview;

public class HeartTestDrive {

 public static void main (String[] args) {
 HeartModel heartModel = new HeartModel();
 ControllerInterface model = new HeartController(heartModel);
 }
}

package headfirst.designpatterns.combined.djview;

public interface HeartModelInterface {
 int getHeartRate();
 void registerObserver(BeatObserver o);
 void removeObserver(BeatObserver o);
 void registerObserver(BPMObserver o);
 void removeObserver(BPMObserver o);
}

package headfirst.designpatterns.combined.djview;

import java.util.*;

public class HeartModel implements HeartModelInterface, Runnable {
 ArrayList<BeatObserver> beatObservers = new ArrayList<BeatObserver>();
 ArrayList<BPMObserver> bpmObservers = new ArrayList<BPMObserver>();
 int time = 1000;
 int bpm = 90;
 Random random = new Random(System.currentTimeMillis());
 Thread thread;

 public HeartModel() {
 thread = new Thread(this);
 thread.start();
 }

 public void run() {
 int lastrate = -1;

 for(;;) {
 int change = random.nextInt(10);
 if (random.nextInt(2) == 0) {
 change = 0 - change;
 }
 int rate = 60000/(time + change);
 if (rate < 120 && rate > 50) {
 time += change;

 notifyBeatObservers();
 if (rate != lastrate) {
 lastrate = rate;
 notifyBPMObservers();
 }
 }
 try {
 Thread.sleep(time);
 } catch (Exception e) {}
 }
 }

 public int getHeartRate() {
 return 60000/time;
 }

 public void registerObserver(BeatObserver o) {
 beatObservers.add(o);
 }

 public void removeObserver(BeatObserver o) {
 int i = beatObservers.indexOf(o);
 if (i >= 0) {
 beatObservers.remove(i);
 }
 }

 public void notifyBeatObservers() {
 for(int i = 0; i < beatObservers.size(); i++) {
 BeatObserver observer = (BeatObserver)beatObservers.get(i);
 observer.updateBeat();
 }
 }

 public void registerObserver(BPMObserver o) {
 bpmObservers.add(o);
 }

 public void removeObserver(BPMObserver o) {
 int i = bpmObservers.indexOf(o);
 if (i >= 0) {
 bpmObservers.remove(i);
 }
 }

 public void notifyBPMObservers() {
 for(int i = 0; i < bpmObservers.size(); i++) {
 BPMObserver observer = (BPMObserver)bpmObservers.get(i);
 observer.updateBPM();
 }
 }
}

The Heart Adapter
package headfirst.designpatterns.combined.djview;

public class HeartAdapter implements BeatModelInterface {
 HeartModelInterface heart;

 public HeartAdapter(HeartModelInterface heart) {

 this.heart = heart;
 }

 public void initialize() {}

 public void on() {}

 public void off() {}

 public int getBPM() {
 return heart.getHeartRate();
 }

 public void setBPM(int bpm) {}

 public void registerObserver(BeatObserver o) {
 heart.registerObserver(o);
 }

 public void removeObserver(BeatObserver o) {
 heart.removeObserver(o);
 }

 public void registerObserver(BPMObserver o) {
 heart.registerObserver(o);
 }

 public void removeObserver(BPMObserver o) {
 heart.removeObserver(o);
 }
}

The Controller
package headfirst.designpatterns.combined.djview;

public class HeartController implements ControllerInterface {
 HeartModelInterface model;
 DJView view;

 public HeartController(HeartModelInterface model) {
 this.model = model;
 view = new DJView(this, new HeartAdapter(model));
 view.createView();
 view.createControls();
 view.disableStopMenuItem();
 view.disableStartMenuItem();
 }

 public void start() {}

 public void stop() {}

 public void increaseBPM() {}

 public void decreaseBPM() {}

 public void setBPM(int bpm) {}
}

[2] send us email for a copy.

Chapter 13. Better Living with
Patterns: Patterns in the Real
World

Ahhhh, now you’re ready for a bright new world filled with Design
Patterns. But, before you go opening all those new doors of opportunity, we
need to cover a few details that you’ll encounter out in the real world —
that’s right, things get a little more complex than they are here in Objectville.
Come along, we’ve got a nice guide to help you through the transition on the
next page...

THE OBJECTVILLE GUIDE TO BETTER LIVING WITH DESIGN
PATTERNS

Please accept our handy guide with tips & tricks for living with patterns in the real
world. In this guide you will:

Learn the all too common misconceptions about the definition of a “Design Pattern.”

Discover those nifty Design Patterns catalogs and why you just have to get one.

Avoid the embarrassment of using a Design Pattern at the wrong time.

Learn how to keep patterns in classifications where they belong.

See that discovering patterns isn’t just for the gurus; read our quick How To and become a
patterns writer too.

Be there when the true identity of the mysterious Gang of Four is revealed.

Keep up with the neighbors — the coffee table books any patterns user must own.

Learn to train your mind like a Zen master.

Win friends and influence developers by improving your patterns vocabulary.

Design Pattern defined
We bet you’ve got a pretty good idea of what a pattern is after reading this
book. But we’ve never really given a definition for a Design Pattern. Well,
you might be a bit surprised by the definition that is in common use:

NOTE

A Pattern is a solution to a problem in a context.

That’s not the most revealing definition is it? But don’t worry, we’re going to
step through each of these parts: context, problem and solution:

The context is the situation in which the pattern applies. This should be a
recurring situation.

NOTE

Example: You have a collection of objects.

The problem refers to the goal you are trying to achieve in this context,
but it also refers to any constraints that occur in the context.

NOTE

You need to step through the objects without exposing the collection’s
implementation.

The solution is what you’re after: a general design that anyone can apply
which resolves the goal and set of constraints.

NOTE

Encapsulate the iteration into a separate class.

This is one of those definitions that takes a while to sink in, but take it one
step at a time. Here’s a little mnemonic you can repeat to yourself to
remember it:

“If you find yourself in a context with a problem that has a goal that is affected by a set
of constraints, then you can apply a design that resolves the goal and constraints and
leads to a solution.”

Now, this seems like a lot of work just to figure out what a Design Pattern is.
After all, you already know that a Design Pattern gives you a solution to a
common recurring design problem. What is all this formality getting you?
Well, you’re going to see that by having a formal way of describing patterns
we can create a catalog of patterns, which has all kinds of benefits.

You might be right; let’s think about this a bit... We need a problem, a
solution and a context:

Problem: How do I get to work on time?
Context: I’ve locked my keys in the car.
Solution: Break the window, get in the car, start the engine and drive to
work.

We have all the components of the definition: we have a problem, which
includes the goal of getting to work, and the constraints of time, distance and
probably some other factors. We also have a context in which the keys to the
car are inaccessible. And we have a solution that gets us to the keys and
resolves both the time and distance constraints. We must have a pattern now!
Right?

BRAIN POWER

We followed the Design Pattern definition and defined a problem, a context, and a
solution (which works!). Is this a pattern? If not, how did it fail? Could we fail the same
way when defining an OO Design Pattern?

Looking more closely at the Design Pattern definition
Our example does seem to match the Design Pattern definition, but it isn’t a
true pattern. Why? For starters, we know that a pattern needs to apply to a
recurring problem. While an absent-minded person might lock his keys in the
car often, breaking the car window doesn’t qualify as a solution that can be
applied over and over (or at least isn’t likely to if we balance the goal with
another constraint: cost).
It also fails in a couple of other ways: first, it isn’t easy to take this
description, hand it to someone and have him apply it to his own unique
problem. Second, we’ve violated an important but simple aspect of a pattern:
we haven’t even given it a name! Without a name, the pattern doesn’t become
part of a vocabulary that can be shared with other developers.
Luckily, patterns are not described and documented as a simple problem,
context and solution; we have much better ways of describing patterns and
collecting them together into patterns catalogs.

THERE ARE NO DUMB QUESTIONS

Q: Q: Am I going to see pattern descriptions that are stated as a problem, a context and a solution?

A: A: Pattern descriptions, which you’ll typically find in pattern catalogs, are usually a bit more revealing than that.
We’re going to look at patterns catalogs in detail in just a minute; they describe a lot more about a pattern’s intent
and motivation and where it might apply, along with the solution design and the consequences (good and bad) of
using it.

Q: Q: Is it okay to slightly alter a pattern’s structure to fit my design? Or am I going to have to go by the strict
definition?

A: A: Of course you can alter it. Like design principles, patterns are not meant to be laws or rules; they are
guidelines that you can alter to fit your needs. As you’ve seen, a lot of real-world examples don’t fit the classic
pattern designs.
However, when you adapt patterns, it never hurts to document how your pattern differs from the classic design —
that way, other developers can quickly recognize the patterns you’re using and any differences between your
pattern and the classic pattern.

Q: Q: Where can I get a patterns catalog?

A: A: The first and most definitive patterns catalog is Design Patterns: Elements of Reusable Object-Oriented

Software, by Gamma, Helm, Johnson & Vlissides (Addison Wesley). This catalog lays out 23 fundamental
patterns. We’ll talk a little more about this book in a few pages.
Many other patterns catalogs are starting to be published in various domain areas such as enterprise software,
concurrent systems and business systems.

GEEK BITS

May the force be with you

The Design Pattern definition tells us that the problem consists of a goal and a set of
constraints. Patterns gurus have a term for these: they call them forces. Why? Well,
we’re sure they have their own reasons, but if you remember the movie, the force
“shapes and controls the Universe.” Likewise, the forces in the pattern definition shape
and control the solution. Only when a solution balances both sides of the force (the light
side: your goal, and the dark side: the constraints) do we have a useful pattern.

This “force” terminology can be quite confusing when you first see it in pattern
discussions, but just remember that there are two sides of the force (goals and
constraints) and that they need to be balanced or resolved to create a pattern solution.
Don’t let the lingo get in your way and may the force be with you!

Frank: Fill us in, Jim. I’ve just been learning patterns by reading a few
articles here and there.
Jim: Sure, each patterns catalog takes a set of patterns and describes each in
detail along with its relationship to the other patterns.
Joe: Are you saying there is more than one patterns catalog?
Jim: Of course; there are catalogs for fundamental Design Patterns and there
are also catalogs on domain-specific patterns, like EJB patterns.
Frank: Which catalog are you looking at?
Jim: This is the classic GoF catalog; it contains 23 fundamental Design
Patterns.
Frank: GoF?
Jim: Right, that stands for the Gang of Four. The Gang of Four are the guys
that put together the first patterns catalog.
Joe: What’s in the catalog?
Jim: There is a set of related patterns. For each pattern there is a description
that follows a template and spells out a lot of details of the pattern. For
instance, each pattern has a name.
Frank: Wow, that’s earth-shattering — a name! Imagine that.
Jim: Hold on, Frank; actually, the name is really important. When we have a
name for a pattern, it gives us a way to talk about the pattern; you know, that
whole shared vocabulary thing.
Frank: Okay, okay. I was just kidding. Go on, what else is there?
Jim: Well, like I was saying, every pattern follows a template. For each
pattern we have a name and a few sections that tell us more about the pattern.
For instance, there is an Intent section that describes what the pattern is, kind
of like a definition. Then there are Motivation and Applicability sections that
describe when and where the pattern might be used.
Joe: What about the design itself?
Jim: There are several sections that describe the class design along with all
the classes that make it up and what their roles are. There is also a section
that describes how to implement the pattern and often sample code to show
you how.

Frank: It sounds like they’ve thought of everything.
Jim: There’s more. There are also examples of where the pattern has been
used in real systems, as well as what I think is one of the most useful
sections: how the pattern relates to other patterns.
Frank: Oh, you mean they tell you things like how state and strategy differ?
Jim: Exactly!
Joe: So Jim, how are you actually using the catalog? When you have a
problem, do you go fishing in the catalog for a solution?
Jim: I try to get familiar with all the patterns and their relationships first.
Then, when I need a pattern, I have some idea of what it is. I go back and
look at the Motivation and Applicability sections to make sure I’ve got it
right. There is also another really important section: Consequences. I review
that to make sure there won’t be some unintended effect on my design.
Frank: That makes sense. So once you know the pattern is right, how do you
approach working it into your design and implementing it?
Jim: That’s where the class diagram comes in. I first read over the Structure
section to review the diagram and then over the Participants section to make
sure I understand each class’s role. From there, I work it into my design,
making any alterations I need to make it fit. Then I review the
Implementation and Sample code sections to make sure I know about any
good implementation techniques or gotchas I might encounter.
Joe: I can see how a catalog is really going to accelerate my use of patterns!
Frank: Totally. Jim, can you walk us through a pattern description?

THERE ARE NO DUMB QUESTIONS

Q: Q: Is it possible to create your own Design Patterns? Or is that something you have to be a “patterns guru”
to do?

A: A: First, remember that patterns are discovered, not created. So, anyone can discover a Design Pattern and then
author its description; however, it’s not easy and doesn’t happen quickly, nor often. Being a “patterns writer”
takes commitment.
You should first think about why you’d want to — the majority of people don’t author patterns; they just use
them. However, you might work in a specialized domain for which you think new patterns would be helpful, or
you might have come across a solution to what you think is a recurring problem, or you may just want to get
involved in the patterns community and contribute to the growing body of work.

Q: Q: I’m game; how do I get started?

A: A: As with any discipline, the more you know the better. Studying existing patterns, what they do, and how they
relate to other patterns is crucial. Not only does it make you familiar with how patterns are crafted, it also
prevents you from reinventing the wheel. From there you’ll want to start writing your patterns on paper, so you
can communicate them to other developers; we’re going to talk more about how to communicate your patterns in
a bit. If you’re really interested, you’ll want to read the section that follows these Q&As.

Q: Q: How do I know when I really have a pattern?

A: A: That’s a very good question: you don’t have a pattern until others have used it and found it to work. In general,
you don’t have a pattern until it passes the “Rule of Three.” This rule states that a pattern can be called a pattern
only if it has been applied in a real-world solution at least three times.

So you wanna be a design patterns star?
Well, listen now to what I tell.
Get yourself a patterns catalog,
Then take some time and learn it well.
And when you’ve got your description right,
And three developers agree without a fight,
Then you’ll know it’s a pattern alright.

NOTE

To the tune of “So you wanna be a Rock’n Roll Star.”

So you wanna be a Design Patterns writer
Do your homework. You need to be well versed in the existing patterns
before you can create a new one. Most patterns that appear to be new, are, in
fact, just variants of existing patterns. By studying patterns, you become
better at recognizing them, and you learn to relate them to other patterns.
Take time to reflect, evaluate. Your experience — the problems you’ve
encountered, and the solutions you’ve used — are where ideas for patterns
are born. So take some time to reflect on your experiences and comb them for
novel designs that recur. Remember that most designs are variations on
existing patterns and not new patterns. And when you do find what looks like
a new pattern, its applicability may be too narrow to qualify as a real pattern.
Get your ideas down on paper in a way others can understand. Locating

new patterns isn’t of much use if others can’t make use of your find; you
need to document your pattern candidates so that others can read, understand,
and apply them to their own solution and then supply you with feedback.
Luckily, you don’t need to invent your own method of documenting your
patterns. As you’ve already seen with the GoF template, a lot of thought has
already gone into how to describe patterns and their characteristics.
Have others try your patterns; then refine and refine some more. Don’t
expect to get your pattern right the first time. Think of your pattern as a work
in progress that will improve over time. Have other developers review your
candidate pattern, try it out, and give you feedback. Incorporate that feedback
into your description and try again. Your description will never be perfect,
but at some point it should be solid enough that other developers can read and
understand it.
Don’t forget the Rule of Three. Remember, unless your pattern has been
successfully applied in three real-world solutions, it can’t qualify as a pattern.
That’s another good reason to get your pattern into the hands of others so
they can try it, give feedback, and allow you to converge on a working
pattern.

WHO DOES WHAT?

Match each pattern with its description:

Organizing Design Patterns
As the number of discovered Design Patterns grows, it makes sense to
partition them into classifications so that we can organize them, narrow our
searches to a subset of all Design Patterns, and make comparisons within a

group of patterns.
In most catalogs, you’ll find patterns grouped into one of a few classification
schemes. The most well-known scheme was used by the first patterns catalog
and partitions patterns into three distinct categories based on their purposes:
Creational, Behavioral, and Structural.

SHARPEN YOUR PENCIL

Pattern Categories
Sharpen your pencil Solution
Here’s the grouping of patterns into categories. You probably found the

exercise difficult, because many of the patterns seem like they could fit into
more than one category. Don’t worry, everyone has trouble figuring out the
right categories for the patterns.

Patterns are often classified by a second attribute: whether or not the pattern
deals with classes or objects:

THERE ARE NO DUMB QUESTIONS

Q: Q: Are these the only classification schemes?

A: A: No, other schemes have been proposed. Some other schemes start with the three categories and then add
subcategories, like “Decoupling Patterns.” You’ll want to be familiar with the most common schemes for
organizing patterns, but also feel free to create your own, if it helps you to understand the patterns better.

Q: Q: Does organizing patterns into categories really help you remember them?

A: A: It certainly gives you a framework for the sake of comparison. But many people are confused by the
creational, structural and behavioral categories; often a pattern seems to fit into more than one category. The most
important thing is to know the patterns and the relationships among them. When categories help, use them!

Q: Q: Why is the Decorator Pattern in the structural category? I would have thought of that as a behavioral
pattern; after all, it adds behavior!

A: A: Yes, lots of developers say that! Here’s the thinking behind the Gang of Four classification: structural patterns
describe how classes and objects are composed to create new structures or new functionality. The Decorator
Pattern allows you to compose objects by wrapping one object with another to provide new functionality. So the
focus is on how you compose the objects dynamically to gain functionality, rather than on the communication and
interconnection between objects, which is the purpose of behavioral patterns. But remember, the intent of these
patterns is different, and that’s often the key to understanding which category a pattern belongs to.

MASTER AND STUDENT...

Master: Grasshopper, you look troubled.

Student: Yes, I’ve just learned about pattern classification and I’m confused.

Master: Grasshopper, continue...

Student: After learning much about patterns, I’ve just been told that each pattern fits
into one of three classifications: structural, behavioral, or creational. Why do we need

these classifications?

Master: Grasshopper, whenever we have a large collection of anything, we naturally
find categories to fit those things into. It helps us to think of the items at a more abstract
level.

Student: Master; can you give me an example?

Master: Of course. Take automobiles; there are many different models of automobiles
and we naturally put them into categories like economy cars, sports cars, SUVs, trucks,
and luxury car categories.

Master: Grasshopper, you look shocked; does this not make sense?

Student: Master, it makes a lot of sense, but I am shocked you know so much about cars!

Master: Grasshopper, I can’t relate everything to lotus flowers or rice bowls. Now, may
I continue?

Student: Yes, yes, I’m sorry, please continue.

Master: Once you have classifications or categories you can easily talk about the
different groupings: “If you’re doing the mountain drive from Silicon Valley to Santa
Cruz, a sports car with good handling is the best option.” Or, “With the worsening oil
situation, you really want to buy a economy car; they’re more fuel-efficient.”

Student: So by having categories we can talk about a set of patterns as a group. We
might know we need a creational pattern, without knowing exactly which one, but we
can still talk about creational patterns.

Master: Yes, and it also gives us a way to compare a member to the rest of the category.
For example, “the Mini really is the most stylish compact car around,” or to narrow our
search, “I need a fuel-efficient car.”

Student: I see. So I might say that the Adapter Pattern is the best structural pattern for
changing an object’s interface.

Master: Yes. We also can use categories for one more purpose: to launch into new
territory. For instance, “we really want to deliver a sports car with Ferrari performance
at Miata prices.”

Student: That sounds like a death trap.

Master: I’m sorry, I did not hear you Grasshopper.

Student: Uh, I said “I see that.”

Student: So categories give us a way to think about the way groups of patterns relate
and how patterns within a group relate to one another. They also give us a way to
extrapolate to new patterns. But why are there three categories and not four, or five?

Master: Ah, like stars in the night sky, there are as many categories as you want to see.
Three is a convenient number and a number that many people have decided makes for a

nice grouping of patterns. But others have suggested four, five or more.

Thinking in Patterns
Contexts, constraints, forces, catalogs, classifications... boy, this is starting to
sound mighty academic. Okay, all that stuff is important and knowledge is
power. But, let’s face it, if you understand the academic stuff and don’t have
the experience and practice using patterns, then it’s not going to make much
difference in your life.
Here’s a quick guide to help you start to think in patterns. What do we mean
by that? We mean being able to look at a design and see where patterns
naturally fit and where they don’t.

Keep it simple (KISS)
First of all, when you design, solve things in the simplest way possible. Your

goal should be simplicity, not “how can I apply a pattern to this problem?”
Don’t feel like you aren’t a sophisticated developer if you don’t use a pattern
to solve a problem. Other developers will appreciate and admire the
simplicity of your design. That said, sometimes the best way to keep your
design simple and flexible is to use a pattern.

Design Patterns aren’t a magic bullet; in fact, they’re
not even a bullet!
Patterns, as you know, are general solutions to recurring problems. Patterns
also have the benefit of being well tested by lots of developers. So, when you
see a need for one, you can sleep well knowing many developers have been
there before and solved the problem using similar techniques.
However, patterns aren’t a magic bullet. You can’t plug one in, compile and
then take an early lunch. To use patterns, you also need to think through the
consequences for the rest of your design.

You know you need a pattern when...
Ah... the most important question: when do you use a pattern? As you
approach your design, introduce a pattern when you’re sure it addresses a
problem in your design. If a simpler solution might work, give that
consideration before you commit to using a pattern.
Knowing when a pattern applies is where your experience and knowledge
come in. Once you’re sure a simple solution will not meet your needs, you
should consider the problem along with the set of constraints under which the
solution will need to operate — these will help you match your problem to a
pattern. If you’ve got a good knowledge of patterns, you may know of a
pattern that is a good match. Otherwise, survey patterns that look like they
might solve the problem. The intent and applicability sections of the patterns
catalogs are particularly useful for this. Once you’ve found a pattern that
appears to be a good match, make sure it has a set of consequences you can
live with and study its effect on the rest of your design. If everything looks
good, go for it!
There is one situation in which you’ll want to use a pattern even if a simpler
solution would work: when you expect aspects of your system to vary. As
we’ve seen, identifying areas of change in your design is usually a good sign

that a pattern is needed. Just make sure you are adding patterns to deal with
practical change that is likely to happen, not hypothetical change that may
happen.
Design time isn’t the only time you want to consider introducing patterns;
you’ll also want to do so at refactoring time.

Refactoring time is Patterns time!
Refactoring is the process of making changes to your code to improve the
way it is organized. The goal is to improve its structure, not change its
behavior. This is a great time to reexamine your design to see if it might be
better structured with patterns. For instance, code that is full of conditional
statements might signal the need for the State Pattern. Or, it may be time to
clean up concrete dependencies with a Factory. Entire books have been
written on the topic of refactoring with patterns, and as your skills grow,
you’ll want to study this area more.

Take out what you don’t really need. Don’t be afraid to
remove a Design Pattern from your design.
No one ever talks about when to remove a pattern. You’d think it was
blasphemy! Nah, we’re all adults here; we can take it.
So when do you remove a pattern? When your system has become complex
and the flexibility you planned for isn’t needed. In other words, when a
simpler solution without the pattern would be better.

If you don’t need it now, don’t do it now.
Design Patterns are powerful, and it’s easy to see all kinds of ways they can
be used in your current designs. Developers naturally love to create beautiful
architectures that are ready to take on change from any direction.
Resist the temptation. If you have a practical need to support change in a
design today, go ahead and employ a pattern to handle that change. However,
if the reason is only hypothetical, don’t add the pattern; it is only going to add
complexity to your system, and you might never need it!

MASTER AND STUDENT...

Master: Grasshopper, your initial training is almost complete. What are your plans?

Student: I’m going to Disneyland! And, then I’m going to start creating lots of code with
patterns!

Master: Whoa, hold on. Never use your big guns unless you have to.

Student: What do you mean, Master? Now that I’ve learned design patterns shouldn’t I
be using them in all my designs to achieve maximum power, flexibility and
manageability?

Master: No; patterns are a tool, and a tool that should only be used when needed.
You’ve also spent a lot of time learning design principles. Always start from your

principles and create the simplest code you can that does the job. However, if you see
the need for a pattern emerge, then use it.

Student: So I shouldn’t build my designs from patterns?

Master: That should not be your goal when beginning a design. Let patterns emerge
naturally as your design progresses.

Student: If patterns are so great, why should I be so careful about using them?

Master: Patterns can introduce complexity, and we never want complexity where it is
not needed. But patterns are powerful when used where they are needed. As you already
know, patterns are proven design experience that can be used to avoid common
mistakes. They’re also a shared vocabulary for communicating our design to others.

Student: Well, when do we know it’s okay to introduce design patterns?

Master: Introduce a pattern when you are sure it’s necessary to solve a problem in your
design, or when you are quite sure that it is needed to deal with a future change in the
requirements of your application.

Student: I guess my learning is going to continue even though I already understand a lot
of patterns.

Master: Yes, grasshopper; learning to manage the complexity and change in software is
a life-long pursuit. But now that you know a good set of patterns, the time has come to
apply them where needed in your design and to continue learning more patterns.

Student: Wait a minute, you mean I don’t know them ALL?

Master: Grasshopper, you’ve learned the fundamental patterns; you’re going to find
there are many more, including patterns that just apply to particular domains such as
concurrent systems and enterprise systems. But now that you know the basics, you’re in
good shape to learn them.

Your Mind on Patterns
The Beginner uses patterns everywhere. This is good: the beginner gets
lots of experience with and practice using patterns. The beginner also thinks,
“The more patterns I use, the better the design.” The beginner will learn this
is not so, that all designs should be as simple as possible. Complexity and
patterns should only be used where they are needed for practical extensibility.

“I need a pattern for Hello World.”

As learning progresses, the Intermediate mind starts to see where
patterns are needed and where they aren’t. The intermediate mind still
tries to fit too many square patterns into round holes, but also begins to see
that patterns can be adapted to fit situations where the canonical pattern
doesn’t fit.

“Maybe I need a Singleton here.”

The Zen mind is able to see patterns where they fit naturally. The Zen
mind is not obsessed with using patterns; rather it looks for simple solutions
that best solve the problem. The Zen mind thinks in terms of the object
principles and their trade-offs. When a need for a pattern naturally arises, the
Zen mind applies it knowing well that it may require adaptation. The Zen
mind also sees relationships to similar patterns and understands the subtleties
of differences in the intent of related patterns. The Zen mind is also a
Beginner mind — it doesn’t let all that pattern knowledge overly influence
design decisions.

“This is a natural place for Decorator.”

NOTE

WARNING: Overuse of design patterns can lead to code that is downright over-
engineered. Always go with the simplest solution that does the job and introduce
patterns where the need emerges.

Of course we want you to use Design Patterns!
But we want you to be a good OO designer even more.
When a design solution calls for a pattern, you get the benefits of using a
solution that has been time-tested by lots of developers. You’re also using a
solution that is well documented and that other developers are going to
recognize (you know, that whole shared vocabulary thing).
However, when you use Design Patterns, there can also be a downside.

Design Patterns often introduce additional classes and objects, and so they
can increase the complexity of your designs. Design Patterns can also add
more layers to your design, which adds not only complexity, but also
inefficiency.
Also, using a Design Pattern can sometimes be outright overkill. Many times
you can fall back on your design principles and find a much simpler solution
to solve the same problem. If that happens, don’t fight it. Use the simpler
solution.
Don’t let us discourage you, though. When a Design Pattern is the right tool
for the job, the advantages are many.

Don’t forget the power of the shared vocabulary
We’ve spent so much time in this book discussing OO nuts and bolts that it’s
easy to forget the human side of Design Patterns — they don’t just help load
your brain with solutions, they also give you a shared vocabulary with other
developers. Don’t underestimate the power of a shared vocabulary, it’s one of
the biggest benefits of Design Patterns.
Just think, something has changed since the last time we talked about shared
vocabularies; you’ve now started to build up quite a vocabulary of your own!
Not to mention, you have also learned a full set of OO design principles from
which you can easily understand the motivation and workings of any new
patterns you encounter.
Now that you’ve got the Design Pattern basics down, it’s time for you to go
out and spread the word to others. Why? Because when your fellow
developers know patterns and use a shared vocabulary as well, it leads to
better designs, better communication, and, best of all, it’ll save you a lot of
time that you can spend on cooler things.

Top five ways to share your vocabulary
1. In design meetings: When you meet with your team to discuss a

software design, use design patterns to help stay “in the design” longer.
Discussing designs from the perspective of Design Patterns and OO
principles keeps your team from getting bogged down in
implementation details and prevent many misunderstandings.

2. With other developers: Use patterns in your discussions with other
developers. This helps other developers learn about new patterns and
builds a community. The best part about sharing what you’ve learned is
that great feeling when someone else “gets it”!

3. In architecture documentation: When you write architectural
documentation, using patterns will reduce the amount of documentation
you need to write and gives the reader a clearer picture of the design.

4. In code comments and naming conventions: When you’re writing
code, clearly identify the patterns you’re using in comments. Also,
choose class and method names that reveal any patterns underneath.

Other developers who have to read your code will thank you for
allowing them to quickly understand your implementation.

5. To groups of interested developers: Share your knowledge. Many
developers have heard about patterns but don’t have a good
understanding of what they are. Volunteer to give a brown-bag lunch on
patterns or a talk at your local user group.

Cruisin’ Objectville with the Gang of Four

You won’t find the Jets or Sharks hanging around Objectville, but you will
find the Gang of Four. As you’ve probably noticed, you can’t get far in the
World of Patterns without running into them. So, who is this mysterious
gang?
Put simply, “the GoF,” which includes Erich Gamma, Richard Helm, Ralph
Johnson and John Vlissides, is the group of guys who put together the first
patterns catalog and in the process, started an entire movement in the
software field!
How did they get that name? No one knows for sure; it’s just a name that
stuck. But think about it: if you’re going to have a “gang element” running
around Objectville, could you think of a nicer bunch of guys? In fact, they’ve
even agreed to pay us a visit...

Your journey has just begun...
Now that you’re on top of Design Patterns and ready to dig deeper, we’ve got
three definitive texts that you need to add to your bookshelf...
The definitive Design Patterns text
This is the book that kicked off the entire field of Design Patterns when it
was released in 1995. You’ll find all the fundamental patterns here. In fact,
this book is the basis for the set of patterns we used in Head First Design
Patterns.
You won’t find this book to be the last word on Design Patterns — the field
has grown substantially since its publication — but it is the first and most
definitive.
Picking up a copy of Design Patterns is a great way to start exploring
patterns after Head First.

The definitive Patterns texts
Patterns didn’t start with the GoF; they started with Christopher Alexander, a
professor of architecture at Berkeley — that’s right, Alexander is an
architect, not a computer scientist. Alexander invented patterns for building
living architectures (like houses, towns and cities).
The next time you’re in the mood for some deep, engaging reading, pick up
The Timeless Way of Building and A Pattern Language. You’ll see the true
beginnings of Design Patterns and recognize the direct analogies between
creating “living architecture” and flexible, extensible software.
So grab a cup of Starbuzz Coffee, sit back, and enjoy...

Other Design Patterns resources
You’re going to find there is a vibrant, friendly community of patterns users
and writers out there and they’re glad to have you join them. Here are a few
resources to get you started...
Websites
The Portland Patterns Repository, run by Ward Cunningham, is a wiki
devoted to all things related to patterns. Anyone can participate. You’ll find
threads of discussion on every topic you can think of related to patterns and
OO systems.

http://c2.com/cgi/wiki?WelcomeVisitors

The Hillside Group fosters common programming and design practices and

provides a central resource for patterns work. The site includes information
on many patterns-related resources such as articles, books, mailing lists and
tools.

http://hillside.net/

Conferences and Workshops
And if you’d like to get some face-to-face time with the patterns community,
be sure to check out the many patterns-related conferences and workshops.
The Hillside site maintains a complete list. At the least you’ll want to check
out Pattern Languages of Programs (PLoP), and the ACM Conference on
Object-Oriented Systems, Languages and Applications (OOPSLA).

The Patterns Zoo

As you’ve just seen, patterns didn’t start with software; they started with the
architecture of buildings and towns. In fact, the patterns concept can be
applied in many different domains. Take a walk around the Patterns Zoo to
see a few...

Architectural Patterns are used to create the living, vibrant architecture of
buildings, towns, and cities. This is where patterns got their start.

NOTE

Habitat: found in buildings you like to live in, look at and visit.

NOTE

Habitat: seen hanging around 3-tier architectures, client-server systems and the web.

Application Patterns are patterns for creating system-level architecture.
Many multi-tier architectures fall into this category.

NOTE

Field note: MVC has been known to pass for an application pattern.

Domain-Specific Patterns are patterns that concern problems in specific
domains, like concurrent systems or real-time systems.

NOTE

Help find a habitat___________________

_____J2EE________________________

Business Process Patterns describe the interaction between businesses,
customers and data, and can be applied to problems such as how to
effectively make and communicate decisions.

NOTE

Help find a habitat__________

Development team_____________

Customer support team________

Organizational Patterns describe the structures and practices of human
organizations. Most efforts to date have focused on organizations that
produce and/or support software.

User Interface Design Patterns address the problems of how to design
interactive software programs.

NOTE

Habitat: seen in the vicinity of video game designers, GUI builders, and producers.

NOTE

Field notes: please add your observations of pattern domains here:

Annihilating evil with Anti-Patterns

The Universe just wouldn’t be complete if we had patterns and no anti-
patterns, now would it?
If a Design Pattern gives you a general solution to a recurring problem in a

particular context, then what does an anti-pattern give you?

NOTE

An Anti-Pattern tells you how to go from a problem to a BAD solution.

You’re probably asking yourself, “Why on earth would anyone waste their
time documenting bad solutions?”
Think about it like this: if there is a recurring bad solution to a common
problem, then by documenting it we can prevent other developers from
making the same mistake. After all, avoiding bad solutions can be just as
valuable as finding good ones!
Let’s look at the elements of an anti-pattern:
An anti-pattern tells you why a bad solution is attractive. Let’s face it, no
one would choose a bad solution if there wasn’t something about it that
seemed attractive up front. One of the biggest jobs of the anti-pattern is to
alert you to the seductive aspect of the solution.
An anti-pattern tells you why that solution in the long term is bad. In
order to understand why it’s an anti-pattern, you’ve got to understand how
it’s going to have a negative effect down the road. The anti-pattern describes
where you’ll get into trouble using the solution.
An anti-pattern suggests other patterns that are applicable which may
provide good solutions. To be truly helpful, an anti-pattern needs to point
you in the right direction; it should suggest other possibilities that may lead to
good solutions.
Let’s have a look at an anti-pattern.

An anti-pattern always looks like a good solution, but then turns out to be a bad
solution when it is applied.
By documenting anti-patterns we help others to recognize bad solutions before
they implement them.
Like patterns, there are many types of anti-patterns including development, OO,
organizational, and domain-specific anti-patterns.

NOTE

Here’s an example of a software development anti-pattern.

ANTI-PATTERN

Name: Golden Hammer

NOTE

Just like a Design Pattern, an anti-pattern has a name so we can
create a shared vocabulary.

Problem: You need to choose technologies for your development and you believe that
exactly one technology must dominate the architecture.

Context: You need to develop some new system or piece of software that doesn’t fit
well with the technology that the development team is familiar with.

NOTE

The problem and context, just like a Design Pattern description.

Forces:

NOTE

Tells you why the solution is attractive.

The development team is committed to the technology they know.
The development team is not familiar with other technologies.
Unfamiliar technologies are seen as risky.
It is easy to plan and estimate for development using the familiar technology.

Supposed Solution: Use the familiar technology anyway. The technology is applied
obsessively to many problems, including places where it is clearly inappropriate.

NOTE

The bad, yet attractive, solution.

Refactored Solution: Expanding the knowledge of developers through education,
training, and book study groups that expose developers to new solutions.

NOTE

How to get to a good solution.

Examples:

NOTE

Example of where this anti-pattern has been observed.

Web companies keep using and maintaining their internal homegrown caching systems
when open source alternatives are in use.

NOTE

Adapted from the Portland Pattern Repository’s WIKI at
http://c2.com/ where you’ll find many anti patterns and
discussions.

Tools for your Design Toolbox
You’ve reached that point where you’ve outgrown us. Now’s the time to go
out in the world and explore patterns on your own...

http://c2.com/

BULLET POINTS

Let Design Patterns emerge in your designs; don’t force them in just for the sake of
using a pattern.
Design Patterns aren’t set in stone; adapt and tweak them to meet your needs.
Always use the simplest solution that meets your needs, even if it doesn’t include a
pattern.
Study Design Patterns catalogs to familiarize yourself with patterns and the
relationships among them.
Pattern classifications (or categories) provide groupings for patterns. When they
help, use them.
You need to be committed to be a patterns writer: it takes time and patience, and you
have to be willing to do lots of refinement.
Remember, most patterns you encounter will be adaptations of existing patterns, not
new patterns.
Build your team’s shared vocabulary. This is one of the most powerful benefits of
using patterns.
Like any community, the patterns community has its own lingo. Don’t let that hold
you back. Having read this book, you now know most of it.

Leaving Objectville...

Boy, it’s been great having you in Objectville.
We’re going to miss you, for sure. But don’t worry — before you know it,

the next Head First book will be out and you can visit again. What’s the next
book, you ask? Hmmm, good question! Why don’t you help us decide? Send
email to booksuggestions@wickedlysmart.com.

WHO DOES WHAT? SOLUTION

Match each pattern with its description:

mailto:booksuggestions@wickedlysmart.com

Appendix A. Leftover Patterns

Not everyone can be the most popular. A lot has changed in the last 20
years. Since Design Patterns: Elements of Reusable Object-Oriented
Software first came out, developers have applied these patterns thousands of
times. The patterns we summarize in this appendix are full-fledged, card-
carrying, official GoF patterns, but aren’t used as often as the patterns we’ve
explored so far. But these patterns are awesome in their own right, and if
your situation calls for them, you should apply them with your head held
high. Our goal in this appendix is to give you a high-level idea of what these
patterns are all about.

Bridge
Use the Bridge Pattern to vary not only your implementations, but also

your abstractions.
A scenario
Imagine you’re going to revolutionize “extreme lounging.” You’re writing
the code for a new ergonomic and user-friendly remote control for TVs. You
already know that you’ve got to use good OO techniques because while the
remote is based on the same abstraction, there will be lots of implementations
— one for each model of TV.

Your dilemma
You know that the remote’s user interface won’t be right the first time. In
fact, you expect that the product will be refined many times as usability data
is collected on the remote control.
So your dilemma is that the remotes are going to change and the TVs are
going to change. You’ve already abstracted the user interface so that you can
vary the implementation over the many TVs your customers will own. But
you are also going to need to vary the abstraction because it is going to
change over time as the remote is improved based on the user feedback.

NOTE

Using this design we can vary only the TV implementation, not the user interface.

So how are you going to create an OO design that allows you to vary the
implementation and the abstraction?

Why use the Bridge Pattern?
The Bridge Pattern allows you to vary the implementation and the abstraction
by placing the two in separate class hierarchies.

Now you have two hierarchies, one for the remotes and a separate one for
platform-specific TV implementations. The bridge allows you to vary either
side of the two hierarchies independently.

BRIDGE BENEFITS

Decouples an implementation so that it is not bound permanently to an interface.
Abstraction and implementation can be extended independently.
Changes to the concrete abstraction classes don’t affect the client.

BRIDGE USES AND DRAWBACKS

Useful in graphics and windowing systems that need to run over multiple platforms.
Useful any time you need to vary an interface and an implementation in different
ways.
Increases complexity.

Builder
Use the Builder Pattern to encapsulate the construction of a product and
allow it to be constructed in steps.
A scenario
You’ve just been asked to build a vacation planner for Patternsland, a new
theme park just outside of Objectville. Park guests can choose a hotel and
various types of admission tickets, make restaurant reservations, and even
book special events. To create a vacation planner, you need to be able to
create structures like this:

You need a flexible design
Each guest’s planner can vary in the number of days and types of activities it
includes. For instance, a local resident might not need a hotel, but wants to
make dinner and special event reservations. Another guest might be flying
into Objectville and needs a hotel, dinner reservations, and admission tickets.
So, you need a flexible data structure that can represent guest planners and all
their variations; you also need to follow a sequence of potentially complex
steps to create the planner. How can you provide a way to create the complex
structure without mixing it with the steps for creating it?

Why use the Builder Pattern?
Remember Iterator? We encapsulated the iteration into a separate object and
hid the internal representation of the collection from the client. It’s the same
idea here: we encapsulate the creation of the trip planner in an object (let’s
call it a builder), and have our client ask the builder to construct the trip
planner structure for it.

BUILDER BENEFITS

Encapsulates the way a complex object is constructed.
Allows objects to be constructed in a multistep and varying process (as opposed to
one-step factories).
Hides the internal representation of the product from the client.
Product implementations can be swapped in and out because the client only sees an
abstract interface.

BUILDER USES AND DRAWBACKS

Often used for building composite structures.
Constructing objects requires more domain knowledge of the client than when using
a Factory.

Chain of Responsibility

Use the Chain of Responsibility Pattern when you want to give more
than one object a chance to handle a request.
A scenario
Mighty Gumball has been getting more email than they can handle since the
release of the Java-powered Gumball Machine. From their own analysis they
get four kinds of email: fan mail from customers that love the new 1-in-10
game, complaints from parents whose kids are addicted to the game, and
requests to put machines in new locations. They also get a fair amount of
spam.
All fan mail should go straight to the CEO, all complaints should go to the
legal department and all requests for new machines should go to business
development. Spam should be deleted.
Your task
Mighty Gumball has already written some AI detectors that can tell if an
email is spam, fan mail, a complaint, or a request, but they need you to create
a design that can use the detectors to handle incoming email.

How to use the Chain of Responsibility Pattern
With the Chain of Responsibility Pattern, you create a chain of objects to
examine requests. Each object in turn examines a request and either handles
it, or passes it on to the next object in the chain.

NOTE

Each object in the chain acts as a handler and has a successor object. If it can handle the
request, it does; otherwise, it forwards the request to its successor.

As email is received, it is passed to the first handler: the SpamHandler. If the
SpamHandler can’t handle the request, it is passed on to the FanHandler. And
so on...

CHAIN OF RESPONSIBILITY BENEFITS

Decouples the sender of the request and its receivers.
Simplifies your object because it doesn’t have to know the chain’s structure and keep
direct references to its members.
Allows you to add or remove responsibilities dynamically by changing the members
or order of the chain.

CHAIN OF RESPONSIBILITY USES AND DRAWBACKS

Commonly used in windows systems to handle events like mouse clicks and
keyboard events.
Execution of the request isn’t guaranteed; it may fall off the end of the chain if no

object handles it (this can be an advantage or a disadvantage).
Can be hard to observe and debug at runtime.

Flyweight
Use the Flyweight Pattern when one instance of a class can be used to
provide many “virtual instances.”
A scenario
You want to add trees as objects in your hot new landscape design
application. In your application, trees don’t really do very much; they have an
X-Y location, and they can draw themselves dynamically, depending on how
old they are. The thing is, a user might want to have lots and lots of trees in
one of their home landscape designs. It might look something like this:

Your big client’s dilemma
You’ve just landed your “reference account.” That key client you’ve been
pitching for months. They’re going to buy 1,000 seats of your application,
and they’re using your software to do the landscape design for huge planned
communities. After using your software for a week, your client is

complaining that when they create large groves of trees, the app starts getting
sluggish...

Why use the Flyweight Pattern?
What if, instead of having thousands of Tree objects, you could redesign your
system so that you’ve got only one instance of Tree, and a client object that
maintains the state of ALL your trees? That’s the Flyweight!

FLYWEIGHT BENEFITS

Reduces the number of object instances at runtime, saving memory.
Centralizes state for many “virtual” objects into a single location.

FLYWEIGHT USES AND DRAWBACKS

The Flyweight is used when a class has many instances, and they can all be
controlled identically.
A drawback of the Flyweight pattern is that once you’ve implemented it, single,
logical instances of the class will not be able to behave independently from the other
instances.

Interpreter
Use the Interpreter Pattern to build an interpreter for a language.

A scenario
Remember the Duck Simulator? You have a hunch it would also make a great
educational tool for children to learn programming. Using the simulator, each
child gets to control one duck with a simple language. Here’s an example of
the language:

RELAX

The Interpreter Pattern requires some knowledge of formal grammars.

If you’ve never studied formal grammars, go ahead and read through the pattern; you’ll
still get the gist of it.

Now, remembering how to create grammars from one of your old
introductory programming classes, you write out the grammar:

Now what?
You’ve got a grammar; now all you need is a way to represent and interpret
sentences in the grammar so that the students can see the effects of their
programming on the simulated ducks.

How to implement an interpreter
When you need to implement a simple language, the Interpreter Pattern
defines a class-based representation for its grammar along with an interpreter
to interpret its sentences. To represent the language, you use a class to
represent each rule in the language. Here’s the duck language translated into
classes. Notice the direct mapping to the grammar.

To interpret the language, call the interpret() method on each expression type.
This method is passed a context — which contains the input stream of the
program we’re parsing — and matches the input and evaluates it.

INTERPRETER BENEFITS

Representing each grammar rule in a class makes the language easy to implement.
Because the grammar is represented by classes, you can easily change or extend the
language.
By adding methods to the class structure, you can add new behaviors beyond
interpretation, like pretty printing and more sophisticated program validation.

INTERPRETER USES AND DRAWBACKS

Use interpreter when you need to implement a simple language.
Appropriate when you have a simple grammar and simplicity is more important than
efficiency.

Used for scripting and programming languages.
This pattern can become cumbersome when the number of grammar rules is large. In
these cases a parser/compiler generator may be more appropriate.

Mediator
Use the Mediator Pattern to centralize complex communications and
control between related objects.
A scenario
Bob has a Java-enabled auto-house, thanks to the good folks at
HouseOfTheFuture. All of his appliances are designed to make his life easier.
When Bob stops hitting the snooze button, his alarm clock tells the coffee
maker to start brewing. Even though life is good for Bob, he and other clients
are always asking for lots of new features: No coffee on the weekends... Turn
off the sprinkler 15 minutes before a shower is scheduled... Set the alarm
early on trash days...

HouseOfTheFuture’s dilemma
It’s getting really hard to keep track of which rules reside in which objects,

and how the various objects should relate to each other.

Mediator in action...
With a Mediator added to the system, all of the appliance objects can be
greatly simplified:

They tell the Mediator when their state changes.
They respond to requests from the Mediator.

Before we added the Mediator, all of the appliance objects needed to know
about each other... they were all tightly coupled. With the Mediator in place,
the appliance objects are all completely decoupled from each other.
The Mediator contains all of the control logic for the entire system. When an
existing appliance needs a new rule, or a new appliance is added to the
system, you’ll know that all of the necessary logic will be added to the
Mediator.

MEDIATOR BENEFITS

Increases the reusability of the objects supported by the Mediator by decoupling
them from the system.
Simplifies maintenance of the system by centralizing control logic.
Simplifies and reduces the variety of messages sent between objects in the system.

MEDIATOR USES AND DRAWBACKS

The Mediator is commonly used to coordinate related GUI components.
A drawback of the Mediator Pattern is that without proper design, the Mediator

object itself can become overly complex.

Memento
Use the Memento Pattern when you need to be able to return an object
to one of its previous states; for instance, if your user requests an
“undo.”
A scenario
Your interactive role playing game is hugely successful, and has created a
legion of addicts, all trying to get to the fabled “level 13.” As users progress
to more challenging game levels, the odds of encountering a game-ending
situation increase. Fans who have spent days progressing to an advanced
level are understandably miffed when their character gets snuffed, and they
have to start all over. The cry goes out for a “save progress” command, so
that players can store their game progress and at least recover most of their
efforts when their character is unfairly extinguished. The “save progress”
function needs to be designed to return a resurrected player to the last level
she completed successfully.

The Memento at work
The Memento has two goals:

Saving the important state of a system’s key object.
Maintaining the key object’s encapsulation.

Keeping the single responsibility principle in mind, it’s also a good idea to
keep the state that you’re saving separate from the key object. This separate
object that holds the state is known as the Memento object.

MEMENTO BENEFITS

Keeping the saved state external from the key object helps to maintain cohesion.
Keeps the key object’s data encapsulated.
Provides easy-to-implement recovery capability.

MEMENTO USES AND DRAWBACKS

The Memento is used to save state.
A drawback to using Memento is that saving and restoring state can be time
consuming.
In Java systems, consider using Serialization to save a system’s state.

Prototype
Use the Prototype Pattern when creating an instance of a given class is
either expensive or complicated.
A scenario
Your interactive role playing game has an insatiable appetite for monsters. As

your heroes make their journey through a dynamically created landscape,
they encounter an endless chain of foes that must be subdued. You’d like the
monster’s characteristics to evolve with the changing landscape. It doesn’t
make a lot of sense for bird-like monsters to follow your characters into
underseas realms. Finally, you’d like to allow advanced players to create their
own custom monsters.

Prototype to the rescue
The Prototype Pattern allows you to make new instances by copying existing
instances. (In Java this typically means using the clone() method, or de-
serialization when you need deep copies.) A key aspect of this pattern is that
the client code can make new instances without knowing which specific class
is being instantiated.

PROTOTYPE BENEFITS

Hides the complexities of making new instances from the client.
Provides the option for the client to generate objects whose type is not known.
In some circumstances, copying an object can be more efficient than creating a new
object.

PROTOTYPE USES AND DRAWBACKS

Prototype should be considered when a system must create new objects of many
types in a complex class hierarchy.
A drawback to using the Prototype is that making a copy of an object can sometimes
be complicated.

Visitor
Use the Visitor Pattern when you want to add capabilities to a composite
of objects and encapsulation is not important.
A scenario
Customers who frequent the Objectville Diner and Objectville Pancake
House have recently become more health conscious. They are asking for
nutritional information before ordering their meals. Because both
establishments are so willing to create special orders, some customers are
even asking for nutritional information on a per ingredient basis.
Lou’s proposed solution:

Mel’s concerns...
“Boy, it seems like we’re opening Pandora’s box. Who knows what new
method we’re going to have to add next, and every time we add a new
method we have to do it in two places. Plus, what if we want to enhance the
base application with, say, a recipes class? Then we’ll have to make these
changes in three different places...”

The Visitor drops by

The Visitor works hand in hand with a Traverser. The Traverser knows how
to navigate to all of the objects in a Composite. The Traverser guides the
Visitor through the Composite so that the Visitor can collect state as it goes.
Once state has been gathered, the Client can have the Visitor perform various
operations on the state. When new functionality is required, only the Visitor
must be enhanced.

VISITOR BENEFITS

Allows you to add operations to a Composite structure without changing the
structure itself.
Adding new operations is relatively easy.
The code for operations performed by the Visitor is centralized.

VISITOR DRAWBACKS

The Composite classes’ encapsulation is broken when the Visitor is used.
Because the traversal function is involved, changes to the Composite structure are
more difficult.

Appendix B.

And now, a final word from the Head First Institute...
Our world class researchers are working day and night in a mad race to
uncover the mysteries of Life, the Universe and Everything–before it’s too
late. Never before has a research team with such noble and daunting goals
been assembled. Currently, we are focusing our collective energy and brain
power on creating the ultimate learning machine. Once perfected, you and
others will join us in our quest!
You’re fortunate to be holding one of our first prototypes in your hands. But
only through constant refinement can our goal be achieved. We ask you, a
pioneer user of the technology, to send us periodic field reports of your
progress, at fieldreports@wickedlysmart.com

mailto:fieldreports@wickedlysmart.com

Appendix C. Mighty Gumball

Without your help the next generation may never know the joys of the
gumball machine. Today, inflexible, poorly designed code is putting our
Java-powered machines at risk. Mighty Gumball won’t let that happen.
We’re devoting ourselves to helping you improve your Java and OO design
skills so that you can help us build the next generation of Mighty Gumball
machines.

Come on, Java toasters are sooo ‘90s, visit us at
http://www.wickedlysmart.com.

http://www.wickedlysmart.com

Index

A NOTE ON THE DIGITAL INDEX

A link in an index entry is displayed as the section title in which that entry appears.
Because some sections have multiple index markers, it is not unusual for an entry to
have several links to the same section. Clicking on any link will take you directly to the
place in the text in which the marker appears.

A

abstract class

about, Our PizzaStore isn’t going to be very popular without some pizzas,
so let’s implement them

definition of, Template Method Pattern defined

methods in, Template Method Pattern defined

Abstract Factory Pattern

about, What have we done?

building ingredient factories, Building the ingredient factories, A very
dependent PizzaStore

combining patterns, Duck reunion, Exercise Solutions

definition of, Abstract Factory Pattern defined

exercise matching description of, So you wanna be a Design Patterns
writer, Boy, it’s been great having you in Objectville.

Factory Method Pattern and, Abstract Factory Pattern defined

implementing, Abstract Factory Pattern defined

abstract superclasses, Designing the Duck Behaviors

ACM Conference, Your journey has just begun...

Adapter Pattern

about, The Adapter Pattern explained

adapting to Iterator Enumeration interface, Adapting an Enumeration to an
Iterator

combining patterns, Duck reunion

dealing with remove() method, Dealing with the remove() method

Decorator Pattern vs., Writing the EnumerationIterator adapter

definition of, Adapter Pattern defined

designing Adapter, Adapting an Enumeration to an Iterator

exercise matching description of, The magic of Iterator & Composite
together..., Tools for your Design Toolbox, Running the code..., So you
wanna be a Design Patterns writer, Boy, it’s been great having you in
Objectville.

exercise matching pattern with its intent, And now for something
different..., Tools for your Design Toolbox

Facade Pattern vs., Lights, Camera, Facade!

in Model-View-Controller, Adapting the Model

object and class adapters, Object and class adapters

Proxy Pattern vs., What did we do?

simple real world adapters, Real-world adapters

writing Enumeration Iterator Adapter, Dealing with the remove() method

adapters, OO (Object-Oriented)

about, Adapters all around us

creating Two Way Adapters, Here’s how the Client uses the Adapter

in action, If it walks like a duck and quacks like a duck, then it must might
be a duck turkey wrapped with a duck adapter...

object and class object and class, Object and class adapters

test driving, Test drive the adapter

aggregates, Meet the Iterator Pattern, Iterator Pattern defined

Alexander, Christopher

A Pattern Language, Your journey has just begun...

The Timeless Way of Building, Your journey has just begun...

algorithms, encapsulating

about, The Template Method Pattern: Encapsulating Algorithms

abstracting prepareRecipe(), Abstracting prepareRecipe()

Template Method Pattern and

about, Meet the Template Method

applets in, Applets

code up close, Template Method Pattern defined

definition of, Template Method Pattern defined

hooks in, Template Method Pattern defined

in real world, Template Methods in the Wild

sorting with, Sorting with Template Method

Swing and, Swingin’ with Frames

testing code, Let’s run the Test Drive

The Hollywood Principle and, The Hollywood Principle

Anti-Patterns, Annihilating evil with Anti-Patterns

Applet, Template Method Pattern and, Applets

Applicability section, in pattern catalog, Looking more closely at the Design
Pattern definition

Application Patterns, The Patterns Zoo

Architectural Patterns, The Patterns Zoo

ArrayList, arrays and, Lou and Mel’s Menu implementations, Iterators and
Collections

arrays

iteration and, Can we encapsulate the iteration?

iterator and hasNext() method with, Adding an Iterator to DinerMenu

iterator and next() method with, Adding an Iterator to DinerMenu

removing an element, Cleaning things up with java.util.Iterator

sorting with Template Method Pattern, Sorting with Template Method

B

Basham, Bryan, (Head First Servlets & JSP), Model 2: DJ’ing from a cell
phone

Be the JVM solution exercises, dealing with multithreading, Houston,
Hershey, PA we have a problem..., Tools for your Design Toolbox

behavior, encapsulating, Designing the Duck Behaviors

behavioral patterns category, Design Patterns, Pattern Categories, Pattern
Categories

behaviors

classes as, Implementing the Duck Behaviors

classes extended to incorporate new, The Open-Closed Principle

declaring variables, Integrating the Duck Behavior

delegating to decorated objects while adding, Constructing a drink order
with Decorators

designing, Designing the Duck Behaviors

encapsulating, The Big Picture on encapsulated behaviors

implementing, Implementing the Duck Behaviors

integrating, Integrating the Duck Behavior

setting dynamically, Setting behavior dynamically

Bert Bates, (Head First Servlets & JSP), Model 2: DJ’ing from a cell phone

Bridge Pattern, Bridge

Builder Pattern, Builder

Business Process Patterns, The Patterns Zoo

C

Caching Proxy, as form of Virtual Proxy, What did we do?, The Proxy Zoo

Cafe Menu, integrating into framework (Iterator Pattern)

about, Taking a look at the Café Menu

reworking code, Reworking the Café Menu code

CD covers, displaying using Proxy Pattern

about, Displaying CD covers

code for, Compound Patterns: Patterns of Patterns

designing Virtual Proxy, Designing the CD cover Virtual Proxy

reviewing process, What did we do?

testing viewer, Testing the CD Cover Viewer

writing Image Proxy, Writing the Image Proxy

Chain of Responsibility Pattern, Chain of Responsibility

change

constant in software development, The one constant in software
development

identifying, The power of Loose Coupling

iteration and, Single Responsibility

Chocolate Factory, using Singleton Pattern

about, The Chocolate Factory

fixing Chocolate Boiler code, Meanwhile, back at the Chocolate Factory...

class adapters, object vs., Object and class adapters

class design, of Observer Pattern, The Observer Pattern defined

class hierarchies, parallel, Another perspective: parallel class hierarchies

class patterns, Design Patterns, Pattern Categories

classes., Welcome to Starbuzz Coffee

(see also subclasses)

abstract, Our PizzaStore isn’t going to be very popular without some
pizzas, so let’s implement them

adapter, Here’s how the Client uses the Adapter, Tools for your Design
Toolbox

Adapter Pattern, Adapter Pattern defined

altering decorator, Tools for your Design Toolbox

as behaviors, Implementing the Duck Behaviors

command

about, The Command Pattern means lots of command classes

passing method references, Simplifying even more with method
references

using lambda expressions, Simplifying the Remote Control with lambda
expressions

creating, Separating what changes from what stays the same

Factory Method Pattern creator and product, It’s finally time to meet the
Factory Method Pattern

having single responsibility, Single Responsibility

high-level component, The Dependency Inversion Principle

identifying as Proxy class, Running the code...

Open-Closed Principle, The Open-Closed Principle

state

defining, Defining the State interfaces and classes

implementing, Implementing our State classes, Implementing more
states, We still need to finish the Gumball 1 in 10 game

increasing number in design of, The State Pattern defined

reworking state classes, Reworking the Gumball Machine

state transitions in, The State Pattern defined

using composition with, HAS-A can be better than IS-A

using instance variables instead of, Welcome to Starbuzz Coffee

using instead of Singletons static, Congratulations!

using new operator for instantiating concrete, The Factory Pattern: Baking
with OO Goodness

Classification section, in pattern catalog, Looking more closely at the Design
Pattern definition

classloaders, using with Singletons, Congratulations!

client heap, Remote methods 101

client helper (stubs), in RMI, Java RMI, the Big Picture, Java RMI, the Big
Picture, How does the client get the stub object?, And now let’s put the
monitor in the hands of the CEO. Hopefully, this time he’ll love it

Code Magnets exercise

for DinerMenu Iterator, Iterators and Collections, Tools for your Design
Toolbox

for Observer Pattern, Reworking the Weather Station with the built-in
support, Tools for your Design Toolbox

cohesion, Single Responsibility

Collaborations section, in pattern catalog, Looking more closely at the
Design Pattern definition

collection classes, Iterators and Collections

collection of objects

abstracting with Iterator Pattern

about, The Iterator and Composite Patterns: Well-Managed Collections

adding Iterators, Adding an Iterator to DinerMenu

cleaning up code using java.util.Iterator, Cleaning things up with
java.util.Iterator

remove() method in, Making some improvements...

implementing Iterators for, Meet the Iterator Pattern

integrating into framework

about, Taking a look at the Café Menu

reworking code, Reworking the Café Menu code

meaning of, Meet the Iterator Pattern

using Composite Pattern

about, Designing Menus with Composite

implementing components, Implementing the Menu Component

testing code, Getting ready for a test drive...

tree structure, The Composite Pattern defined, Getting ready for a test
drive...

using with Iterators, Flashback to Iterator

using whole-part relationships, The magic of Iterator & Composite
together...

Collections, Iterators and, Iterators and Collections

Combining Patterns

Abstract Factory Pattern, Duck reunion

Adapter Pattern, Duck reunion

class diagram for, A duck’s eye view: the class diagram

Composite Pattern, Duck reunion

Decorator Pattern, Duck reunion

Iterator Pattern, Duck reunion

Observer Pattern, Duck reunion

command classes, in Command Pattern

about, The Command Pattern means lots of command classes

passing method references, Simplifying even more with method references

using lambda expressions, Simplifying the Remote Control with lambda
expressions

command objects

encapsulating requests to do something, Cubicle Conversation

mapping, From the Diner to the Command Pattern

using, Using the command object

Command Pattern

command classes in

about, The Command Pattern means lots of command classes

passing method references, Simplifying even more with method
references

using lambda expressions, Simplifying the Remote Control with lambda
expressions

command objects

building, Our first command object

encapsulating requests to do something, Cubicle Conversation

mapping, From the Diner to the Command Pattern

using, Using the command object

definition of, The Command Pattern defined

dumb and smart command objects, Using a macro command

exercise matching description of, So you wanna be a Design Patterns
writer, Boy, it’s been great having you in Objectville.

home automation remote control

about, Taking a look at the vendor classes

building, Our first command object, Tools for your Design Toolbox

class diagram, The Command Pattern defined: the class diagram

command classes in, The Command Pattern means lots of command
classes, Simplifying even more with method references

creating commands to be loaded, The Command Pattern defined: the
class diagram

defining, The Command Pattern defined

designing, Cubicle Conversation

display of on and off slots, Check out the results of all those lambda
expression commands...

implementing, Implementing the Commands

macro commands, Every remote needs a Party Mode!, Using a macro
command, Tools for your Design Toolbox

mapping, From the Diner to the Command Pattern, Tools for your
Design Toolbox

Null Object in, Now, let’s check out the execution of our remote control
test..., Test the remote control with lambda expressions

testing, Using the command object, Putting the Remote Control through
its paces, Using a macro command, Test the remote control with lambda
expressions

undo commands, Time to write that documentation..., Get ready to test
the ceiling fan, Using a macro command, Tools for your Design
Toolbox

vendor classes for, Taking a look at the vendor classes

writing documentation, Time to write that documentation...

logging requests using, More uses of the Command Pattern: logging
requests

mapping, From the Diner to the Command Pattern, Tools for your Design
Toolbox

Null Object, Now, let’s check out the execution of our remote control
test...

queuing requests using, More uses of the Command Pattern: queuing
requests

understanding, Meanwhile, back at the Diner..., or, A brief introduction to
the Command Pattern

Complexity Hiding Proxy, The Proxy Zoo

components of object, The Principle of Least Knowledge

Composite Iterator, Flashback to Iterator

Composite Pattern

combining patterns, Duck reunion

definition of, The Composite Pattern defined

dessert submenu using

about, Just when we thought it was safe...

designing, Designing Menus with Composite, Getting ready for a test
drive...

implementing, Implementing the Menu Component

testing, Getting ready for a test drive...

using Iterators in, Flashback to Iterator

exercise matching description of, The magic of Iterator & Composite
together..., Tools for your Design Toolbox, So you wanna be a Design
Patterns writer, Boy, it’s been great having you in Objectville.

in Model 2, Strategy

in Model-View-Controller, Looking at MVC through patterns-colored
glasses, Composite

Iterator Pattern and, Flashback to Iterator

on implementation issues, The magic of Iterator & Composite together...

safety versus transparency, Duck reunion

transparency in, Getting ready for a test drive...

tree structure of, The Composite Pattern defined, Getting ready for a test
drive...

try/catch, using, The magic of Iterator & Composite together...

using with Iterator, Flashback to Iterator

vegetarian menu using Iterators, Give me the vegetarian menu

composition

adding behavior at runtime, Welcome to Starbuzz Coffee

favoring over inheritance, HAS-A can be better than IS-A, Welcome to
Starbuzz Coffee

inheritance vs., Cubicle Conversation

object adapters and, Object and class adapters

compound patterns, using

about, Compound Patterns: Patterns of Patterns

Model 2

about, MVC and the Web

Composite Pattern, Strategy

from cell phone, Model 2: DJ’ing from a cell phone

Observer Pattern, Design Patterns and Model 2

Strategy Pattern, Strategy

Model-View-Controller

about, If Elvis were a compound pattern, his name would be Model-
View-Controller, and he’d be singing a little song like this..., Meet the
Model-View-Controller

Adapter Pattern, Exploring Strategy

Beat model, Meet the Java DJ View, Exercise Solutions

Composite Pattern, Looking at MVC through patterns-colored glasses,
Composite

controllers per view, Composite

Heart controller, Now we’re ready for a HeartController, Exercise
Solutions

Heart model, Exploring Strategy, Exercise Solutions

implementing controller, Now for the Controller

implementing DJ View, Using MVC to control the beat..., Exercise
Solutions

Mediator Pattern, Composite

model in, Composite

Observer Pattern, Looking at MVC through patterns-colored glasses,
Building the pieces

song, If Elvis were a compound pattern, his name would be Model-
View-Controller, and he’d be singing a little song like this...

state of model, Composite

Strategy Pattern, Looking at MVC through patterns-colored glasses,
Now for the Controller, Exploring Strategy

testing, Putting it all together...

views accessing model state methods, Composite

web and, MVC and the Web

multiple patterns vs., Duck reunion

concrete classes

deriving from, A few guidelines to help you follow the Principle...

Factory Pattern and, Factory Method Pattern defined

getting rid of, Reworking the PizzaStore class

instantiating objects and, Looking at object dependencies

using new operator for instantiating, The Factory Pattern: Baking with OO
Goodness

variables holding reference to, A few guidelines to help you follow the
Principle...

concrete creators, Factory Method Pattern defined

concrete implementation object, assigning, Designing the Duck Behaviors

concrete methods, as hooks, Template Method Pattern defined

concrete subclasses

abstract class methods defined by, Let’s run the Test Drive

in Pizza Store project, Allowing the subclasses to decide

Consequences section, in pattern catalog, Looking more closely at the Design
Pattern definition

constant in software development, The one constant in software development

controlling object access, using Proxy Pattern

about, The Proxy Pattern: Controlling Object Access

Caching Proxy, What did we do?, The Proxy Zoo

Complexity Hiding Proxy, The Proxy Zoo

Copy-On-Write Proxy, The Proxy Zoo

Firewall Proxy, The Proxy Zoo

Protection Proxy

about, Using the Java API’s Proxy to create a protection proxy

creating dynamic proxy, Big Picture: creating a Dynamic Proxy for the
PersonBean

implementing matchmaking service, The PersonBean implementation

protecting subjects, Five-minute drama: protecting subjects

testing matchmaking service, Testing the matchmaking service

using dynamic proxy, Using the Java API’s Proxy to create a protection
proxy

Remote Proxy

about, Testing the Monitor

adding to monitoring code, Adding a remote proxy to the Gumball
Machine monitoring code

preparing for remote service, Getting the GumballMachine ready to be a
remote service

registering with RMI registry, Registering with the RMI registry...

reusing client for, Now for the GumballMonitor client...

reviewing process, And now let’s put the monitor in the hands of the
CEO. Hopefully, this time he’ll love it

role of, The role of the ‘remote proxy’

testing, Writing the Monitor test drive

wrapping objects and, What did we do?

Smart Reference Proxy, The Proxy Zoo

Synchronization Proxy, The Proxy Zoo

Virtual Proxy

about, Get ready for Virtual Proxy

designing Virtual Proxy, Designing the CD cover Virtual Proxy

reviewing process, What did we do?

testing, Testing the CD Cover Viewer

writing Image Proxy, Writing the Image Proxy

Copy-On-Write Proxy, The Proxy Zoo

create method

replacing new operator with, Reworking the PizzaStore class

static method vs., Building a simple pizza factory

using subclasses with, Allowing the subclasses to decide

creating static classes instead of Singleton, Houston, Hershey, PA we have a
problem...

creational patterns category, Design Patterns, Pattern Categories, Pattern
Categories

creator classes, in Factory Method Pattern, It’s finally time to meet the
Factory Method Pattern, Factory Method Pattern defined

crossword puzzle, Tools for your Design Toolbox

Cunningham, Ward, Your journey has just begun...

D

Decorator Pattern

about, Meet the Decorator Pattern, Give it a spin

Adapter Pattern vs., Writing the EnumerationIterator adapter

combining patterns, Duck reunion

definition of, The Decorator Pattern defined

disadvantages of, Decorating the java.io classes

exercise matching description of, Running the code..., So you wanna be a
Design Patterns writer, Boy, it’s been great having you in Objectville.

exercise matching pattern with its intent, And now for something
different..., Tools for your Design Toolbox

in Java I/O, Real World Decorators: Java I/O

in Structural patterns category, Pattern Categories

Proxy Pattern vs., What did we do?

Starbuzz Coffee project

about, Welcome to Starbuzz Coffee

adding sizes to code, Serving some coffees

constructing drink orders, Constructing a drink order with Decorators

decorating beverages in, Decorating our Beverages

drawing beverage order process, New barista training, Tools for your
Design Toolbox

testing order code, Serving some coffees

using Java decorators, Real World Decorators: Java I/O

writing code, Writing the Starbuzz code

decoupling, Iterator allowing, What we have so far..., What does this get us?,
Iterator Pattern defined, Iterators and Collections

delegation, adding behavior at runtime, Welcome to Starbuzz Coffee

dependence, in Observer Pattern, The Observer Pattern defined: the class
diagram

Dependency Inversion Principle, The Dependency Inversion Principle, The
Hollywood Principle and Template Method

dependency rot, The Hollywood Principle

Design Patterns

becoming writer of, So you wanna be a Design Patterns writer

behavioral patterns category, Pattern Categories, Pattern Categories

categories of, Pattern Categories

class patterns, Pattern Categories

creational patterns category, Pattern Categories, Pattern Categories

definition of, Design Pattern defined

discovering own, Looking more closely at the Design Pattern definition

exercise matching description of, Boy, it’s been great having you in
Objectville.

frameworks vs., How do I use Design Patterns?

guide to better living with, Better Living with Patterns: Patterns in the Real
World

implement on interface in, The Simple Factory defined

libraries vs., How do I use Design Patterns?

object patterns, Pattern Categories

organizing, Organizing Design Patterns

overusing, Your Mind on Patterns

resources for, Your journey has just begun...

rule of three applied to, So you wanna be a Design Patterns writer

structural patterns category, Pattern Categories, Pattern Categories

thinking in patterns, Thinking in Patterns

using, How do I use Design Patterns?, If you don’t need it now, don’t do it
now., Your Mind on Patterns

your mind on patterns, Your Mind on Patterns

Design Patterns: Reusable Object-Oriented Software (Gamma et al.), Your
journey has just begun...

design principles

Dependency Inversion Principle, The Dependency Inversion Principle

designing upon abstractions, The Dependency Inversion Principle

encapsulate what varies, Zeroing in on the problem..., Tools for your
Design Toolbox, Tools for your Design Toolbox, Factory Method Pattern
defined

favor composition over inheritance, HAS-A can be better than IS-A, Tools
for your Design Toolbox, Tools for your Design Toolbox, The messy
STATE of things...

One Class, One Responsibility Principle, Congratulations!, Single
Responsibility, Getting ready for a test drive...

one instance. (see Singleton Pattern)

Open-Closed Principle, The Open-Closed Principle, Is the Waitress ready
for prime time?, The messy STATE of things...

Principle of Least Knowledge, The Principle of Least Knowledge

program to an interface, not an implementation, Designing the Duck
Behaviors, The dark side of java.util.Observable, Tools for your Design
Toolbox, Tools for your Design Toolbox, What does this get us?

Single Responsibility Principle, Single Responsibility

strive for loosely coupled designs between objects that interact, The power
of Loose Coupling

The Hollywood Principle, The Hollywood Principle

using Observer Pattern, Tools for your Design Toolbox, Tools for your
Design Toolbox

Design Puzzles

drawing class diagram making use of view and controller, Now for the
Controller, Exercise Solutions

drawing parallel set of classes, Another perspective: parallel class
hierarchies, Tools for your Design Toolbox

drawing state diagram, You knew it was coming... a change request!, Tools
for your Design Toolbox

of classes and interfaces, Speaking of Design Patterns..., Tools for your
Design Toolbox

redesigning classes to remove redundancy, It’s time for some more
caffeine

redesigning Image Proxy, Writing the Image Proxy, Tools for your Design
Toolbox

dessert submenu, using Composite Pattern

about, Just when we thought it was safe...

designing, Designing Menus with Composite, Getting ready for a test
drive...

implementing, Implementing the Menu Component

testing, Getting ready for a test drive...

using Iterators in, Flashback to Iterator

diner menus, merging (Iterator Pattern)

about, Breaking News: Objectville Diner and Objectville Pancake House
Merge

adding Iterators, Adding an Iterator to DinerMenu

cleaning up code using java.util.Iterator, Cleaning things up with
java.util.Iterator

encapsulating Iterator, Can we encapsulate the iteration?

implementing Iterators for, Meet the Iterator Pattern

implementing of, Lou and Mel’s Menu implementations

DJ View, Using MVC to control the beat..., Exercise Solutions

Domain-Specific Patterns, The Patterns Zoo

double-checked locking, reducing use of synchronization using, 3. Use
“double-checked locking” to reduce the use of synchronization in
getInstance().

Duck Magnets exercises, object and class object and class adapters, Object
and class adapters

duck simulator, rebuilding

about, Duck reunion

adding Abstract Factory Pattern, Duck reunion, Exercise Solutions

adding Adapter Pattern, Duck reunion

adding Composite Pattern, Duck reunion

adding Decorator Pattern, Duck reunion

adding Iterator Pattern, Duck reunion

adding Observer Pattern, Duck reunion

class diagram, A duck’s eye view: the class diagram

dumb command objects, Using a macro command

dynamic aspect of dynamic proxies, Running the code...

dynamic proxy

creating, Big Picture: creating a Dynamic Proxy for the PersonBean

using to create proxy implementation, Using the Java API’s Proxy to
create a protection proxy

E

encapsulate what varies, Zeroing in on the problem..., Tools for your Design
Toolbox, Tools for your Design Toolbox, Factory Method Pattern defined,
The messy STATE of things...

encapsulating algorithms

about, The Template Method Pattern: Encapsulating Algorithms

abstracting prepareRecipe(), Abstracting prepareRecipe()

encapsulating behavior, Designing the Duck Behaviors

encapsulating code

in behaviors, The Big Picture on encapsulated behaviors

in object creation, Encapsulating object creation

object creation, Factory Method Pattern defined

Template Method Pattern and

about, Meet the Template Method

applets in, Applets

code up close, Template Method Pattern defined

definition of, Template Method Pattern defined

hooks in, Template Method Pattern defined

in real world, Template Methods in the Wild

sorting with, Sorting with Template Method

Swing and, Swingin’ with Frames

testing code, Let’s run the Test Drive

The Hollywood Principle and, The Hollywood Principle

encapsulating iteration, Can we encapsulate the iteration?

encapsulating method invocation, The Command Pattern: Encapsulating
Invocation, The Command Pattern defined

encapsulating object construction, Builder

encapsulating requests, The Command Pattern defined

encapsulating subsystem, Facades, Lights, Camera, Facade!

Enumeration

about, Real-world adapters

adapting to Iterator, Adapting an Enumeration to an Iterator

java.util.Enumeration as older implementation of Iterator, Real-world
adapters, Iterator Pattern defined

remove() method and, Dealing with the remove() method

writing Adapter that adapts Iterator to, Writing the EnumerationIterator
adapter, Tools for your Design Toolbox

exercises

Be the JVM solution, dealing with multithreading, Houston, Hershey, PA
we have a problem..., Tools for your Design Toolbox

Code Magnets

for DinerMenu Iterator, Iterators and Collections, Tools for your Design
Toolbox

for Observer Pattern, Reworking the Weather Station with the built-in
support, Tools for your Design Toolbox

dealing with multithreading, Object and class adapters

Design Puzzles

drawing class diagram making use of view and controller, Now for the
Controller, Exercise Solutions

drawing state diagram, You knew it was coming... a change request!,
Tools for your Design Toolbox

of classes and interfaces, Speaking of Design Patterns..., Tools for your
Design Toolbox

redesigning classes to remove redundancy, And now the Tea...

redesigning Image Proxy, Writing the Image Proxy, Tools for your
Design Toolbox

Duck Magnets exercises, object and class object and class adapters, Object
and class adapters

implementing Iterator, Reworking the Diner Menu with Iterator

implementing undo button for macro command, Using a macro command,
Tools for your Design Toolbox

Sharpen Your Pencil

altering decorator classes, Serving some coffees, Tools for your Design
Toolbox

annotating Gumball Machine states, Let’s take a look at what we’ve
done so far..., Tools for your Design Toolbox

annotating state diagram, Defining the State interfaces and classes,
Tools for your Design Toolbox

building ingredient factory, Building the New York ingredient factory,
A very dependent PizzaStore

changing classes for Decorator Pattern, Duck reunion, Exercise
Solutions

changing code to fit framework in Iterator Pattern, Taking a look at the
Café Menu, Tools for your Design Toolbox

choosing descriptions of state of implementation, The messy STATE of
things..., Tools for your Design Toolbox

class diagram for implementation of prepareRecipe(), Abstracting
prepareRecipe(), Tools for your Design Toolbox

creating commands for off buttons, Using a macro command, Tools for
your Design Toolbox

determining classes violating Principle of Least Knowledge, Keeping
your method calls in bounds..., Tools for your Design Toolbox

drawing beverage order process, Tools for your Design Toolbox

fixing Chocolate Boiler code, Meanwhile, back at the Chocolate
Factory..., Tools for your Design Toolbox

identifying factors influencing design, Welcome to Starbuzz Coffee

implementing garage door command, Creating a simple test to use the
Remote Control, Tools for your Design Toolbox

implementing state classes, Implementing more states, Tools for your
Design Toolbox

matching patterns with categories, Organizing Design Patterns

method for refilling gumball machine, We almost forgot!, Tools for your
Design Toolbox

on adding behaviors, Implementing the Duck Behaviors

on implementation of printmenu(), The Java-Enabled Waitress
Specification, Tools for your Design Toolbox

on inheritance, Joe thinks about inheritance..., Tools for your Design
Toolbox

sketching out classes, The power of Loose Coupling

things driving change, The one constant in software development, Tools
for your Design Toolbox

turning class into Singleton, The Chocolate Factory, Tools for your
Design Toolbox

weather station SWAG, Taking a first, misguided SWAG at the Weather
Station, Tools for your Design Toolbox

writing Abstract Factory Pattern, Duck reunion, Exercise Solutions

writing classes for adapters, Here’s how the Client uses the Adapter,
Tools for your Design Toolbox

writing dynamic proxy, Step two: creating the Proxy class and
instantiating the Proxy object, Tools for your Design Toolbox

writing Flock observer code, Duck reunion, Exercise Solutions

writing methods for classes, Welcome to Starbuzz Coffee, Tools for
your Design Toolbox

Who Does What

matching objects and methods to Command Pattern, From the Diner to
the Command Pattern, Tools for your Design Toolbox

matching pattern with description, The Hollywood Principle and
Template Method, Tools for your Design Toolbox, The magic of Iterator

& Composite together..., Tools for your Design Toolbox, We almost
forgot!, Tools for your Design Toolbox, Running the code..., Tools for
your Design Toolbox, So you wanna be a Design Patterns writer, Boy,
it’s been great having you in Objectville.

matching patterns with its intent, And now for something different...,
Tools for your Design Toolbox

writing Adapter that adapts Iterator to Enumeration, Writing the
EnumerationIterator adapter, Tools for your Design Toolbox

writing handler for matchmaking service, Creating Invocation Handlers
continued..., Tools for your Design Toolbox

external iterators, Iterator Pattern defined

F

Facade Pattern

about, And now for something different...

Adapter Pattern vs., Lights, Camera, Facade!

advantages, Lights, Camera, Facade!

benefits of, Lights, Camera, Facade!

building home theater system

about, Home Sweet Home Theater

constructing Facade in, Constructing your home theater facade

implementing Facade class, Lights, Camera, Facade!

implementing interface, Implementing the simplified interface

testing, Time to watch a movie (the easy way)

class diagram, Facade Pattern defined

Complexity Hiding Proxy vs., The Proxy Zoo

definition of, Facade Pattern defined

exercise matching description of, The magic of Iterator & Composite
together..., Tools for your Design Toolbox, Running the code..., So you
wanna be a Design Patterns writer, Boy, it’s been great having you in
Objectville.

exercise matching pattern with its intent, And now for something
different..., Tools for your Design Toolbox

Principle of Least Knowledge and, Tools for your Design Toolbox

factory method

about, Declaring a factory method, Factory Method Pattern defined

as abstract, Factory Method Pattern defined

declaring, Declaring a factory method

parallel class hierarchies and, Another perspective: parallel class
hierarchies

Factory Method Pattern

about, It’s finally time to meet the Factory Method Pattern

about factory objects, Encapsulating object creation

Abstract Factory Pattern and, Abstract Factory Pattern defined

code up close, Reworking the pizzas, continued...

concrete classes and, Factory Method Pattern defined

creator classes, It’s finally time to meet the Factory Method Pattern

declaring factory method, Declaring a factory method

definition of, Factory Method Pattern defined

Dependency Inversion Principle, The Dependency Inversion Principle

drawing parallel set of classes, Another perspective: parallel class

hierarchies, Tools for your Design Toolbox

exercise matching description of, So you wanna be a Design Patterns
writer, Boy, it’s been great having you in Objectville.

looking at object dependencies, Looking at object dependencies

parallel class hierarchies, Another perspective: parallel class hierarchies

product classes, It’s finally time to meet the Factory Method Pattern

Simple Factory and, Factory Method Pattern defined

Factory Pattern

Abstract Factory

about, What have we done?

building ingredient factories, Building the ingredient factories, A very
dependent PizzaStore

combining patterns, Duck reunion, Exercise Solutions

definition of, Abstract Factory Pattern defined

exercise matching description of, So you wanna be a Design Patterns
writer, Boy, it’s been great having you in Objectville.

Factory Method Pattern and, Abstract Factory Pattern defined

implementing, Abstract Factory Pattern defined

exercise matching description of, The Hollywood Principle and Template
Method, Tools for your Design Toolbox

Factory Method

about, It’s finally time to meet the Factory Method Pattern

Abstract Factory and, Abstract Factory Pattern defined

Abstract Factory in, What have we done?, Abstract Factory Pattern
defined

advantages of, Factory Method Pattern defined

code up close, Reworking the pizzas, continued...

creator classes, It’s finally time to meet the Factory Method Pattern

declaring factory method, Declaring a factory method

definition of, Factory Method Pattern defined

Dependency Inversion Principle, The Dependency Inversion Principle

drawing parallel set of classes, Another perspective: parallel class
hierarchies, Tools for your Design Toolbox

exercise matching description of, So you wanna be a Design Patterns
writer, Boy, it’s been great having you in Objectville.

looking at object dependencies, Looking at object dependencies

parallel class hierarchies, Another perspective: parallel class hierarchies

product classes, It’s finally time to meet the Factory Method Pattern

Simple Factory and, Factory Method Pattern defined

Simple Factory

about factory objects, Encapsulating object creation

building factory, Building a simple pizza factory

definition of, The Simple Factory defined

Factory Method Pattern and, Factory Method Pattern defined

pattern honorable mention, The Simple Factory defined

using new operator for instantiating concrete classes, The Factory
Pattern: Baking with OO Goodness

favor composition over inheritance, HAS-A can be better than IS-A, Tools
for your Design Toolbox, Tools for your Design Toolbox, The messy STATE

of things...

Firewall Proxy, The Proxy Zoo

Flyweight Pattern, Flyweight

forces, Looking more closely at the Design Pattern definition

frameworks vs. libraries, How do I use Design Patterns?

G

Gamma, Erich, Cruisin’ Objectville with the Gang of Four

Gang of Four (GoF)

about, Looking more closely at the Design Pattern definition, Cruisin’
Objectville with the Gang of Four

catalogs, Looking more closely at the Design Pattern definition

garbage collectors, Congratulations!

global access point, Singleton Pattern defined

global variables vs. Singleton, Congratulations!

guide to better living with Design Patterns, Better Living with Patterns:
Patterns in the Real World

gumball machine controller implementation, using State Pattern

about, Jawva Breakers

cleaning up code, Sanity check...

demonstration of, Demo for the CEO of Mighty Gumball, Inc.

diagram to code, State machines 101

finishing, Finishing the game

one in ten contest

about, You knew it was coming... a change request!

annotating state diagram, Defining the State interfaces and classes,
Tools for your Design Toolbox

changing code, The messy STATE of things...

drawing state diagram, You knew it was coming... a change request!,
Tools for your Design Toolbox

implementing state classes, Implementing our State classes,
Implementing more states, We still need to finish the Gumball 1 in 10
game

new design, The new design

reworking state classes, Reworking the Gumball Machine

refilling gumball machine, We almost forgot!

SoldState and WinnerState in, Demo for the CEO of Mighty Gumball, Inc.

testing code, In-house testing

writing code, Writing the code

gumball machine monitoring, using Proxy Patterns

about, The Proxy Pattern: Controlling Object Access

Remote Proxy

about, Testing the Monitor

adding to monitoring code, Adding a remote proxy to the Gumball
Machine monitoring code

preparing for remote service, Getting the GumballMachine ready to be a
remote service

registering with RMI registry, Registering with the RMI registry...

reusing client for, Now for the GumballMonitor client...

reviewing process, And now let’s put the monitor in the hands of the
CEO. Hopefully, this time he’ll love it

role of, The role of the ‘remote proxy’

testing, Writing the Monitor test drive

wrapping objects and, What did we do?

H

HAS-A relationships

about, HAS-A can be better than IS-A

wrapping components, The Decorator Pattern defined

HashMap, Reworking the Café Menu code, Iterators and Collections,
Iterators and Collections

hasNext() method

in arrays, Adding an Iterator to DinerMenu

in java.util.Iterator, Iterator Pattern defined

Head First learning principles, And we know what your brain is thinking.

Head First Servlets & JSP (Basham, Sierra and Bates), Model 2: DJ’ing from
a cell phone

Helm, Richard, Cruisin’ Objectville with the Gang of Four

high-level component classes, The Dependency Inversion Principle

The Hillside Group (website), Your journey has just begun...

The Hollywood Principle, The Hollywood Principle

home automation remote control, using Command Pattern

about, Taking a look at the vendor classes

building, Our first command object, Tools for your Design Toolbox

class diagram, The Command Pattern defined: the class diagram

command classes in

about, The Command Pattern means lots of command classes

passing method references, Simplifying even more with method
references

using lambda expressions, Simplifying the Remote Control with lambda
expressions

creating commands to be loaded, The Command Pattern defined: the class
diagram

defining, The Command Pattern defined

designing, Cubicle Conversation

display of on and off slots, Check out the results of all those lambda
expression commands...

implementing, Implementing the Commands

macro commands

about, Every remote needs a Party Mode!

hard coding vs., Using a macro command

undo button, Using a macro command, Tools for your Design Toolbox

using, Using a macro command

mapping, From the Diner to the Command Pattern, Tools for your Design
Toolbox

Null Object, Now, let’s check out the execution of our remote control
test..., Test the remote control with lambda expressions

testing, Using the command object, Putting the Remote Control through its
paces, Using a macro command, Test the remote control with lambda

expressions

undo commands

creating, Time to write that documentation...

creating multiple, Using a macro command

implementing for macro command, Tools for your Design Toolbox

testing, Time to QA that Undo button!, Get ready to test the ceiling fan

using state to implement, Using state to implement Undo

vendor classes for, Taking a look at the vendor classes

writing documentation, Time to write that documentation...

home theater system, building

about, Home Sweet Home Theater

constructing Facade in, Constructing your home theater facade

implementing interface, Implementing the simplified interface

Sharpen Your Pencil, Keeping your method calls in bounds...

testing, Time to watch a movie (the easy way)

using Facade Pattern, Lights, Camera, Facade!

hooks, in Template Method Pattern, Template Method Pattern defined

I

Image Proxy, writing, Writing the Image Proxy

implement on interface, in design patterns, The Simple Factory defined

Implementation section, in pattern catalog, Looking more closely at the
Design Pattern definition

implementations

coding to, What’s wrong with our implementation?

programming, More integration...

implementing behaviors, Implementing the Duck Behaviors

import and package statements, Our PizzaStore isn’t going to be very popular
without some pizzas, so let’s implement them

inheritance

about, Joe thinks about inheritance...

composition vs., Cubicle Conversation

disadvantages, Joe thinks about inheritance...

disadvantages of, Welcome to Starbuzz Coffee

favoring composition over, HAS-A can be better than IS-A

for maintenance, But something went horribly wrong...

for reuse, But something went horribly wrong..., Implementing the Duck
Behaviors

implementing multiple, Object and class adapters

instance variables

using instead of classes, Welcome to Starbuzz Coffee

wrapping to object, Coding condiments

instantiating concrete classes

in objects, Looking at object dependencies

using new operator for, The Factory Pattern: Baking with OO Goodness

instantiating one object, The Singleton Pattern: One of a Kind Objects

integrating behaviors, Integrating the Duck Behavior

integrating Cafe Menu, using Iterator Pattern

about, Taking a look at the Café Menu

reworking code, Reworking the Café Menu code

Intent section, in pattern catalog, Looking more closely at the Design Pattern
definition

interface

coding to, The Factory Pattern: Baking with OO Goodness

programming to, Designing the Duck Behaviors, The dark side of
java.util.Observable

interface type, Integrating the Duck Behavior, Testing the Duck code

internal iterators, Iterator Pattern defined

Interpreter Pattern, Interpreter

inversion, in Dependency Inversion Principle, Applying the Principle

invoker, From the Diner to the Command Pattern, The Command Pattern
defined, Assigning Commands to slots, Tools for your Design Toolbox

Iterator Pattern

about, Meet the Iterator Pattern

class diagram, Iterator Pattern defined

code up close using HashMap, Reworking the Café Menu code

code violating Open-Closed Principle, Is the Waitress ready for prime
time?

Collections and, Iterators and Collections

combining patterns, Duck reunion

Composite Pattern and, Getting ready for a test drive...

definition of, Iterator Pattern defined

exercise matching description of, The magic of Iterator & Composite
together..., Tools for your Design Toolbox, So you wanna be a Design
Patterns writer, Boy, it’s been great having you in Objectville.

integrating Cafe Menu

about, Taking a look at the Café Menu

reworking code, Reworking the Café Menu code

java.util.Iterator, Making some improvements...

merging diner menus

about, Breaking News: Objectville Diner and Objectville Pancake House
Merge

adding Iterators, Adding an Iterator to DinerMenu

cleaning up code using java.util.Iterator, Cleaning things up with
java.util.Iterator

encapsulating Iterator, Can we encapsulate the iteration?

implementing Iterators for, Meet the Iterator Pattern

implementing of, Lou and Mel’s Menu implementations

Null Iterator, Flashback to Iterator, The Null Iterator

removing objects, Making some improvements...

Single Responsibility Principle, Single Responsibility

Iterators

adding, Adding an Iterator to DinerMenu

allowing decoupling, What we have so far..., What does this get us?,
Iterator Pattern defined, Iterators and Collections

cleaning up code using java.util.Iterator, Cleaning things up with
java.util.Iterator

Collections and, Iterators and Collections

encapsulating, Can we encapsulate the iteration?

Enumeration adapting to, Adapting an Enumeration to an Iterator, Iterator
Pattern defined

external, Iterator Pattern defined

HashMap and, Iterators and Collections

implementing, Meet the Iterator Pattern

internal and external, Iterator Pattern defined

ordering of, Iterator Pattern defined

polymorphic code using, Iterator Pattern defined, Iterator Pattern defined

using ListInterator, Iterator Pattern defined

using with Composite Pattern, Flashback to Iterator

writing Adapter for Enumeration, Dealing with the remove() method

writing Adapter that adapts to Enumeration, Writing the
EnumerationIterator adapter, Tools for your Design Toolbox

J

Java Collections Framework, Iterators and Collections

Java decorators (java.io packages), Real World Decorators: Java I/O

Java Virtual Machines (JVMs)

bug in garbage collector, Congratulations!

Remote Method Invocation (RMI), Adding a remote proxy to the Gumball
Machine monitoring code

support of volatile keyword, 3. Use “double-checked locking” to reduce
the use of synchronization in getInstance().

java.lang.reflect package, proxy support in, Java RMI, the Big Picture, Using
the Java API’s Proxy to create a protection proxy, Creating Invocation
Handlers continued...

java.util, built-in Observer Pattern, Using Java’s built-in Observer Pattern

java.util.Collection, Iterators and Collections

java.util.Enumeration, as older implementation of Iterator, Real-world
adapters, Iterator Pattern defined

java.util.Iterator

cleaning up code using, Cleaning things up with java.util.Iterator

interface of, Making some improvements...

using, Iterator Pattern defined

JButton, in Swing API, Other places you’ll find the Observer Pattern in the
JDK

JFrames, Swing, Swingin’ with Frames

Johnson, Ralph, Cruisin’ Objectville with the Gang of Four

K

Kathy Sierra, (Head First Servlets & JSP), Model 2: DJ’ing from a cell phone

KISS (Keep It Simple), in designing patterns, Thinking in Patterns

Known Uses section, in pattern catalog, Looking more closely at the Design
Pattern definition

L

lambda expressions, And the code..., Simplifying the Remote Control with
lambda expressions

Law of Demeter, Keeping your method calls in bounds...

lazy instantiation, Singleton Pattern defined

leaves, in Composite Pattern tree structure, The Composite Pattern defined,
Getting ready for a test drive...

libraries

design patterns vs., How do I use Design Patterns?

frameworks vs., How do I use Design Patterns?

LinkedList, Iterators and Collections

ListInterator, Iterator Pattern defined

logging requests, using Command Pattern, More uses of the Command
Pattern: logging requests

looping through array items, The Java-Enabled Waitress Specification, What
now?

loose coupling, The power of Loose Coupling

M

macro commands

about, Every remote needs a Party Mode!

macro commands

hard coding vs., Using a macro command

undo button, Using a macro command, Tools for your Design Toolbox

using, Using a macro command

magic bullet, Design Patterns as not, Thinking in Patterns

maintenance, inheritance for, But something went horribly wrong...

matchmaking service, using Proxy Pattern

about, Matchmaking in Objectville

creating dynamic proxy, Big Picture: creating a Dynamic Proxy for the
PersonBean

implementing, The PersonBean implementation

protecting subjects, Five-minute drama: protecting subjects

testing, Testing the matchmaking service

Mediator Pattern, Composite, Mediator

Memento Pattern, Memento

merging diner menus (Iterator Pattern)

about, Breaking News: Objectville Diner and Objectville Pancake House
Merge

adding Iterators, Adding an Iterator to DinerMenu

cleaning up code using java.util.Iterator, Cleaning things up with
java.util.Iterator

encapsulating Iterator, Can we encapsulate the iteration?

implementing Iterators for, Meet the Iterator Pattern

implementing of, Lou and Mel’s Menu implementations

method of objects, components of object vs., The Principle of Least
Knowledge

method references, passing, Simplifying even more with method references

methods

as hooks, Template Method Pattern defined

overriding from implemented, A few guidelines to help you follow the

Principle...

Model 2

about, MVC and the Web

Composite Pattern, Strategy

from cell phone, Model 2: DJ’ing from a cell phone

Observer Pattern, Design Patterns and Model 2

Strategy Pattern, Strategy

Model-View-Controller (MVC)

about, If Elvis were a compound pattern, his name would be Model-View-
Controller, and he’d be singing a little song like this..., Meet the Model-
View-Controller

Adapter Pattern, Adapting the Model

Beat model, Meet the Java DJ View, Exercise Solutions

Composite Pattern, Looking at MVC through patterns-colored glasses,
Composite

controllers per view, Composite

Heart controller, Now we’re ready for a HeartController, Exercise
Solutions

Heart model, Exploring Strategy

implementing controller, Now for the Controller, Exercise Solutions

implementing DJ View, Using MVC to control the beat..., Exercise
Solutions

Mediator Pattern, Composite

model in, Composite

Observer Pattern, Looking at MVC through patterns-colored glasses,

Building the pieces

song, If Elvis were a compound pattern, his name would be Model-View-
Controller, and he’d be singing a little song like this...

state of model, Composite

Strategy Pattern, Looking at MVC through patterns-colored glasses, Now
for the Controller, Exploring Strategy, Exercise Solutions

testing, Putting it all together...

views accessing model state methods, Composite

web and, MVC and the Web

modeling state, State machines 101

Motivation section, in pattern catalog, Looking more closely at the Design
Pattern definition

multiple patterns, using

about, Compound Patterns: Patterns of Patterns

in duck simulator

about rebuilding, Duck reunion

adding Abstract Factory Pattern, Duck reunion, Exercise Solutions

adding Adapter Pattern, Duck reunion

adding Composite Pattern, Duck reunion

adding Decorator Pattern, Duck reunion

adding Iterator Pattern, Duck reunion

adding Observer Pattern, Duck reunion

class diagram, A duck’s eye view: the class diagram

multithreading

dealing with, Tools for your Design Toolbox

improving, Can we improve multithreading?

N

Name section, in pattern catalog, Looking more closely at the Design Pattern
definition

new operator, replacing with concrete method, Reworking the PizzaStore
class

next() method

in java.util.Iterator, Iterator Pattern defined

with Iterator, arrays, Adding an Iterator to DinerMenu

NoCommand, in remote control code, Now, let’s check out the execution of
our remote control test..., Test the remote control with lambda expressions

nodes, in Composite Pattern tree structure, The Composite Pattern defined,
Getting ready for a test drive...

Null Iterator, Flashback to Iterator, The Null Iterator

Null Objects, Now, let’s check out the execution of our remote control test...

O

object access, using Proxy Pattern for controlling

about, The Proxy Pattern: Controlling Object Access

Caching Proxy, What did we do?, The Proxy Zoo

Complexity Hiding Proxy, The Proxy Zoo

Copy-On-Write Proxy, The Proxy Zoo

Firewall Proxy, The Proxy Zoo

Protection Proxy

about, Using the Java API’s Proxy to create a protection proxy

creating dynamic proxy, Big Picture: creating a Dynamic Proxy for the
PersonBean

implementing matchmaking service, The PersonBean implementation

protecting subjects, Five-minute drama: protecting subjects

testing matchmaking service, Testing the matchmaking service

using dynamic proxy, Using the Java API’s Proxy to create a protection
proxy

Remote Proxy

about, Testing the Monitor

adding to monitoring code, Adding a remote proxy to the Gumball
Machine monitoring code

preparing for remote service, Getting the GumballMachine ready to be a
remote service

registering with RMI registry, Registering with the RMI registry...

reusing client for, Now for the GumballMonitor client...

reviewing process, And now let’s put the monitor in the hands of the
CEO. Hopefully, this time he’ll love it

role of, The role of the ‘remote proxy’

testing, Writing the Monitor test drive

wrapping objects and, What did we do?

Smart Reference Proxy, The Proxy Zoo

Synchronization Proxy, The Proxy Zoo

Virtual Proxy

about, Get ready for Virtual Proxy

designing Virtual Proxy, Designing the CD cover Virtual Proxy

reviewing process, What did we do?

testing, Testing the CD Cover Viewer

writing Image Proxy, Writing the Image Proxy

object adapters vs. class adapters, Object and class adapters

object construction, encapsulating, Builder

object creation, encapsulating, Encapsulating object creation, Factory Method
Pattern defined

object patterns, Design Patterns, Pattern Categories

Object-Oriented (OO) design., The Dependency Inversion Principle

(see also design principles)

adapters

about, Adapters all around us

creating Two Way Adapters, Here’s how the Client uses the Adapter

in action, If it walks like a duck and quacks like a duck, then it must
might be a duck turkey wrapped with a duck adapter..., Test drive the
adapter

object and class object and class, Object and class adapters

design patterns vs., How do I use Design Patterns?

extensibility and modification of code in, The Open-Closed Principle

guidelines for avoiding violation of Dependency Inversion Principle, A
few guidelines to help you follow the Principle...

loosely coupled designs and, The power of Loose Coupling

Object-Oriented Systems, Languages and Applications (OOPSLA)

conference, Your journey has just begun...

objects

components of, The Principle of Least Knowledge

creating, Factory Method Pattern defined

loosely coupled designs between, The power of Loose Coupling

sharing state, The State Pattern defined

Singleton, A small Socratic exercise in the style of The Little Lisper,
Dissecting the classic Singleton Pattern implementation

wrapping, Meet the Decorator Pattern, Here’s how the Client uses the
Adapter, Writing the EnumerationIterator adapter, Lights, Camera,
Facade!, Duck reunion

Observer Pattern

about, The Observer Pattern: Keeping your Objects in the know, Meet the
Observer Pattern

class design of, The Observer Pattern defined

class patterns category, So you wanna be a Design Patterns writer

combining patterns, Duck reunion

definition of, The Observer Pattern defined

dependence in, The Observer Pattern defined: the class diagram

exercise matching description of, The magic of Iterator & Composite
together..., Tools for your Design Toolbox, Boy, it’s been great having you
in Objectville.

in Five Minute Drama, Five-minute drama: a subject for observation

in Model 2, Design Patterns and Model 2

in Model-View-Controller, Looking at MVC through patterns-colored

glasses, Building the pieces

lambada expressions and, And the code...

loose coupling in, The power of Loose Coupling

Observer object in, Publishers + Subscribers = Observer Pattern

one-to-many relationships, The Observer Pattern defined

process, A day in the life of the Observer Pattern

Publish-Subscribe as, Publishers + Subscribers = Observer Pattern

Subject object in, Publishers + Subscribers = Observer Pattern

Swing and, Other places you’ll find the Observer Pattern in the JDK

using built-in java.util, Using Java’s built-in Observer Pattern

weather station using

building display elements, Now, let’s build those display elements

designing, Designing the Weather Station

implementing, Implementing the Weather Station

powering up, Power up the Weather Station

SWAG, Taking a first, misguided SWAG at the Weather Station

unpacking classes, Unpacking the WeatherData class

using built-in Java Observer Pattern, Reworking the Weather Station
with the built-in support

observers

in class diagram, The Observer Pattern defined: the class diagram

in Five Minute Drama, Five-minute drama: a subject for observation

in Observer Pattern, Publishers + Subscribers = Observer Pattern

One Class, One Responsibility Principle, Congratulations!, Single
Responsibility, Getting ready for a test drive...

one in ten contest in gumball machine, using State Pattern

about, You knew it was coming... a change request!

annotating state diagram, Defining the State interfaces and classes, Tools
for your Design Toolbox

changing code, The messy STATE of things...

drawing state diagram, You knew it was coming... a change request!, Tools
for your Design Toolbox

implementing state classes, Implementing our State classes, Implementing
more states, We still need to finish the Gumball 1 in 10 game

new design, The new design

reworking state classes, Reworking the Gumball Machine

one-to-many relationships, Observer Pattern defining, The Observer Pattern
defined

OO (Object-Oriented) design., The Dependency Inversion Principle

(see also design principles)

adapters

about, Adapters all around us

creating Two Way Adapters, Here’s how the Client uses the Adapter

in action, If it walks like a duck and quacks like a duck, then it must
might be a duck turkey wrapped with a duck adapter...

object and class object and class, Object and class adapters

test driving, Test drive the adapter

design patterns vs., How do I use Design Patterns?

extensibility and modification os code in, The Open-Closed Principle

guidelines for avoiding violation of Dependency Inversion Principle, A
few guidelines to help you follow the Principle...

loosely coupled designs and, The power of Loose Coupling

OOPSLA (Object-Oriented Systems, Languages and Applications)
conference, Your journey has just begun...

Open-Closed Principle

code violating, Is the Waitress ready for prime time?, The messy STATE
of things...

effect on maintaining code, The Open-Closed Principle

Organizational Patterns, The Patterns Zoo

overusing Design Patterns, Your Mind on Patterns

P

package and import statements, Our PizzaStore isn’t going to be very popular
without some pizzas, so let’s implement them

parallel class hierarchies, Another perspective: parallel class hierarchies

part-whole hierarchy, The Composite Pattern defined

Participants section, in pattern catalog, Looking more closely at the Design
Pattern definition

pattern catalogs, Looking more closely at the Design Pattern definition,
Looking more closely at the Design Pattern definition

Pattern Death Match pages, Compound Patterns: Patterns of Patterns

Pattern Languages of Programs (PLoP) conference, Your journey has just
begun...

pattern templates, uses of, So you wanna be a Design Patterns writer

A Pattern Language (Alexander), Your journey has just begun...

patterns, using compound, Compound Patterns: Patterns of Patterns

patterns, using multiple

about, Compound Patterns: Patterns of Patterns

in duck simulator

about rebuilding, Duck reunion

adding Abstract Factory Pattern, Duck reunion, Exercise Solutions

adding Adapter Pattern, Duck reunion

adding Composite Pattern, Duck reunion

adding Decorator Pattern, Duck reunion

adding Iterator Pattern, Duck reunion

adding Observer Pattern, Duck reunion

class diagram, A duck’s eye view: the class diagram

Pizza Store project, using Factory Pattern

Abstract Factory in, What have we done?, Abstract Factory Pattern defined

behind the scenes, More pizza for Ethan and Joel...

building factory, Building a simple pizza factory

concrete subclasses in, Allowing the subclasses to decide

drawing parallel set of classes, Another perspective: parallel class
hierarchies, Tools for your Design Toolbox

encapsulating object creation, Encapsulating object creation

ensuring consistency in ingredients, Meanwhile, back at the PizzaStore...,
A very dependent PizzaStore

framework for, A framework for the pizza store

franchising store, Franchising the pizza store

identifying aspects in, Identifying the aspects that vary

implementing, Inverting your thinking...

making pizza store in, Let’s make a PizzaStore

ordering pizza, Our PizzaStore isn’t going to be very popular without some
pizzas, so let’s implement them

referencing local ingredient factories, Revisiting our pizza stores

reworking pizzas, Reworking the pizzas...

PLoP (Pattern Languages of Programs) conference, Your journey has just
begun...

polymorphic code, using on iterator, Iterator Pattern defined, Iterator Pattern
defined

polymorphism, Designing the Duck Behaviors

prepareRecipe(), abstracting, Abstracting prepareRecipe()

Principle of Least Knowledge, The Principle of Least Knowledge

print() method, in dessert submenu using Composite Pattern, Implementing
the Menu Component, The Composite Iterator

program to an interface, not an implementation, Designing the Duck
Behaviors, The dark side of java.util.Observable, Tools for your Design
Toolbox, Tools for your Design Toolbox, What does this get us?

program to interface vs. program to supertype, Designing the Duck Behaviors

Protection Proxy

about, Using the Java API’s Proxy to create a protection proxy

creating dynamic proxy, Big Picture: creating a Dynamic Proxy for the

PersonBean

implementing matchmaking service, The PersonBean implementation

protecting subjects, Five-minute drama: protecting subjects

Proxy Pattern and, What did we do?

testing matchmaking service, Testing the matchmaking service

using dynamic proxy, Using the Java API’s Proxy to create a protection
proxy

Prototype Pattern, Prototype

proxies, The Proxy Pattern: Controlling Object Access

Proxy class, identifying class as, Running the code...

Proxy Pattern

Adapter Pattern vs., What did we do?

Complexity Hiding Proxy, The Proxy Zoo

Copy-On-Write Proxy, The Proxy Zoo

Decorator Pattern vs., What did we do?

definition of, The Proxy Pattern defined

dynamic aspect of dynamic proxies, Running the code...

exercise matching description of, Running the code..., So you wanna be a
Design Patterns writer, Boy, it’s been great having you in Objectville.

Firewall Proxy, The Proxy Zoo

implementation of Remote Proxy

about, Testing the Monitor

adding to monitoring code, Adding a remote proxy to the Gumball
Machine monitoring code

preparing for remote service, Getting the GumballMachine ready to be a
remote service

registering with RMI registry, Registering with the RMI registry...

reusing client for, Now for the GumballMonitor client...

reviewing process, And now let’s put the monitor in the hands of the
CEO. Hopefully, this time he’ll love it

role of, The role of the ‘remote proxy’

testing, Writing the Monitor test drive

wrapping objects and, What did we do?

java.lang.reflect package, Java RMI, the Big Picture, Using the Java API’s
Proxy to create a protection proxy, Creating Invocation Handlers
continued...

Protection Proxy and

about, Using the Java API’s Proxy to create a protection proxy

Adapters and, What did we do?

creating dynamic proxy, Big Picture: creating a Dynamic Proxy for the
PersonBean

implementing matchmaking service, The PersonBean implementation

protecting subjects, Five-minute drama: protecting subjects

testing matchmaking service, Testing the matchmaking service

using dynamic proxy, Using the Java API’s Proxy to create a protection
proxy

Real Subject

as surrogate of, What did we do?

invoking method on, Step one: creating Invocation Handlers

making client use Proxy instead of, What did we do?

passing in constructor, Creating Invocation Handlers continued...

returning proxy for, Step two: creating the Proxy class and instantiating
the Proxy object

restrictions on passing types of interfaces, Running the code...

Smart Reference Proxy, The Proxy Zoo

Synchronization Proxy, The Proxy Zoo

variations, What did we do?, The Proxy Zoo

Virtual Proxy

about, Get ready for Virtual Proxy

Caching Proxy as form of, What did we do?, The Proxy Zoo

designing Virtual Proxy, Designing the CD cover Virtual Proxy

reviewing process, What did we do?

testing, Testing the CD Cover Viewer

writing Image Proxy, Writing the Image Proxy

Publish-Subscribe, as Observer Pattern, Publishers + Subscribers = Observer
Pattern

Q

queuing requests, using Command Pattern, More uses of the Command
Pattern: queuing requests

R

Real Subject

as surrogate of Proxy Pattern, What did we do?

invoking method on, Step one: creating Invocation Handlers

making client use proxy instead of, What did we do?

passing in constructor, Creating Invocation Handlers continued...

returning proxy for, Step two: creating the Proxy class and instantiating the
Proxy object

refactoring, What do we need?, You know you need a pattern when...

Related patterns section, in pattern catalog, Looking more closely at the
Design Pattern definition

Remote Method Invocation (RMI)

about, Adding a remote proxy to the Gumball Machine monitoring code,
Java RMI, the Big Picture

code up close, How does the client get the stub object?

completing code for server side, Java RMI, the Big Picture

importing java.rmi, Getting the GumballMachine ready to be a remote
service

importing packages, Getting the GumballMachine ready to be a remote
service, Now for the GumballMonitor client...

making remote service, Java RMI, the Big Picture

method call in, Remote methods 101

registering with RMI registry, Registering with the RMI registry...

things to watch out for in, How does the client get the stub object?

Remote proxy

about, Testing the Monitor

adding to monitoring code, Adding a remote proxy to the Gumball
Machine monitoring code

preparing for remote service, Getting the GumballMachine ready to be a
remote service

registering with RMI registry, Registering with the RMI registry...

reusing client for, Now for the GumballMonitor client...

reviewing process, And now let’s put the monitor in the hands of the CEO.
Hopefully, this time he’ll love it

role of, The role of the ‘remote proxy’

testing, Writing the Monitor test drive

wrapping objects and, What did we do?

remove() method

Enumeration and, Dealing with the remove() method

in collection of objects, Making some improvements...

in java.util.Iterator, Iterator Pattern defined

requests, encapsulating, The Command Pattern defined

resources, Design Patterns, Your journey has just begun...

reuse, But something went horribly wrong..., Welcome to Starbuzz Coffee

RMI (Remote Method Invocation)

about, Adding a remote proxy to the Gumball Machine monitoring code,
Java RMI, the Big Picture

code up close, How does the client get the stub object?

completing code for server side, Java RMI, the Big Picture

importing java.rmi, Getting the GumballMachine ready to be a remote
service

importing packages, Getting the GumballMachine ready to be a remote

service, Now for the GumballMonitor client...

making remote service, Java RMI, the Big Picture

method call in, Remote methods 101

registering with RMI registry, Registering with the RMI registry...

things to watch out for in, How does the client get the stub object?

rule of three, applied to Design Patterns, So you wanna be a Design Patterns
writer

runtime errors, causes of, Factory Method Pattern defined

S

Sample code section, in pattern catalog, Looking more closely at the Design
Pattern definition

server heap, Remote methods 101

service helper (skeletons), in RMI, Java RMI, the Big Picture, Java RMI, the
Big Picture, How does the client get the stub object?, And now let’s put the
monitor in the hands of the CEO. Hopefully, this time he’ll love it

servlet environment, setting up, Model 2: DJ’ing from a cell phone

shared vocabulary

importance of, Overheard at the local diner...

power of, The power of a shared pattern vocabulary, Don’t forget the
power of the shared vocabulary

Sharpen Your Pencil

altering decorator classes, Serving some coffees, Tools for your Design
Toolbox

annotating Gumball Machine States, Let’s take a look at what we’ve done
so far..., Tools for your Design Toolbox

annotating state diagram, Defining the State interfaces and classes, Tools
for your Design Toolbox

building ingredient factory, Building the New York ingredient factory, A
very dependent PizzaStore

changing classes for Decorator Pattern, Duck reunion, Exercise Solutions

changing code to fit framework in Iterator Pattern, Taking a look at the
Café Menu, Tools for your Design Toolbox

choosing descriptions of state of implementation, The messy STATE of
things..., Tools for your Design Toolbox

class diagram for implementation of prepareRecipe(), Abstracting
prepareRecipe(), Tools for your Design Toolbox

code not using factories, A very dependent PizzaStore, A very dependent
PizzaStore

creating commands for off buttons, Using a macro command, Tools for
your Design Toolbox

creating heat index, Power up the Weather Station

determining classes violating Principle of Least Knowledge, Keeping your
method calls in bounds..., Tools for your Design Toolbox

drawing beverage order process, Tools for your Design Toolbox

fixing Chocolate Boiler code, Meanwhile, back at the Chocolate Factory...,
Tools for your Design Toolbox

identifying factors influencing design, Welcome to Starbuzz Coffee

implementing garage door command, Creating a simple test to use the
Remote Control, Tools for your Design Toolbox

implementing state classes, Implementing more states, Tools for your
Design Toolbox

making pizza store, Let’s make a PizzaStore, Tools for your Design

Toolbox

matching patterns with categories, Organizing Design Patterns, Organizing
Design Patterns

method for refilling gumball machine, We almost forgot!, Tools for your
Design Toolbox

on adding behaviors, Implementing the Duck Behaviors

on implementation of printmenu(), The Java-Enabled Waitress
Specification, Tools for your Design Toolbox

on inheritance, Joe thinks about inheritance..., Tools for your Design
Toolbox

sketching out classes, The power of Loose Coupling

things driving change, The one constant in software development, Tools
for your Design Toolbox

turning class into Singleton, The Chocolate Factory, Tools for your Design
Toolbox

weather station SWAG, Taking a first, misguided SWAG at the Weather
Station, Tools for your Design Toolbox

writing Abstract Factory Pattern, Duck reunion, Exercise Solutions

writing classes for adapters, Here’s how the Client uses the Adapter, Tools
for your Design Toolbox

writing dynamic proxy, Step two: creating the Proxy class and instantiating
the Proxy object, Tools for your Design Toolbox

writing Flock observer code, Duck reunion, Exercise Solutions

writing methods for classes, Welcome to Starbuzz Coffee, Tools for your
Design Toolbox

Simple Factory Pattern

about factory objects, Encapsulating object creation

building factory, Building a simple pizza factory

definition of, The Simple Factory defined

Factory Method Pattern and, Factory Method Pattern defined

pattern honorable mention, The Simple Factory defined

using new operator for instantiating concrete classes, The Factory Pattern:
Baking with OO Goodness

Single Responsibility Principle, Single Responsibility

Singleton objects, A small Socratic exercise in the style of The Little Lisper,
Dissecting the classic Singleton Pattern implementation

Singleton Pattern

about, The Singleton Pattern: One of a Kind Objects

advantages of, The Singleton Pattern: One of a Kind Objects

Chocolate Factory

about, The Chocolate Factory

fixing Chocolate Boiler code, Meanwhile, back at the Chocolate
Factory...

class diagram, Singleton Pattern defined

code up close, Dissecting the classic Singleton Pattern implementation

dealing with multithreading, Houston, Hershey, PA we have a problem...,
Tools for your Design Toolbox

definition of, Singleton Pattern defined

disadvantages of, Congratulations!

double-checked locking, 3. Use “double-checked locking” to reduce the
use of synchronization in getInstance().

exercise matching description of, So you wanna be a Design Patterns
writer

global variables vs., Congratulations!

implementing, Dissecting the classic Singleton Pattern implementation

One Class, One Responsibility Principle and, Congratulations!

subclasses in, Congratulations!

using, Congratulations!

skeletons (service helper), in RMI, Java RMI, the Big Picture, Java RMI, the
Big Picture, How does the client get the stub object?, And now let’s put the
monitor in the hands of the CEO. Hopefully, this time he’ll love it

smart command objects, Using a macro command

Smart Reference Proxy, The Proxy Zoo

sorting methods, in Template Method Pattern, Sorting with Template Method

Starbuzz Coffee Barista training manual project

about, It’s time for some more caffeine

abstracting prepareRecipe(), Abstracting prepareRecipe()

using Template Method Pattern

about, Meet the Template Method

code up close, Template Method Pattern defined

definition of, Template Method Pattern defined

hooks in, Template Method Pattern defined

testing code, Let’s run the Test Drive

The Hollywood Principle and, The Hollywood Principle

Starbuzz Coffee project, using Decorator Pattern

about, Welcome to Starbuzz Coffee

adding sizes to code, Serving some coffees

constructing drink orders, Constructing a drink order with Decorators

decorating beverages in, Decorating our Beverages

drawing beverage order process, New barista training, Tools for your
Design Toolbox

testing order code, Serving some coffees

using Java decorators, Real World Decorators: Java I/O

writing code, Writing the Starbuzz code

state machines, State machines 101

State Pattern

definition of, The State Pattern defined

exercise matching description of, We almost forgot!, Tools for your
Design Toolbox, So you wanna be a Design Patterns writer, Boy, it’s been
great having you in Objectville.

gumball machine controller implementation

about, Jawva Breakers

cleaning up code, Sanity check...

demonstration of, Demo for the CEO of Mighty Gumball, Inc.

diagram to code, State machines 101

finishing, Finishing the game

refilling gumball machine, We almost forgot!

SoldState and WinnerState in, Demo for the CEO of Mighty Gumball,
Inc.

testing code, In-house testing

writing code, Writing the code

increasing number of classes in design, The State Pattern defined

modeling state, State machines 101

one in ten contest in gumball machine

about, You knew it was coming... a change request!

annotating state diagram, Defining the State interfaces and classes,
Tools for your Design Toolbox

changing code, The messy STATE of things...

drawing state diagram, You knew it was coming... a change request!,
Tools for your Design Toolbox

implementing state classes, Implementing our State classes,
Implementing more states, We still need to finish the Gumball 1 in 10
game

new design, The new design

reworking state classes, Reworking the Gumball Machine

sharing state objects, The State Pattern defined

state transitions in state classes, The State Pattern defined

Strategy Pattern vs., The State Pattern defined, Sanity check...

state transitions, in state classes, The State Pattern defined

state, using to implement undo commands, Using state to implement Undo

static classes, using instead of Singletons, Congratulations!

static method vs. create method, Building a simple pizza factory

Strategy Pattern

definition of, Speaking of Design Patterns...

exercise matching description of, The Hollywood Principle and Template
Method, Tools for your Design Toolbox, The magic of Iterator &
Composite together..., Tools for your Design Toolbox, We almost forgot!,
Tools for your Design Toolbox, So you wanna be a Design Patterns writer,
Boy, it’s been great having you in Objectville.

in Model 2, Strategy

in Model-View-Controller, Looking at MVC through patterns-colored
glasses, Now for the Controller, Exploring Strategy

State Pattern vs., The State Pattern defined, Sanity check...

Template Method Pattern and, The making of the sorting duck machine,
Applets

structural patterns category, Design Patterns, Pattern Categories, Pattern
Categories

Structure section, in pattern catalog, Looking more closely at the Design
Pattern definition

stubs (client helper), in RMI, Java RMI, the Big Picture, Java RMI, the Big
Picture, How does the client get the stub object?, And now let’s put the
monitor in the hands of the CEO. Hopefully, this time he’ll love it

subclasses

class explosion and, Welcome to Starbuzz Coffee

concrete commands and, The Command Pattern defined: the class diagram

concrete states and, The State Pattern defined

Factory Method and, letting subclasses decide which class to instantiate,
Factory Method Pattern defined

in Singletons, Congratulations!

inheritance gone wrong and, But something went horribly wrong...

Pizza Store concrete, Allowing the subclasses to decide

Template Method, Meet the Template Method

Subject

in class diagram, The Observer Pattern defined: the class diagram

in Five Minute Drama, Five-minute drama: a subject for observation

in Observer Pattern, Publishers + Subscribers = Observer Pattern

subsystems, Facades and, Lights, Camera, Facade!

superclasses

abstract, Designing the Duck Behaviors

using, But something went horribly wrong...

supertype (programming to interface), vs. programming to interface,
Designing the Duck Behaviors

SWAG, Taking a first, misguided SWAG at the Weather Station

Swing

Composite Pattern and, Composite

Observer Pattern in, Other places you’ll find the Observer Pattern in the
JDK

Template Method Pattern and, Swingin’ with Frames

Synchronization Proxy, The Proxy Zoo

synchronization, as overhead, Dealing with multithreading

T

Template Method Pattern

about, Meet the Template Method

abstract class in

definition of, Template Method Pattern defined

hooks vs., Let’s run the Test Drive

methods in, Template Method Pattern defined

Applet and, Applets

class diagram, Template Method Pattern defined

code up close, Template Method Pattern defined

definition of, Template Method Pattern defined

exercise matching description of, The Hollywood Principle and Template
Method, Tools for your Design Toolbox, We almost forgot!, Tools for
your Design Toolbox, So you wanna be a Design Patterns writer, Boy, it’s
been great having you in Objectville.

hooks in, Template Method Pattern defined, Let’s run the Test Drive

in real world, Template Methods in the Wild

sorting with, Sorting with Template Method

Strategy Pattern and, The making of the sorting duck machine, Applets

Swing and, Swingin’ with Frames

testing code, Let’s run the Test Drive

The Hollywood Principle and, The Hollywood Principle

The Timeless Way of Building (Alexander), Your journey has just begun...

thinking in patterns, Thinking in Patterns

tightly coupled, The power of Loose Coupling

transparency, in Composite Pattern, Getting ready for a test drive...

tree structure, Composite Pattern, The Composite Pattern defined, Getting

ready for a test drive...

try/catch, not supporting method, The magic of Iterator & Composite
together...

Two Way Adapters, creating, Here’s how the Client uses the Adapter

type safe parameters, Factory Method Pattern defined

U

undo commands

creating, Time to write that documentation...

creating multiple, Using a macro command

implementing for macro command, Using a macro command

support of, Time to write that documentation...

testing, Time to QA that Undo button!, Get ready to test the ceiling fan

using state to implement, Using state to implement Undo

User Interface Design Patterns, The Patterns Zoo

V

variables

declaring behavior, Integrating the Duck Behavior

holding reference to concrete class, A few guidelines to help you follow
the Principle...

Vector, Iterators and Collections

vegetarian menu, using Composite Pattern, Give me the vegetarian menu

Virtual Proxy

about, Get ready for Virtual Proxy

Caching Proxy as form of, What did we do?, The Proxy Zoo

designing Virtual Proxy, Designing the CD cover Virtual Proxy

reviewing process, What did we do?

testing, Testing the CD Cover Viewer

writing Image Proxy, Writing the Image Proxy

Visitor Pattern, Visitor

Vlissides, John, Cruisin’ Objectville with the Gang of Four

volatile keyword, 3. Use “double-checked locking” to reduce the use of
synchronization in getInstance().

W

weather station

building display elements, Now, let’s build those display elements

designing, Designing the Weather Station

implementing, Implementing the Weather Station

powering up, Power up the Weather Station

SWAG, Taking a first, misguided SWAG at the Weather Station

unpacking classes, Unpacking the WeatherData class

using built-in Java Observer Pattern, Reworking the Weather Station with
the built-in support

web, Model-View-Controller and, MVC and the Web

Who Does What exercises

matching objects and methods to Command Pattern, From the Diner to the
Command Pattern, Tools for your Design Toolbox

matching pattern with description, The Hollywood Principle and Template
Method, Tools for your Design Toolbox, The magic of Iterator &
Composite together..., Tools for your Design Toolbox, We almost forgot!,
Tools for your Design Toolbox, Running the code..., Tools for your Design
Toolbox, So you wanna be a Design Patterns writer, Boy, it’s been great
having you in Objectville.

matching patterns with its intent, Tools for your Design Toolbox

whole-part relationships, collection of objects using, The magic of Iterator &
Composite together...

wickedlysmart web site, Read Me

wrapping objects, Meet the Decorator Pattern, Here’s how the Client uses the
Adapter, Writing the EnumerationIterator adapter, Lights, Camera, Facade!,
What did we do?, Duck reunion

Y

your mind on patterns, Your Mind on Patterns

About the Authors
Eric Freeman recently ended nearly a decade as a media company executive,
having held the position of CTO of Disney Online & Disney.com at The Walt
Disney Company. Eric is now devoting his time to WickedlySmart.com and
lives with his wife and young daughter in Austin, TX. He holds a Ph.D. in
Computer Science from Yale University.
Elisabeth Robson is co-founder of Wickedly Smart, an education company
devoted to helping customers gain mastery in web technologies. She's co-
author of four bestselling books, Head First Design Patterns, Head First
HTML and CSS, Head First HTML5 Programming, and Head First
JavaScript Programming.
Bert Bates is a 20-year software developer, a Java instructor, and a co-
developer of Sun's upcoming EJB exam (Sun Certified Business Component
Developer). His background features a long stint in artificial intelligence,
with clients like the Weather Channel, A&E Network, Rockwell, and
Timken.
Kathy Sierra has been interested in learning theory since her days as a game
developer (Virgin, MGM, Amblin'). More recently, she's been a master
trainer for Sun Microsystems, teaching Sun's Java instructors how to teach
the latest technologies to customers, and a lead developer of several Sun
certification exams. Along with her partner Bert Bates, Kathy created the
Head First series. She's also the original founder of the Software
Development/Jolt Productivity Award-winning javaranch.com, the largest
(and friendliest) all-volunteer Java community.

Colophon

All interior layouts were designed by Eric Freeman, Elisabeth Robson,
Kathy Sierra and Bert Bates. Kathy and Bert created the look & feel of the
Head First series. The book was produced using Adobe InDesign CS (an
unbelievably cool design tool that we can’t get enough of) and Adobe
Photoshop CS. The book was typeset using Uncle Stinky, Mister Frisky (you
think we’re kidding), Ann Satellite, Baskerville, Comic Sans, Myriad Pro,
Skippy Sharp, Savoye LET, Jokerman LET, Courier New and Woodrow
typefaces.
Interior design and production all happened exclusively on Apple
Macintoshes — at Head First we’re all about “Think Different” (even if it
isn’t grammatical). All Java code was created using James Gosling’s favorite
IDE, vi, Erich Gamma’s Eclipse.
Long days of writing were powered by the caffeine fuel of Honest Tea and
Tejava, the clean Santa Fe air, and the grooving sounds of Banco de Gaia,
Cocteau Twins, Buddha Bar I-VI, Delerium, Enigma, Mike Oldfield, Olive,
Orb, Orbital, LTJ Bukem, Massive Attack, Steve Roach, Sasha and Digweed,
Thievery Corporation, Zero 7 and Neil Finn (in all his incarnations) along

with a heck of a lot of acid trance and more 80s music than you’d care to
know about.

Head First: Design Patterns
Eric Freeman
Elisabeth Robson
Bert Bates
Kathy Sierra
Editor
Mike Hendrickson

Editor
Mike Loukides

Copyright © 2009 O’Reilly Media, Inc., Bert Bates and Kathy Sierra
Head First Design Patterns

by Eric Freeman, Elisabeth Robson, Kathy Sierra, and Bert Bates

All rights reserved.

O’Reilly Media books may be purchased for educational, business, or sales promotional
use. Online editions are also available for most titles (safaribooksonline.com). For more
information, contact our corporate/institutional sales department: (800) 998-9938 or
corporate@oreilly.com.

Editors: Mike Hendrickson, Mike Loukides

Cover Designer: Ellie Volckhausen

Pattern Wranglers: Eric Freeman, Elisabeth Freeman

Facade Decoration: Elisabeth Robson

Strategy: Kathy Sierra and Bert Bates

Observer: Oliver

Printing History:

mailto:corporate@oreilly.com

July 2014: Second release.

October 2004: First release.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Java and all Java-based
trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc.,
in the United States and other countries. O’Reilly Media, Inc. is independent of Sun
Microsystems.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks.

Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and the
authors assume no responsibility for errors or omissions, or for damages resulting from the
use of the information contained herein.

In other words, if you use anything in Head First Design Patterns to, say, run a nuclear
power plant, you’re on your own. We do, however, encourage you to use the DJ View app.

No ducks were harmed in the making of this book.

The original GoF agreed to have their photos in this book. Yes, they really are that good-
looking.

[LSI] [2014-
06-30]

O’Reilly Media
1005 Gravenstein Highway North
Sebastopol, CA 95472

2017-09-13T12:54:18-07:00

Head First: Design Patterns
Table of Contents
Dedication
Praise for Head First Design Patterns
More Praise for Head First Design Patterns
Praise for other books by Eric Freeman and Elisabeth Robson
Authors of Head First Design Patterns
Creators of the Head First series (and co-conspirators on this book)
How to Use This Book: Intro
Who is this book for?
Who should probably back away from this book?

We know what you’re thinking.
And we know what your brain is thinking.
Metacognition: thinking about thinking
Here’s what WE did
Here’s what YOU can do to bend your brain into submission
Read Me
Tech Reviewers
Acknowledgments
Even more people

1. Intro to Design Patterns: Welcome to Design Patterns
It started with a simple SimUDuck app
But now we need the ducks to FLY
But something went horribly wrong...
Joe thinks about inheritance...
How about an interface?
What would you do if you were Joe?
The one constant in software development
Zeroing in on the problem...

Separating what changes from what stays the same
Designing the Duck Behaviors
Implementing the Duck Behaviors
Integrating the Duck Behavior
More integration...
Testing the Duck code
Setting behavior dynamically
The Big Picture on encapsulated behaviors
HAS-A can be better than IS-A
Speaking of Design Patterns...
Overheard at the local diner...
Overheard in the next cubicle...
The power of a shared pattern vocabulary
How do I use Design Patterns?
Tools for your Design Toolbox

2. The Observer Pattern: Keeping your Objects in the know
The Weather Monitoring application overview
Unpacking the WeatherData class
What do we know so far?
Taking a first, misguided SWAG at the Weather Station
What’s wrong with our implementation?
Meet the Observer Pattern
Publishers + Subscribers = Observer Pattern
A day in the life of the Observer Pattern
Five-minute drama: a subject for observation
Two weeks later...
The Observer Pattern defined
The Observer Pattern defined: the class diagram
The power of Loose Coupling
Cubicle conversation
Designing the Weather Station

Implementing the Weather Station
Implementing the Subject interface in WeatherData
Now, let’s build those display elements
Power up the Weather Station
Using Java’s built-in Observer Pattern
How Java’s built-in Observer Pattern works
Reworking the Weather Station with the built-in support
Running the new code
The dark side of java.util.Observable
Other places you’ll find the Observer Pattern in the JDK
And the code...
The updated code, using lambda expressions

Tools for your Design Toolbox
3. The Decorator Pattern: Decorating Objects
Welcome to Starbuzz Coffee
The Open-Closed Principle
Meet the Decorator Pattern
Constructing a drink order with Decorators
Okay, here’s what we know so far...

The Decorator Pattern defined
Decorating our Beverages
Cubicle Conversation
New barista training
Writing the Starbuzz code
Coding beverages
Coding condiments
Serving some coffees
Real World Decorators: Java I/O
Decorating the java.io classes
Writing your own Java I/O Decorator
Test out your new Java I/O Decorator

Give it a spin
Tools for your Design Toolbox

4. The Factory Pattern: Baking with OO Goodness
Identifying the aspects that vary
But the pressure is on to add more pizza types
Encapsulating object creation
Building a simple pizza factory
Reworking the PizzaStore class
The Simple Factory defined
Franchising the pizza store
We’ve seen one approach...
But you’d like a little more quality control...

A framework for the pizza store
Allowing the subclasses to decide
Let’s make a PizzaStore
Declaring a factory method
Let’s see how it works: ordering pizzas with the pizza factory method
So how do they order?
Let’s check out how these pizzas are really made to order...

We’re just missing one thing: PIZZA!
Our PizzaStore isn’t going to be very popular without some pizzas, so
let’s implement them
Now we just need some concrete subclasses... how about defining New
York and Chicago style cheese pizzas?

You’ve waited long enough. Time for some pizzas!
It’s finally time to meet the Factory Method Pattern
The Creator classes
The Product classes

Another perspective: parallel class hierarchies
Factory Method Pattern defined
A very dependent PizzaStore

Looking at object dependencies
The Dependency Inversion Principle
Applying the Principle
Inverting your thinking...
A few guidelines to help you follow the Principle...
Meanwhile, back at the PizzaStore...
Ensuring consistency in your ingredients

Families of ingredients...
Building the ingredient factories
Building the New York ingredient factory
Reworking the pizzas...
Reworking the pizzas, continued...
Revisiting our pizza stores
What have we done?
More pizza for Ethan and Joel...
From here things change, because we are using an ingredient factory

Abstract Factory Pattern defined
Factory Method and Abstract Factory compared
Tools for your Design Toolbox
A very dependent PizzaStore

5. The Singleton Pattern: One of a Kind Objects
The Little Singleton
A small Socratic exercise in the style of The Little Lisper

Dissecting the classic Singleton Pattern implementation
The Chocolate Factory
Singleton Pattern defined
Houston, Hershey, PA we have a problem...
Dealing with multithreading
Can we improve multithreading?
1. Do nothing if the performance of getInstance() isn’t critical to your
application.

2. Move to an eagerly created instance rather than a lazily created one.
3. Use “double-checked locking” to reduce the use of synchronization in
getInstance().

Meanwhile, back at the Chocolate Factory...
Congratulations!
Tools for your Design Toolbox

6. The Command Pattern: Encapsulating Invocation
Free hardware! Let’s check out the Remote Control...
Taking a look at the vendor classes
Cubicle Conversation
Meanwhile, back at the Diner..., or, A brief introduction to the Command
Pattern
Let’s study the interaction in a little more detail...
The Objectville Diner roles and responsibilities
From the Diner to the Command Pattern
Our first command object
Using the command object
Creating a simple test to use the Remote Control
The Command Pattern defined
The Command Pattern defined: the class diagram
Assigning Commands to slots
Implementing the Remote Control
Implementing the Commands
Putting the Remote Control through its paces
Now, let’s check out the execution of our remote control test...

Time to write that documentation...
What are we doing?
Time to QA that Undo button!
Using state to implement Undo
Adding Undo to the CeilingFan commands
Get ready to test the ceiling fan

Testing the ceiling fan...
Every remote needs a Party Mode!
Using a macro command
The Command Pattern means lots of command classes
Do we really need all these command classes?

Simplifying the Remote Control with lambda expressions
Simplifying even more with method references
What if we need to do more than one thing in our lambda expression?

Test the remote control with lambda expressions
Check out the results of all those lambda expression commands...

More uses of the Command Pattern: queuing requests
More uses of the Command Pattern: logging requests
Tools for your Design Toolbox

7. The Adapter and Facade Patterns: Being Adaptive
Adapters all around us
Object-oriented adapters
If it walks like a duck and quacks like a duck, then it must might be a duck
turkey wrapped with a duck adapter...
Test drive the adapter
The Adapter Pattern explained
Here’s how the Client uses the Adapter

Adapter Pattern defined
Object and class adapters
Real-world adapters
Old-world Enumerators
New-world Iterators
And today...

Adapting an Enumeration to an Iterator
Designing the Adapter
Dealing with the remove() method
Writing the EnumerationIterator adapter

And now for something different...
Home Sweet Home Theater
Watching a movie (the hard way)
Lights, Camera, Facade!
Constructing your home theater facade
Implementing the simplified interface
Time to watch a movie (the easy way)
Facade Pattern defined
The Principle of Least Knowledge
How NOT to Win Friends and Influence Objects
Keeping your method calls in bounds...

The Facade and the Principle of Least Knowledge
Tools for your Design Toolbox

8. The Template Method Pattern: Encapsulating Algorithms
It’s time for some more caffeine
Whipping up some coffee and tea classes (in Java)
And now the Tea...
Sir, may I abstract your Coffee, Tea?
Taking the design further...
Abstracting prepareRecipe()
What have we done?
Meet the Template Method
Let’s make some tea...
What did the Template Method get us?
Template Method Pattern defined
Hooked on Template Method...
Using the hook
Let’s run the Test Drive
The Hollywood Principle
The Hollywood Principle and Template Method
Template Methods in the Wild

Sorting with Template Method
We’ve got some ducks to sort...
What is compareTo()?
Comparing Ducks and Ducks
Let’s sort some Ducks
The making of the sorting duck machine
Swingin’ with Frames
Applets
Tools for your Design Toolbox

9. The Iterator and Composite Patterns: Well-Managed Collections
Breaking News: Objectville Diner and Objectville Pancake House Merge
Check out the Menu Items
Lou and Mel’s Menu implementations
What’s the problem with having two different menu representations?
The Java-Enabled Waitress Specification

What now?
Can we encapsulate the iteration?
Meet the Iterator Pattern
Adding an Iterator to DinerMenu
Reworking the Diner Menu with Iterator
Fixing up the Waitress code
Testing our code
Here’s the test run...

What have we done so far?
What we have so far...
Making some improvements...
Cleaning things up with java.util.Iterator
We are almost there...
What does this get us?
Iterator Pattern defined
Single Responsibility

Taking a look at the Café Menu
Reworking the Café Menu code
Adding the Café Menu to the Waitress
Breakfast, lunch AND dinner
Here’s the test run; check out the new dinner menu from the Café!

What did we do?
We decoupled the Waitress....
... and we made the Waitress more extensible
But there’s more!
Iterators and Collections
Is the Waitress ready for prime time?
Just when we thought it was safe...
What do we need?
The Composite Pattern defined
Designing Menus with Composite
Implementing the Menu Component
Implementing the Menu Item
Implementing the Composite Menu
Fixing the print() method

Getting ready for a test drive...
Now for the test drive...
Getting ready for a test drive...
Flashback to Iterator
The Composite Iterator
The Null Iterator
Give me the vegetarian menu
The magic of Iterator & Composite together...
Tools for your Design Toolbox

10. The State Pattern: The State of Things
Jawva Breakers
Cubicle Conversation

State machines 101
Writing the code
In-house testing
You knew it was coming... a change request!
The messy STATE of things...
The new design
Defining the State interfaces and classes
Implementing our State classes
Reworking the Gumball Machine
Now, let’s look at the complete GumballMachine class...
Implementing more states
Let’s take a look at what we’ve done so far...
The State Pattern defined
We still need to finish the Gumball 1 in 10 game
Finishing the game
Demo for the CEO of Mighty Gumball, Inc.
Sanity check...
We almost forgot!
Tools for your Design Toolbox

11. The Proxy Pattern: Controlling Object Access
Coding the Monitor
Testing the Monitor
The role of the ‘remote proxy’
Adding a remote proxy to the Gumball Machine monitoring code
Remote methods 101
Java RMI, the Big Picture
How does the client get the stub object?
Back to our GumballMachine remote proxy
Getting the GumballMachine ready to be a remote service
Registering with the RMI registry...
Now for the GumballMonitor client...

Writing the Monitor test drive
Another demo for the CEO of Mighty Gumball...
And now let’s put the monitor in the hands of the CEO. Hopefully, this
time he’ll love it

The Proxy Pattern defined
Get ready for Virtual Proxy
Remote Proxy
Virtual Proxy

Displaying CD covers
Designing the CD cover Virtual Proxy
How ImageProxy is going to work

Writing the Image Proxy
Testing the CD Cover Viewer
Things to try...

What did we do?
Using the Java API’s Proxy to create a protection proxy
Matchmaking in Objectville
The PersonBean implementation
Five-minute drama: protecting subjects
Big Picture: creating a Dynamic Proxy for the PersonBean
Step one: creating Invocation Handlers
Creating Invocation Handlers continued...
Step two: creating the Proxy class and instantiating the Proxy object
Testing the matchmaking service
Running the code...
The Proxy Zoo
Tools for your Design Toolbox
The code for the CD Cover Viewer

12. Compound Patterns: Patterns of Patterns
Working together
Duck reunion

What did we do?
A duck’s eye view: the class diagram
The King of Compound Patterns
If Elvis were a compound pattern, his name would be Model-View-
Controller, and he’d be singing a little song like this...

Meet the Model-View-Controller
A closer look...
Looking at MVC through patterns-colored glasses
Observer
Strategy
Composite

Using MVC to control the beat...
Meet the Java DJ View
The controller is in the middle...
Let’s not forget about the model underneath it all...

Putting the pieces together
Building the pieces
Let’s check out the BeatModelInterface before looking at the
implementation

Now let’s have a look at the concrete BeatModel class
The View
Implementing the View
Implementing the View, continued...
Now for the Controller
And here’s the implementation of the controller

Putting it all together...
And now for a test run...
Things to do

Exploring Strategy
Adapting the Model
Now we’re ready for a HeartController

And that’s it! Now it’s time for some test code...
And now for a test run...
Things to do

MVC and the Web
Model 2: DJ’ing from a cell phone
The plan

Step one: the model
Step two: the controller servlet
Now we need a view...
Putting Model 2 to the test...
Things to do

Design Patterns and Model 2
Model 2 is an adaptation of MVC to the Web

Observer
Strategy
Composite

Tools for your Design Toolbox
Exercise Solutions

13. Better Living with Patterns: Patterns in the Real World
Design Pattern defined
Looking more closely at the Design Pattern definition
So you wanna be a Design Patterns writer
Organizing Design Patterns
Pattern Categories
Thinking in Patterns
Keep it simple (KISS)
Design Patterns aren’t a magic bullet; in fact, they’re not even a bullet!
You know you need a pattern when...
Refactoring time is Patterns time!
Take out what you don’t really need. Don’t be afraid to remove a Design
Pattern from your design.

If you don’t need it now, don’t do it now.
Your Mind on Patterns
Don’t forget the power of the shared vocabulary
Cruisin’ Objectville with the Gang of Four
Your journey has just begun...
The Patterns Zoo
Annihilating evil with Anti-Patterns
Tools for your Design Toolbox
Leaving Objectville...
Boy, it’s been great having you in Objectville.

A. Leftover Patterns
Bridge
Why use the Bridge Pattern?
Builder
Why use the Builder Pattern?
Chain of Responsibility
How to use the Chain of Responsibility Pattern
Flyweight
Why use the Flyweight Pattern?
Interpreter
How to implement an interpreter
Mediator
Mediator in action...
Memento
The Memento at work
Prototype
Prototype to the rescue
Visitor
The Visitor drops by

B.
C. Mighty Gumball

Index
About the Authors
Colophon
Copyright

	Head First: Design Patterns
	Dedication
	Praise for Head First Design Patterns
	More Praise for Head First Design Patterns
	Praise for other books by Eric Freeman and Elisabeth Robson
	Authors of Head First Design Patterns
	Creators of the Head First series (and co-conspirators on this book)
	How to Use This Book: Intro
	Who is this book for?
	Who should probably back away from this book?

	We know what you’re thinking.
	And we know what your brain is thinking.
	Metacognition: thinking about thinking
	Here’s what WE did
	Here’s what YOU can do to bend your brain into submission
	Read Me
	Tech Reviewers
	Acknowledgments
	Even more people

	1. Intro to Design Patterns: Welcome to Design Patterns
	It started with a simple SimUDuck app
	But now we need the ducks to FLY
	But something went horribly wrong...
	Joe thinks about inheritance...
	How about an interface?
	What would you do if you were Joe?
	The one constant in software development
	Zeroing in on the problem...
	Separating what changes from what stays the same
	Designing the Duck Behaviors
	Implementing the Duck Behaviors
	Integrating the Duck Behavior
	More integration...
	Testing the Duck code
	Setting behavior dynamically
	The Big Picture on encapsulated behaviors
	HAS-A can be better than IS-A
	Speaking of Design Patterns...
	Overheard at the local diner...
	Overheard in the next cubicle...
	The power of a shared pattern vocabulary
	How do I use Design Patterns?
	Tools for your Design Toolbox

	2. The Observer Pattern: Keeping your Objects in the know
	The Weather Monitoring application overview
	Unpacking the WeatherData class
	What do we know so far?
	Taking a first, misguided SWAG at the Weather Station
	What’s wrong with our implementation?
	Meet the Observer Pattern
	Publishers + Subscribers = Observer Pattern
	A day in the life of the Observer Pattern
	Five-minute drama: a subject for observation
	Two weeks later...
	The Observer Pattern defined
	The Observer Pattern defined: the class diagram
	The power of Loose Coupling
	Cubicle conversation
	Designing the Weather Station
	Implementing the Weather Station
	Implementing the Subject interface in WeatherData
	Now, let’s build those display elements
	Power up the Weather Station
	Using Java’s built-in Observer Pattern
	How Java’s built-in Observer Pattern works
	Reworking the Weather Station with the built-in support
	Running the new code
	The dark side of java.util.Observable
	Other places you’ll find the Observer Pattern in the JDK
	And the code...
	The updated code, using lambda expressions

	Tools for your Design Toolbox

	3. The Decorator Pattern: Decorating Objects
	Welcome to Starbuzz Coffee
	The Open-Closed Principle
	Meet the Decorator Pattern
	Constructing a drink order with Decorators
	Okay, here’s what we know so far...

	The Decorator Pattern defined
	Decorating our Beverages
	Cubicle Conversation
	New barista training
	Writing the Starbuzz code
	Coding beverages
	Coding condiments
	Serving some coffees
	Real World Decorators: Java I/O
	Decorating the java.io classes
	Writing your own Java I/O Decorator
	Test out your new Java I/O Decorator
	Give it a spin

	Tools for your Design Toolbox

	4. The Factory Pattern: Baking with OO Goodness
	Identifying the aspects that vary
	But the pressure is on to add more pizza types
	Encapsulating object creation
	Building a simple pizza factory
	Reworking the PizzaStore class
	The Simple Factory defined
	Franchising the pizza store
	We’ve seen one approach...
	But you’d like a little more quality control...

	A framework for the pizza store
	Allowing the subclasses to decide
	Let’s make a PizzaStore
	Declaring a factory method
	Let’s see how it works: ordering pizzas with the pizza factory method
	So how do they order?
	Let’s check out how these pizzas are really made to order...

	We’re just missing one thing: PIZZA!
	Our PizzaStore isn’t going to be very popular without some pizzas, so let’s implement them
	Now we just need some concrete subclasses... how about defining New York and Chicago style cheese pizzas?

	You’ve waited long enough. Time for some pizzas!
	It’s finally time to meet the Factory Method Pattern
	The Creator classes
	The Product classes

	Another perspective: parallel class hierarchies
	Factory Method Pattern defined
	A very dependent PizzaStore
	Looking at object dependencies
	The Dependency Inversion Principle
	Applying the Principle
	Inverting your thinking...
	A few guidelines to help you follow the Principle...
	Meanwhile, back at the PizzaStore...
	Ensuring consistency in your ingredients

	Families of ingredients...
	Building the ingredient factories
	Building the New York ingredient factory
	Reworking the pizzas...
	Reworking the pizzas, continued...
	Revisiting our pizza stores
	What have we done?
	More pizza for Ethan and Joel...
	From here things change, because we are using an ingredient factory

	Abstract Factory Pattern defined
	Factory Method and Abstract Factory compared
	Tools for your Design Toolbox
	A very dependent PizzaStore

	5. The Singleton Pattern: One of a Kind Objects
	The Little Singleton
	A small Socratic exercise in the style of The Little Lisper

	Dissecting the classic Singleton Pattern implementation
	The Chocolate Factory
	Singleton Pattern defined
	Houston, Hershey, PA we have a problem...
	Dealing with multithreading
	Can we improve multithreading?
	1. Do nothing if the performance of getInstance() isn’t critical to your application.
	2. Move to an eagerly created instance rather than a lazily created one.
	3. Use “double-checked locking” to reduce the use of synchronization in getInstance().

	Meanwhile, back at the Chocolate Factory...
	Congratulations!
	Tools for your Design Toolbox

	6. The Command Pattern: Encapsulating Invocation
	Free hardware! Let’s check out the Remote Control...
	Taking a look at the vendor classes
	Cubicle Conversation
	Meanwhile, back at the Diner..., or, A brief introduction to the Command Pattern
	Let’s study the interaction in a little more detail...
	The Objectville Diner roles and responsibilities
	From the Diner to the Command Pattern
	Our first command object
	Using the command object
	Creating a simple test to use the Remote Control
	The Command Pattern defined
	The Command Pattern defined: the class diagram
	Assigning Commands to slots
	Implementing the Remote Control
	Implementing the Commands
	Putting the Remote Control through its paces
	Now, let’s check out the execution of our remote control test...

	Time to write that documentation...
	What are we doing?
	Time to QA that Undo button!
	Using state to implement Undo
	Adding Undo to the CeilingFan commands
	Get ready to test the ceiling fan
	Testing the ceiling fan...
	Every remote needs a Party Mode!
	Using a macro command
	The Command Pattern means lots of command classes
	Do we really need all these command classes?

	Simplifying the Remote Control with lambda expressions
	Simplifying even more with method references
	What if we need to do more than one thing in our lambda expression?

	Test the remote control with lambda expressions
	Check out the results of all those lambda expression commands...

	More uses of the Command Pattern: queuing requests
	More uses of the Command Pattern: logging requests
	Tools for your Design Toolbox

	7. The Adapter and Facade Patterns: Being Adaptive
	Adapters all around us
	Object-oriented adapters
	If it walks like a duck and quacks like a duck, then it must might be a duck turkey wrapped with a duck adapter...
	Test drive the adapter
	The Adapter Pattern explained
	Here’s how the Client uses the Adapter

	Adapter Pattern defined
	Object and class adapters
	Real-world adapters
	Old-world Enumerators
	New-world Iterators
	And today...

	Adapting an Enumeration to an Iterator
	Designing the Adapter
	Dealing with the remove() method
	Writing the EnumerationIterator adapter

	And now for something different...
	Home Sweet Home Theater
	Watching a movie (the hard way)
	Lights, Camera, Facade!
	Constructing your home theater facade
	Implementing the simplified interface
	Time to watch a movie (the easy way)
	Facade Pattern defined
	The Principle of Least Knowledge
	How NOT to Win Friends and Influence Objects
	Keeping your method calls in bounds...

	The Facade and the Principle of Least Knowledge
	Tools for your Design Toolbox

	8. The Template Method Pattern: Encapsulating Algorithms
	It’s time for some more caffeine
	Whipping up some coffee and tea classes (in Java)
	And now the Tea...
	Sir, may I abstract your Coffee, Tea?
	Taking the design further...
	Abstracting prepareRecipe()
	What have we done?
	Meet the Template Method
	Let’s make some tea...
	What did the Template Method get us?
	Template Method Pattern defined
	Hooked on Template Method...
	Using the hook
	Let’s run the Test Drive
	The Hollywood Principle
	The Hollywood Principle and Template Method
	Template Methods in the Wild
	Sorting with Template Method
	We’ve got some ducks to sort...
	What is compareTo()?
	Comparing Ducks and Ducks
	Let’s sort some Ducks
	The making of the sorting duck machine
	Swingin’ with Frames
	Applets
	Tools for your Design Toolbox

	9. The Iterator and Composite Patterns: Well-Managed Collections
	Breaking News: Objectville Diner and Objectville Pancake House Merge
	Check out the Menu Items
	Lou and Mel’s Menu implementations
	What’s the problem with having two different menu representations?
	The Java-Enabled Waitress Specification

	What now?
	Can we encapsulate the iteration?
	Meet the Iterator Pattern
	Adding an Iterator to DinerMenu
	Reworking the Diner Menu with Iterator
	Fixing up the Waitress code
	Testing our code
	Here’s the test run...

	What have we done so far?
	What we have so far...
	Making some improvements...
	Cleaning things up with java.util.Iterator
	We are almost there...
	What does this get us?
	Iterator Pattern defined
	Single Responsibility
	Taking a look at the Café Menu
	Reworking the Café Menu code
	Adding the Café Menu to the Waitress
	Breakfast, lunch AND dinner
	Here’s the test run; check out the new dinner menu from the Café!

	What did we do?
	We decoupled the Waitress....
	... and we made the Waitress more extensible
	But there’s more!
	Iterators and Collections
	Is the Waitress ready for prime time?
	Just when we thought it was safe...
	What do we need?
	The Composite Pattern defined
	Designing Menus with Composite
	Implementing the Menu Component
	Implementing the Menu Item
	Implementing the Composite Menu
	Fixing the print() method

	Getting ready for a test drive...
	Now for the test drive...
	Getting ready for a test drive...
	Flashback to Iterator
	The Composite Iterator
	The Null Iterator
	Give me the vegetarian menu
	The magic of Iterator & Composite together...
	Tools for your Design Toolbox

	10. The State Pattern: The State of Things
	Jawva Breakers
	Cubicle Conversation
	State machines 101
	Writing the code
	In-house testing
	You knew it was coming... a change request!
	The messy STATE of things...
	The new design
	Defining the State interfaces and classes
	Implementing our State classes
	Reworking the Gumball Machine
	Now, let’s look at the complete GumballMachine class...
	Implementing more states
	Let’s take a look at what we’ve done so far...
	The State Pattern defined
	We still need to finish the Gumball 1 in 10 game
	Finishing the game
	Demo for the CEO of Mighty Gumball, Inc.
	Sanity check...
	We almost forgot!
	Tools for your Design Toolbox

	11. The Proxy Pattern: Controlling Object Access
	Coding the Monitor
	Testing the Monitor
	The role of the ‘remote proxy’
	Adding a remote proxy to the Gumball Machine monitoring code
	Remote methods 101
	Java RMI, the Big Picture
	How does the client get the stub object?
	Back to our GumballMachine remote proxy
	Getting the GumballMachine ready to be a remote service
	Registering with the RMI registry...
	Now for the GumballMonitor client...
	Writing the Monitor test drive
	Another demo for the CEO of Mighty Gumball...
	And now let’s put the monitor in the hands of the CEO. Hopefully, this time he’ll love it

	The Proxy Pattern defined
	Get ready for Virtual Proxy
	Remote Proxy
	Virtual Proxy

	Displaying CD covers
	Designing the CD cover Virtual Proxy
	How ImageProxy is going to work

	Writing the Image Proxy
	Testing the CD Cover Viewer
	Things to try...

	What did we do?
	Using the Java API’s Proxy to create a protection proxy
	Matchmaking in Objectville
	The PersonBean implementation
	Five-minute drama: protecting subjects
	Big Picture: creating a Dynamic Proxy for the PersonBean
	Step one: creating Invocation Handlers
	Creating Invocation Handlers continued...
	Step two: creating the Proxy class and instantiating the Proxy object
	Testing the matchmaking service
	Running the code...
	The Proxy Zoo
	Tools for your Design Toolbox
	The code for the CD Cover Viewer

	12. Compound Patterns: Patterns of Patterns
	Working together
	Duck reunion
	What did we do?
	A duck’s eye view: the class diagram
	The King of Compound Patterns
	If Elvis were a compound pattern, his name would be Model-View-Controller, and he’d be singing a little song like this...

	Meet the Model-View-Controller
	A closer look...
	Looking at MVC through patterns-colored glasses
	Observer
	Strategy
	Composite

	Using MVC to control the beat...
	Meet the Java DJ View
	The controller is in the middle...
	Let’s not forget about the model underneath it all...

	Putting the pieces together
	Building the pieces
	Let’s check out the BeatModelInterface before looking at the implementation

	Now let’s have a look at the concrete BeatModel class
	The View
	Implementing the View
	Implementing the View, continued...
	Now for the Controller
	And here’s the implementation of the controller

	Putting it all together...
	And now for a test run...
	Things to do

	Exploring Strategy
	Adapting the Model
	Now we’re ready for a HeartController
	And that’s it! Now it’s time for some test code...

	And now for a test run...
	Things to do

	MVC and the Web
	Model 2: DJ’ing from a cell phone
	The plan

	Step one: the model
	Step two: the controller servlet
	Now we need a view...
	Putting Model 2 to the test...
	Things to do

	Design Patterns and Model 2
	Model 2 is an adaptation of MVC to the Web

	Observer
	Strategy
	Composite

	Tools for your Design Toolbox
	Exercise Solutions

	13. Better Living with Patterns: Patterns in the Real World
	Design Pattern defined
	Looking more closely at the Design Pattern definition
	So you wanna be a Design Patterns writer
	Organizing Design Patterns
	Pattern Categories
	Thinking in Patterns
	Keep it simple (KISS)
	Design Patterns aren’t a magic bullet; in fact, they’re not even a bullet!
	You know you need a pattern when...
	Refactoring time is Patterns time!
	Take out what you don’t really need. Don’t be afraid to remove a Design Pattern from your design.
	If you don’t need it now, don’t do it now.

	Your Mind on Patterns
	Don’t forget the power of the shared vocabulary
	Cruisin’ Objectville with the Gang of Four
	Your journey has just begun...
	The Patterns Zoo
	Annihilating evil with Anti-Patterns
	Tools for your Design Toolbox
	Leaving Objectville...
	Boy, it’s been great having you in Objectville.

	A. Leftover Patterns
	Bridge
	Why use the Bridge Pattern?
	Builder
	Why use the Builder Pattern?
	Chain of Responsibility
	How to use the Chain of Responsibility Pattern
	Flyweight
	Why use the Flyweight Pattern?
	Interpreter
	How to implement an interpreter
	Mediator
	Mediator in action...
	Memento
	The Memento at work
	Prototype
	Prototype to the rescue
	Visitor
	The Visitor drops by

	B.
	C. Mighty Gumball
	Index
	About the Authors
	Colophon
	Copyright

