Code Complete . Preface Page i

) Preface

3 The gap between the best software engineering practice

4 and the average practice is very wide—perhaps wider than in

5 any other engineering discipline. A tool that disseminates

6 good practice would be important.

7 —Fred Brooks

MY PRIMARY CONCERN IN WRITING this book has been to narrow the gap
between the knowledge of industry gurus and professors on the one hand and
10 common commercial practice on the other. Many powerful programming
11 techniques hide in journals and academic papers for years before trickling down
12 to the programming public.
13 Although leading-edge software-development practice has advanced rapidly in
14 recent years, common practice hasn’t. Many programs are still buggy, late, and
15 over budget, and many fail to satisfy the needs of their users. Researchers in both
16 the software industry and academic settings have discovered effective practices
17 that eliminate most of the programming problems that were prevalent in the
18 nineties. Because these practices aren’t often reported outside the pages of highly
19 specialized technical journals, however, most programming organizations aren’t
20 yet using them in the nineties. Studies have found that it typically takes 5 to 15
21 years or more for a research development to make its way into commercial
22 practice (Raghavan and Chand 1989, Rogers 1995, Parnas 1999). This handbook
23 shortcuts the process, making key discoveries available to the average
24 programmer now.
25 Who Should Read This Book?
26 The research and programming experience collected in this handbook will help
27 you to create higher-quality software and to do your work more quickly and with
28 fewer problems. This book will give you insight into why you’ve had problems
29 in the past and will show you how to avoid problems in the future. The
30 programming practices described here will help you keep big projects under
31 control and help you maintain and modify software successfully as the demands
32 of your projects change.
© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:40 PM

H:\books\CodeC2Ed\Reviews\Web\-02-Preface.doc

Code Complete . Preface Page ii

33 Experienced Programmers

34 This handbook serves experienced programmers who want a comprehensive,

35 easy-to-use guide to software development. Because this book focuses on

36 construction, the most familiar part of the software lifecycle, it makes powerful

37 software development techniques understandable to self-taught programmers as

38 well as to programmers with formal training.

39 Self-Taught Programmers

40 If you haven’t had much formal training, you’re in good company. About 50,000

41 new programmers enter the profession each year (BLS 2002), but only about

42 35,000 software-related degrees are awarded each year (NCES 2002). From

43 these figures it’s a short hop to the conclusion that most programmers don’t

44 receive a formal education in software development. Many self-taught

45 programmers are found in the emerging group of professionals—engineers,

46 accountants, teachers, scientists, and small-business owners—who program as

47 part of their jobs but who do not necessarily view themselves as programmers.

48 Regardless of the extent of your programming education, this handbook can give

49 you insight into effective programming practices.

50 Students

51 The counterpoint to the programmer with experience but little formal training is

52 the fresh college graduate. The recent graduate is often rich in theoretical

53 knowledge but poor in the practical know-how that goes into building production

54 programs. The practical lore of good coding is often passed down slowly in the

55 ritualistic tribal dances of software architects, project leads, analysts, and more-

56 experienced programmers. Even more often, it’s the product of the individual

57 programmer’s trials and errors. This book is an alternative to the slow workings

58 of the traditional intellectual potlatch. It pulls together the helpful tips and

59 effective development strategies previously available mainly by hunting and

60 gathering from other people’s experience. It’s a hand up for the student making

61 the transition from an academic environment to a professional one.

62 Where Else Can You Find This Information?

63 This book synthesizes construction techniques from a variety of sources. In

64 addition to being widely scattered, much of the accumulated wisdom about

65 construction has reside outside written sources for years (Hildebrand 1989,

66 McConnell 1997a). There is nothing mysterious about the effective, high-

67 powered programming techniques used by expert programmers. In the day-to-

68 day rush of grinding out the latest project, however, few experts take the time to
© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:40 PM

H:\books\CodeC2Ed\Reviews\Web\-02-Preface.doc

Code Complete . Preface Page iii

69 share what they have learned. Consequently, programmers may have difficulty
70 finding a good source of programming information.
71 The techniques described in this book fill the void after introductory and
72 advanced programming texts. After you have read Introduction to Java,
73 Advanced Java, and Advanced Advanced Java, what book do you read to learn
74 more about programming? You could read books about the details of Intel or
75 Motorola hardware, Windows or Linux operating-system functions, or about the
76 details of another programming language—you can’t use a language or program
77 in an environment without a good reference to such details. But this is one of the
78 few books that discusses programming per se. Some of the most beneficial
79 programming aids are practices that you can use regardless of the environment or
80 language you’re working in. Other books generally neglect such practices, which
81 is why this book concentrates on them.
. Other

Profe§s1onal software

experlence books

. Cornjstruction Magazine

Programming articles
language books Technology
references
82
83 FOOxx01
84 Figure 1
85 The information in this book is distilled from many sources.
86 The only other way to obtain the information you’ll find in this handbook would
87 be to plow through a mountain of books and a few hundred technical journals
88 and then add a significant amount of real-world experience. If you’ve already
89 done all that, you can still benefit from this book’s collecting the information in
90 one place for easy reference.
o1 Key Benefits of This Handbook
92 Whatever your background, this handbook can help you write better programs in
93 less time and with fewer headaches.
© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:40 PM

H:\books\CodeC2Ed\Reviews\Web\-02-Preface.doc

Code Complete . Preface Page iv

94 Complete software-construction reference
95 This handbook discusses general aspects of construction such as software quality
96 and ways to think about programming. It gets into nitty-gritty construction
97 details such as steps in building classes, ins and outs of using data and control
98 structures, debugging, refactoring, and code-tuning techniques and strategies.
99 You don’t need to read it cover to cover to learn about these topics. The book is
100 designed to make it easy to find the specific information that interests you.
101 Ready-to-use checklists
102 This book includes checklists you can use to assess your software architecture,
103 design approach, class and routine quality, variable names, control structures,
104 layout, test cases, and much more.
105 State-of-the-art information
106 This handbook describes some of the most up-to-date techniques available, many
107 of which have not yet made it into common use. Because this book draws from
108 both practice and research, the techniques it describes will remain useful for
109 years.
110 Larger perspective on software development
111 This book will give you a chance to rise above the fray of day-to-day fire
112 fighting and figure out what works and what doesn’t. Few practicing
113 programmers have the time to read through the dozens of software-engineering
114 books and the hundreds of journal articles that have been distilled into this
115 handbook. The research and real-world experience gathered into this handbook
116 will inform and stimulate your thinking about your projects, enabling you to take
117 strategic action so that you don’t have to fight the same battles again and again.
118 Absence of hype
119 Some software books contain 1 gram of insight swathed in 10 grams of hype.
120 This book presents balanced discussions of each technique’s strengths and
121 weaknesses. You know the demands of your particular project better than anyone
122 else. This book provides the objective information you need to make good
123 decisions about your specific circumstances.
124 Concepts applicable to most common languages
125 This book describes techniques you can use to get the most out of whatever
126 language you’re using, whether it’s C++, C#, Java, Visual Basic, or other similar
127 languages.
128 Numerous code examples
129 The book contains almost 500 examples of good and bad code. I’ve included so
130 many examples because, personally, | learn best from examples. | think other
131 programmers learn best that way too.
© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:40 PM

H:\books\CodeC2Ed\Reviews\Web\-02-Preface.doc

Code Complete . Preface Page v

132 The examples are in multiple languages because mastering more than one

133 language is often a watershed in the career of a professional programmer. Once a
134 programmer realizes that programming principles transcend the syntax of any
135 specific language, the doors swing open to knowledge that truly makes a

136 difference in quality and productivity.

137 In order to make the multiple-language burden as light as possible, I’ve avoided
138 esoteric language features except where they’re specifically discussed. You don’t
139 need to understand every nuance of the code fragments to understand the points
140 they’re making. If you focus on the point being illustrated, you’ll find that you
141 can read the code regardless of the language. I’ve tried to make your job even
142 easier by annotating the significant parts of the examples.

143 Access to other sources of information

144 This book collects much of the available information on software construction,
145 but it’s hardly the last word. Throughout the chapters, “Additional Resources”
146 sections describe other books and articles you can read as you pursue the topics
147 you find most interesting.

148 Why This Handbook Was Written

149 The need for development handbooks that capture knowledge about effective
150 development practices is well recognized in the software-engineering

151 community. A report of the Computer Science and Technology Board stated that
152 the biggest gains in software-development quality and productivity will come
153 from codifying, unifying, and distributing existing knowledge about effective
154 software-development practices (CSTB 1990, McConnell 1997a). The board

155 concluded that the strategy for spreading that knowledge should be built on the
156 concept of software-engineering handbooks.

157 The history of computer programming provides more insight into the particular
158 need for a handbook on software construction.

159 The Topic of Construction Has Been Neglected

160 At one time, software development and coding were thought to be one and the
161 same. But as distinct activities in the software-development life cycle have been
162 identified, some of the best minds in the field have spent their time analyzing
163 and debating methods of project management, requirements, design, and testing.
164 The rush to study these newly identified areas has left code construction as the
165 ignorant cousin of software development.

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:40 PM

H:\books\CodeC2Ed\Reviews\Web\-02-Preface.doc

Code Complete

. Preface Page vi

166 Discussions about construction have also been hobbled by the suggestion that
167 treating construction as a distinct software development activity implies that

168 construction must also be treated as a distinct phase. In reality, software

169 activities and phases don’t have to be set up in any particular relationship to each
170 other, and it’s useful to discuss the activity of construction regardless of whether
171 other software activities are performed in phases, in iterations, or in some other
172 way.

173 Construction Is Important

174 Another reason construction has been neglected by researchers and writers is the
175 mistaken idea that, compared to other software-development activities,

176 construction is a relatively mechanical process that presents little opportunity for
177 improvement. Nothing could be further from the truth.

178 Construction typically makes up about 80 percent of the effort on small projects
179 and 50 percent on medium projects. Construction accounts for about 75 percent
180 of the errors on small projects and 50 to 75 percent on medium and large

181 projects. Any activity that accounts for 50 to 75 percent of the errors presents a
182 clear opportunity for improvement. (Chapter 27 contains more details on this

183 topic.)

184 Some commentators have pointed out that although construction errors account
185 for a high percentage of total errors, construction errors tend to be less expensive
186 to fix than those caused by requirements and architecture, the suggestion being
187 that they are therefore less important. The claim that construction errors cost less
188 to fix is true but misleading because the cost of not fixing them can be incredibly
189 high. Researchers have found that small-scale coding errors account for some of
190 the most expensive software errors of all time with costs running into hundreds
191 of millions of dollars (Weinberg 1983, SEN 1990).

192 Small-scale coding errors might be less expensive to fix than errors in

193 requirements or architecture, but an inexpensive cost to fix obviously does not
194 imply that fixing them should be a low priority.

195 The irony of the shift in focus away from construction is that construction is the
196 only activity that’s guaranteed to be done. Requirements can be assumed rather
197 than developed; architecture can be shortchanged rather than designed; and

198 testing can be abbreviated or skipped rather than fully planned and executed. But
199 if there’s going to be a program, there has to be construction, and that makes

200 construction a uniquely fruitful area in which to improve development practices.
© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:40 PM

H:\books\CodeC2Ed\Reviews\Web\-02-Preface.doc

Code Complete

201

202 \When art critics get

203 together they talk about
204 Form and Structure and
205 Meaning. When artists
206 get together they talk

207 apbout where you can buy
208 cheap turpentine.

. Preface Page vii

No Comparable Book Is Available

In light of construction’s obvious importance, | was sure when | conceived this
book that someone else would already have written a book on effective
construction practices. The need for a book about how to program effectively
seemed obvious. But | found that only a few books had been written about
construction and then only on parts of the topic. Some had been written 15 years
ago or more and employed relatively esoteric languages such as ALGOL, PL/I,
Ratfor, and Smalltalk. Some were written by professors who were not working

209 __paplo Picasso on production code. The professors wrote about techniques that worked for

210 student projects, but they often had little idea of how the techniques would play
211 out in full-scale development environments. Still other books trumpeted the

212 authors’ newest favorite methodologies but ignored the huge repository of

213 mature practices that have proven their effectiveness over time.

214 In short, 1 couldn’t find any book that had even attempted to capture the body of
215 practical techniques available from professional experience, industry research,
216 and academic work. The discussion needed to be brought up to date for current
217 programming languages, object-oriented programming, and leading-edge

218 development practices. It seemed clear that a book about programming needed to
219 be written by someone who was knowledgeable about the theoretical state of the
220 art but who was also building enough production code to appreciate the state of
221 the practice. | conceived this book as a full discussion of code construction—

222 from one programmer to another.

223 Book Website

224 CC2E.COM/1234 Updated checklists, recommended reading, web links, and other content are

225 provided on a companion website at www.cc2e.com. To access information

226 related to Code Complete, 2d Ed., enter cc2e.com/ followed by the four-digit

227 code, as shown in the left margin and throughout the book.

228 Author Note

229 If you have any comments, please feel free to contact me care of Microsoft

230 Press, on the Internet as stevemcc@construx.com, or at my Web site at

231 www.stevemcconnell.com.

232 Bellevue, Washington
233 New Year’s Day, 2004
© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:40 PM

H:\books\CodeC2Ed\Reviews\Web\-02-Preface.doc

Code Complete

Notes about the Second Edition Page i

Notes about the Second

1
. Edition
3 When | wrote Code Complete, First Edition, | knew that programmers needed a
4 comprehensive book on software construction. | thought a well-written book
5 could sell twenty to thirty thousand copies. In my wildest fantasies (and my
6 fantasies were pretty wild), | thought sales might approach one hundred thousand
7 copies.
8 Ten years later, | find that CC1 has sold more than a quarter million copies in
9 English and has been translated into more than a dozen languages. The success
10 of the book has been a pleasant surprise.
11 Comparing and contrasting the two editions seems like it might produce some
12 insights into the broader world of software development, so here are some
13 thoughts about the second edition in a Q&A format.
14 Why did you write a second edition? Weren’t the principles in the first
15 edition supposed to be timeless?
16 I’ve been telling people for years that the principles in the first edition were still
17 95 percent relevant, even though the cosmetics, such as the specific
18 programming languages used to illustrate the points, had gotten out of date. |
19 knew that the old-fashioned languages used in the examples made the book
20 inaccessible to many readers.
21 Of course my understanding of software construction had improved and evolved
22 significantly since I published the first edition manuscript in early 1993. After |
23 published CC1 in 1993, I didn’t read it again until early 2003. During that 10
24 year period, subconsciously | had been thinking that CC1 was evolving as my
25 thinking was evolving, but of course it wasn’t. As | got into detailed work on the
26 second edition, | found that the “cosmetic” problems ran deeper than | had
27 thought. CC1 was essentially a time capsule of programming practices circa
28 1993. Industry terminology had evolved, programming languages had evolved,
29 my thinking had evolved, but for some reason the words on the page had not.
30 After working through the second edition, | still think the principles in the first
31 edition were about 95 percent on target. But the book also needed to address new
32 content above and beyond the 95 percent, so the cosmetic work turned out to be
33 more like reconstructive surgery than a simple makeover.
© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:40 PM

H:\books\CodeC2Ed\Reviews\Web\-01-Preface2dEd.doc

Code Complete Notes about the Second Edition Page ii

34 Does the second edition discuss object-oriented programming?
35 Object-oriented programming was really just creeping into production coding
36 practice when | was writing CC1 in 1989-1993. Since then, OO has been
37 absorbed into mainstream programming practice to such an extent that talking
38 about “O0” these days really amounts just to talking about programming. That
39 change is reflected throughout CC2. The languages used in CC2 are all OO
40 (C++, Java, and Visual Basic). One of the major ways that programming has
41 changed since the early 1990s is that a programmer’s basic thought unit is now
42 the classes, whereas 10 years ago the basic thought unit was individual routines.
43 That change has rippled throughout the book as well.
44 What about extreme programming and agile development? Do you talk
45 about those approaches?
46 It’s easiest to answer that question by first saying a bit more about OO. In the
47 early 1990s, OO represented a truly new way of looking at software. As such, |
48 think some time was needed to see how that new approach was going to pan out.
49 Extreme programming and agile development are unlike OO in that they don’t
50 introduce new practices as much as they shift the emphasis that traditional
51 software engineering used to place on some specific practices. They emphasize
52 practices like frequent releases, refactoring, test-first development, and frequent
53 replanning, and de-emphasize other practices like up-front planning, up-front
54 design, and paper documentation.
55 CC1 addressed many topics that would be called “agile” today. For example,
56 here’s what | said about planning in the first edition:
57 “The purpose of planning is to make sure that nobody
58 starves or freezes during the trip; it isn’t to map out each step
59 in advance. The plan is to embrace the unexpected and
60 capitalize on unforeseen opportunities. It’s a good approach
61 to a market characterized by rapidly changing tools,
62 personnel, and standards of excellence.”
63 Much of the agile movement originates from where CC1 left off. For example,
64 here’s what | said about agile approaches in 1993:
65 “Evolution during development is an issue that hasn’t
66 received much attention in its own right. With the rise of code-
67 centered approaches such as prototyping and evolutionary
68 delivery, it’s likely to receive an increasing amount of
69 attention.”

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:40 PM

H:\books\CodeC2Ed\Reviews\Web\-01-Preface2dEd.doc

Code Complete Notes about the Second Edition Page iii

70 “The word ““incremental” has never achieved the
71 designer status of ““structured” or ““object-oriented,”” so no
72 one has ever written a book on ““incremental software
73 engineering.” That’s too bad because the collection of
74 techniques in such a book would be exceptionally potent.”
75 Of course evolutionary and incremental development approaches have become
76 the backbone of agile development.
77 What size project will benefit from Code Complete, Second Edition?
78 Both large and small projects will benefit from Code Complete, as will business-
79 systems projects, safety-critical projects, games, scientific and engineering
80 applications—but these different kinds of projects will emphasize different
81 practices. The idea that different practices apply to different kinds of software is
82 one of the least understood ideas in software development. Indeed, it appears not
83 to be understood by many of the people writing software development books.
84 Fortunately, good construction practices have more in common across types of
85 software than do good requirements, architecture, testing, and quality assurance
86 practices. So Code Complete can be more applicable to multiple project types
87 than books on other software development topics could be.
88 Have there been any improvements in programming in the past 10 years?
89 Programming tools have advanced by leaps and bounds. The tool that | described
90 as a panacea in 1993 is commonplace today.
91 Computing power has advanced extraordinarily. In the performance tuning
92 chapters, CC2’s disk access times are comparable to CC1’s in-memory access
93 times, which is a staggering improvement. As computers become more powerful,
94 it makes sense to have the computer do more of the construction work.
95 CC1’s discussion of non-waterfall lifecycle models was mostly theoretical—the
9 best organizations were using them, but most were using either code and fix or
97 the waterfall model. Now incremental, evolutionary development approaches are
98 in the mainstream. 1 still see most organizations using code and fix, but at least
99 the organizations that aren’t using code and fix are using something better than
100 the waterfall model.
101 There has also been an amazing explosion of good software development books.
102 When | wrote the first edition in 1989-1993, I think it was still possible for a
103 motivated software developer to read every significant book in the field. Today |
104 think it would be a challenge even to read every good book on one significant
105 topic like design, requirements, or management. There still aren’t a lot of other
106 good books on construction, though.
© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:40 PM

H:\books\CodeC2Ed\Reviews\Web\-01-Preface2dEd.doc

Code Complete

Notes about the Second Edition Page iv

107 Has anything moved backwards?

108 There are still far more people who talk about good practices than who actually
109 use good practices. | see far too many people using current buzzwords as a cloak
110 for sloppy practices. When the first edition was published, people were claiming,
111 “l don’t have to do requirements or design because I’m using object-oriented

112 programming.” That was just an excuse. Most of those people weren’t really

113 doing object-oriented programming—they were hacking, and the results were
114 predictable, and poor. Right now, people are saying “l don’t have to do

115 requirements or design because I’m doing agile development.” Again, the results
116 are easy to predict, and poor.

117 Testing guru Boris Beizer said that his clients ask him, “How can | revolutionize
118 and transform my software development without changing anything except the
119 names and putting some slogans up on the walls?”” (Johnson 1994b). Good

120 programmers invest the effort to learn how to use current practices. Not-so-good
121 programmers just learn the buzzwords, and that’s been a software industry

122 constant for a half century.

123 Which of the first edition’s ideas are you most protective of?

124 I’m protective of the construction metaphor and the toolbox metaphor. Some

125 writers have criticized the construction metaphor as not being well-suited to

126 software, but most of those writers seem to have simplistic understandings of
127 construction (You can see how I’ve responded to those criticisms in Chapter 2.)
128 The toolbox metaphor is becoming more critical as software continues to weave
129 itself into every fiber of our lives. Understanding that different tools will work
130 best for different kinds of jobs is critical to not using an axe to cut a stick of

131 butter and not using a butter knife to chop down a tree. It’s silly to hear people
132 criticize software axes for being too bureaucratic when they should have chosen
133 butter knives instead. Axes are good, and so are butter knives, but you need to
134 know what each is used for. In software, we still see people using practices that
135 are good practices in the right context but that are not well suited for every single
136 task.

137 Will there be a third edition 10 years from now?

138 I’m tired of answering questions. Let’s get on with the book!

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:40 PM

H:\books\CodeC2Ed\Reviews\Web\-01-Preface2dEd.doc

Code Complete

1. Welcome to Software Construction Page 1

1

2 Welcome to Software

: Construction

4 CC2E.COM/0178 Contents

5 1.1 What Is Software Construction?

6 1.2 Why Is Software Construction Important?

7 1.3 How to Read This Book

Related Topics
Who should read the book: Preface
10 Benefits of reading the book: Preface
11 Why the book was written: Preface
12 You know what “construction” means when it’s used outside software
13 development. “Construction” is the work “construction workers” do when they
14 build a house, a school, or a skyscraper. When you were younger, you built
15 things out of “construction paper.” In common usage, “construction” refers to
16 the process of building. The construction process might include some aspects of
17 planning, designing, and checking your work, but mostly “construction” refers to
18 the hands-on part of creating something.
19 1.1 What Is Software Construction?
20 Developing computer software can be a complicated process, and in the last 25
21 years, researchers have identified numerous distinct activities that go into
22 software development. They include
23 e Problem definition
24 e Requirements development
25 e Construction planning
26 e Software architecture, or high-level design
© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:40 PM

H:\books\CodeC2Ed\Reviews\Web\01-Welcome.doc

Code Complete

27
28
29
30
31
32
33

34
35
36
37

38
39
40
41
42
43

a4
45
46
a7
48

1. Welcome to Software Construction

Detailed design
Coding and debugging
Unit testing
Integration testing
Integration

System testing

Corrective maintenance

Page 2

If you’ve worked on informal projects, you might think that this list represents a
lot of red tape. If you’ve worked on projects that are too formal, you know that
this list represents a lot of red tape! It’s hard to strike a balance between too little

and too much formality, and that’s discussed in a later chapter.

If you’ve taught yourself to program or worked mainly on informal projects, you

might not have made distinctions among the many activities that go into creating
a software product. Mentally, you might have grouped all of these activities
together as “programming.” If you work on informal projects, the main activity

you think of when you think about creating software is probably the activity the

researchers refer to as “construction.”

This intuitive notion of “construction” is fairly accurate, but it suffers from a

lack of perspective. Putting construction in its context with other activities helps
keep the focus on the right tasks during construction and appropriately
emphasizes important nonconstruction activities. Figure 1-1 illustrates

construction’s place related to other software development activities.

© 1993-2003 Steven C. McConnell. All Rights Reserved.
H:\books\CodeC2Ed\Reviews\Web\01-Welcome.doc

1/13/2004 2:40 PM

Code Complete 1. Welcome to Software Construction Page 3

Problem
Definition

Corrective

Detailed
Requirements Design
Development

Maintenance

Integration

Construction
Planning

Integration

Testing
Unit
Testing
Software System
Architecture Testing
49
50 FO1xx01
51 Figure 1-1
52 Construction activities are shown inside the gray circle. Construction focuses on
53 coding and debugging but also includes some detailed design, unit testing,
54 integration testing and other activities.
55| KEY POINT As the figure indicates, construction is mostly coding and debugging but also
56 involves elements of detailed design, unit testing, integration, integration testing,
57 and other activities. If this were a book about all aspects of software
58 development, it would feature nicely balanced discussions of all activities in the
59 development process. Because this is a handbook of construction techniques,
60 however, it places a lopsided emphasis on construction and only touches on
61 related topics. If this book were a dog, it would nuzzle up to construction, wag
62 its tail at design and testing, and bark at the other development activities.
63 Construction is also sometimes known as “coding” or “programming.” “Coding”
64 isn’t really the best word because it implies the mechanical translation of a
65 preexisting design into a computer language; construction is not at all
66 mechanical and involves substantial creativity and judgment. Throughout the
67 book, I use “programming” interchangeably with “construction.”
68 In contrast to Figure 1-1’s flat-earth view of software development, Figure 1-2
69 shows the round-earth perspective of this book.
© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:40 PM

H:\books\CodeC2Ed\Reviews\Web\01-Welcome.doc

Code Complete

1. Welcome to Software Construction Page 4

Integration

Unit Testing
Testing
Software
Architecture
70
71 FO1xx02
72 Figure 1-2
73 This book focuses on detailed design, coding, debugging, and unit testing in roughly
74 these proportions.
75 Figure 1-1 and Figure 1-2 are high-level views of construction activities, but
76 what about the details? Here are some of the specific tasks involved in
77 construction:
78 e Verifying that the groundwork has been laid so that construction can proceed
79 successfully
80 e Determining how your code will be tested
81 e Designing and writing classes and routines
82 e C(Creating and naming variables and named constants
83 e Selecting control structures and organizing blocks of statements
84 e Unit testing, integration testing, and debugging your own code
85 e Reviewing other team members’ low-level designs and code and having
86 them review yours
87 e Polishing code by carefully formatting and commenting it
88 e Integrating software components that were created separately
89 e Tuning code to make it smaller and faster
© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:40 PM

H:\books\CodeC2Ed\Reviews\Web\01-Welcome.doc

Code Complete

90
91

92
93
94
95
96
97
98
99
100
101

102

103

104
105
106
107
108
109
110

111
112
113

114

115 CROSS-REFERENCE For
116 details on the relationship
117 between project size and the
percentage of time consumed
by construction, see “Activity

Proportions and Size” in
Section 27.5.

1. Welcome to Software Construction Page 5

For an even fuller list of construction activities, look through the chapter titles in
the table of contents.

With so many activities at work in construction, you might say, “OK, Jack, what
activities are not parts of construction?”” That’s a fair question. Important
nonconstruction activities include management, requirements development,
software architecture, user-interface design, system testing, and maintenance.
Each of these activities affects the ultimate success of a project as much as
construction—at least the success of any project that calls for more than one or
two people and lasts longer than a few weeks. You can find good books on each
activity; many are listed in the “Additional Resources” sections throughout the
book and in the “Where to Find More Information” chapter at the end of the
book.

1.2 Why Is Software Construction
Important?

Since you’re reading this book, you probably agree that improving software
quality and developer productivity is important. Many of today’s most exciting
projects use software extensively. The Internet, movie special effects, medical
life-support systems, the space program, aeronautics, high-speed financial
analysis, and scientific research are a few examples. These projects and more
conventional projects can all benefit from improved practices because many of
the fundamentals are the same.

If you agree that improving software development is important in general, the
question for you as a reader of this book becomes, Why is construction an
important focus?

Here’s why:

Construction is a large part of software development

Depending on the size of the project, construction typically takes 30 to 80
percent of the total time spent on a project. Anything that takes up that much
project time is bound to affect the success of the project.

Construction is the central activity in software development

120 Requirements and architecture are done before construction so that you can do

121 construction effectively. System testing is done after construction to verify that

122 construction has been done correctly. Construction is at the center of the

123 software development process.

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:40 PM

H:\books\CodeC2Ed\Reviews\Web\01-Welcome.doc

Code Complete 1. Welcome to Software Construction Page 6

124 CROSS-REFERENCE For With a focus on construction, the individual programmer’s productivity
125 data on variations among can improve enormously

126 programmers, see “Individual A classic study by Sackman, Erikson, and Grant showed that the productivity of
7 Variation” in Section 28.5.

12 individual programmers varied by a factor of 10 to 20 during construction

128 (1968). Since their study, their results have been confirmed by numerous other
129 studies (Curtis 1981, Mills 1983, Curtis et al 1986, Card 1987, Valett and

130 McGarry 1989, DeMarco and Lister 1999, Boehm et al 2000). This books helps
131 all programmers learn techniques that are already used by the best programmers.
132 Construction’s product, the source code, is often the only accurate

133 description of the software

134 In many projects, the only documentation available to programmers is the code
135 itself. Requirements specifications and design documents can go out of date, but
136 the source code is always up to date. Consequently, it’s imperative that the

137 source code be of the highest possible quality. Consistent application of

138 techniques for source-code improvement makes the difference between a Rube
139 Goldberg contraption and a detailed, correct, and therefore informative program.
140 Such techniques are most effectively applied during construction.

141 KEY POINT Construction is the only activity that’s guaranteed to be done

142 The ideal software project goes through careful requirements development and
143 architectural design before construction begins. The ideal project undergoes

144 comprehensive, statistically controlled system testing after construction.

145 Imperfect, real-world projects, however, often skip requirements and design to
146 jump into construction. They drop testing because they have too many errors to
147 fix and they’ve run out of time. But no matter how rushed or poorly planned a
148 project is, you can’t drop construction; it’s where the rubber meets the road.

149 Improving construction is thus a way of improving any software-development
150 effort, no matter how abbreviated.

151 1.3 How to Read This Book

152 This book is designed to be read either cover to cover or by topic. If you like to

153 read books cover to cover, then you might simply dive into Chapter 2,

154 “Metaphors for a Richer Understanding of Software Development.” If you want

155 to get to specific programming tips, you might begin with Chapter 6, “Working

156 Classes” and then follow the cross references to other topics you find interesting.

157 If you’re not sure whether any of this applies to you, begin with Section 3.2,

158 “Determine the Kind of Software You’re Working On.”

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:40 PM

H:\books\CodeC2Ed\Reviews\Web\01-Welcome.doc

Code Complete 1. Welcome to Software Construction Page 7

159 Key Points

160 e Software construction the central activity in software development;

161 construction is the only activity that’s guaranteed to happen on every

162 project.

163 e The main activities in construction are detailed design, coding, debugging,
164 and developer testing.

165 e Other common terms for construction are “coding and debugging” and
166 “programming.”

167 e The quality of the construction substantially affects the quality of the

168 software.

169 e In the final analysis, your understanding of how to do construction

170 determines how good a programmer you are, and that’s the subject of the
171 rest of the book.

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:40 PM

H:\books\CodeC2Ed\Reviews\Web\01-Welcome.doc

Code Complete

2. Metaphors for a Richer Understanding of Software Development Page 1

2

Metaphors for a Richer
Understanding of Software
Development

5 CC2E.COM/0278 Contents

6 2.1 The Importance of Metaphors

7 2.2 How to Use Software Metaphors

8 2.3 Common Software Metaphors

9 Related Topic
10 Heuristics in design: “Design is a Heuristic Process” in Section 5.1.
11 Computer science has some of the most colorful language of any field. In what
12 other field can you walk into a sterile room, carefully controlled at 68°F, and
13 find viruses, Trojan horses, worms, bugs, bombs, crashes, flames, twisted sex
14 changers, and fatal errors?
15 These graphic metaphors describe specific software phenomena. Equally vivid
16 metaphors describe broader phenomena, and you can use them to improve your
17 understanding of the software-development process.
18 The rest of the book doesn’t directly depend on the discussion of metaphors in
19 this chapter. Skip it if you want to get to the practical suggestions. Read it if you
20 want to think about software development more clearly.
21 2.1 The Importance of Metaphors
22 Important developments often arise out of analogies. By comparing a topic you
23 understand poorly to something similar you understand better, you can come up
24 with insights that result in a better understanding of the less-familiar topic. This
25 use of metaphor is called “modeling.”

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:40 PM

H:\books\CodeC2Ed\Reviews\Web\02-Metaphors.doc

Code Complete

2. Metaphors for a Richer Understanding of Software Development Page 2

26 The history of science is full of discoveries based on exploiting the power of
27 metaphors. The chemist Kekulé had a dream in which he saw a snake grasp its
28 tail in its mouth. When he awoke, he realized that a molecular structure based on
29 a similar ring shape would account for the properties of benzene. Further
30 experimentation confirmed the hypothesis (Barbour 1966).
31 The kinetic theory of gases was based on a “billiard-ball” model. Gas molecules
32 were thought to have mass and to collide elastically, as billiard balls do, and
33 many useful theorems were developed from this model.
34 The wave theory of light was developed largely by exploring similarities
35 between light and sound. Light and sound have amplitude (brightness, loudness),
36 frequency (color, pitch), and other properties in common. The comparison
37 between the wave theories of sound and light was so productive that scientists
38 spent a great deal of effort looking for a medium that would propagate light the
39 way air propagates sound. They even gave it a name —ether”—but they never
40 found the medium. The analogy that had been so fruitful in some ways proved to
41 be misleading in this case.
42 In general, the power of models is that they’re vivid and can be grasped as
43 conceptual wholes. They suggest properties, relationships, and additional areas
44 of inquiry. Sometimes a model suggests areas of inquiry that are misleading, in
45 which case the metaphor has been overextended. When the scientists looked for
46 ether, they overextended their model.
47 As you might expect, some metaphors are better than others. A good metaphor is
48 simple, relates well to other relevant metaphors, and explains much of the
49 experimental evidence and other observed phenomena.
50 Consider the example of a heavy stone swinging back and forth on a string.
51 Before Galileo, an Aristotelian looking at the swinging stone thought that a
52 heavy object moved naturally from a higher position to a state of rest at a lower
53 one. The Aristotelian would think that what the stone was really doing was
54 falling with difficulty. When Galileo saw the swinging stone, he saw a
55 pendulum. He thought that what the stone was really doing was repeating the
56 same motion again and again, almost perfectly.
57 The suggestive powers of the two models are quite different. The Aristotelian
58 who saw the swinging stone as an object falling would observe the stone’s
59 weight, the height to which it had been raised, and the time it took to come to
60 rest. For Galileo’s pendulum model, the prominent factors were different.
61 Galileo observed the stone’s weight, the radius of the pendulum’s swing, the
62 angular displacement, and the time per swing. Galileo discovered laws the

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:40 PM

H:\books\CodeC2Ed\Reviews\Web\02-Metaphors.doc

Code Complete

63
64

65
66
67
68
69
70
71
72
73
74

75
76
77
78
79
80
81
82

83
84
85
86
87
88

89
90
91
92

93
94
95
96
97
98
99

© 1993-2003 Steven C. McConnell. All Rights Reserved.

The value of metaphors
should not be
underestimated.
Metaphors have the
virtue of an expected
behavior that is
understood by all.
Unnecessary
communication and
misunderstandings are
reduced. Learning and
education are quicker. In
effect, metaphors are a
way of internalizing and
abstracting concepts
allowing one’s thinking
to be on a higher plane
and low-level mistakes to
be avoided.

— Fernando J. Corbaté

2. Metaphors for a Richer Understanding of Software Development

Aristotelians could not discover because their model led them to look at different
phenomena and ask different questions.

Metaphors contribute to a greater understanding of software-development issues
in the same way that they contribute to a greater understanding of scientific
questions. In his 1973 Turing Award lecture, Charles Bachman described the
change from the prevailing earth-centered view of the universe to a sun-centered
view. Ptolemy’s earth-centered model had lasted without serious challenge for
1400 years. Then in 1543, Copernicus introduced a heliocentric theory, the idea
that the sun rather than the earth was the center of the universe. This change in
mental models led ultimately to the discovery of new planets, the reclassification
of the moon as a satellite rather than a planet, and a different understanding of
humankind’s place in the universe.

Bachman compared the Ptolemaic-to-Copernican change in astronomy to the
change in computer programming in the early 1970s. When Bachman made the
comparison in 1973, data processing was changing from a computer-centered
view of information systems to a database-centered view. Bachman pointed out
that the ancients of data processing wanted to view all data as a sequential stream
of cards flowing through a computer (the computer-centered view). The change
was to focus on a pool of data on which the computer happened to act (a
database-oriented view).

Today it’s difficult to imagine anyone’s thinking that the sun moves around the
earth. Similarly, it’s difficult to imagine anyone’s thinking that all data could be
viewed as a sequential stream of cards. In both cases, once the old theory has
been discarded, it seems incredible that anyone ever believed it at all. More
fantastically, people who believed the old theory thought the new theory was just
as ridiculous then as you think the old theory is now.

The earth-centered view of the universe hobbled astronomers who clung to it
after a better theory was available. Similarly, the computer-centered view of the
computing universe hobbled computer scientists who held on to it after the
database-centered theory was available.

It’s tempting to trivialize the power of metaphors. To each of the earlier
examples, the natural response is to say, “Well, of course the right metaphor is
more useful. The other metaphor was wrong!” Though that’s a natural reaction,
it’s simplistic. The history of science isn’t a series of switches from the “wrong”
metaphor to the “right” one. It’s a series of changes from “worse” metaphors to
“better” ones, from less inclusive to more inclusive, from suggestive in one area
to suggestive in another.

H:\books\CodeC2Ed\Reviews\Web\02-Metaphors.doc

Page 3

1/13/2004 2:40 PM

Code Complete

100
101
102
103

104
105
106
107
108

109

110/ KEY POINT

111
112

113
114
115
116
117

118
119
120
121
122
123

124
125
126
127

128 CROSS-REFERENCE For
129 details on how to use
heuristics in designing

130 ..
software, see “Design is a

2. Metaphors for a Richer Understanding of Software Development Page 4

In fact, many models that have been replaced by better models are still useful.
Engineers still solve most engineering problems by using Newtonian dynamics
even though, theoretically, Newtonian dynamics have been supplanted by
Einsteinian theory.

Software development is a younger field than most other sciences. It’s not yet
mature enough to have a set of standard metaphors. Consequently, it has a
profusion of complementary and conflicting metaphors. Some are better than
others. Some are worse. How well you understand the metaphors determines
how well you understand software development.

2.2 How to Use Software Metaphors

A software metaphor is more like a searchlight than a roadmap. It doesn’t tell
you where to find the answer; it tells you how to look for it. A metaphor serves
more as a heuristic than it does as an algorithm.

An algorithm is a set of well-defined instructions for carrying out a particular

task. An algorithm is predictable, deterministic, and not subject to chance. An
algorithm tells you how to go from point A to point B with no detours, no side
trips to points D, E, and F, and no stopping to smell the roses or have a cup of
joe.

A heuristic is a technique that helps you look for an answer. Its results are
subject to chance because a heuristic tells you only how to look, not what to find.
It doesn’t tell you how to get directly from point A to point B; it might not even
know where point A and point B are. In effect, a heuristic is an algorithm in a
clown suit. It’s less predictable, it’s more fun, and it comes without a 30-day
money-back guarantee.

Here is an algorithm for driving to someone’s house: Take highway 167 south to
Puyallup. Take the South Hill Mall exit and drive 4.5 miles up the hill. Turn
right at the light by the grocery store, and then take the first left. Turn into the
driveway of the large tan house on the left, at 714 North Cedar.

Here is a heuristic for getting to someone’s house: Find the last letter we mailed
you. Drive to the town in the return address. When you get to town, ask someone
where our house is. Everyone knows us—someone will be glad to help you. If

131 Heuristic Process” in Section you can’t find anyone, call us from a public phone, and we’ll come get you.
5.1.
132 The difference between an algorithm and a heuristic is subtle, and the two terms
133 overlap somewhat. For the purposes of this book, the main difference between
134 the two is the level of indirection from the solution. An algorithm gives you the
© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:40 PM

H:\books\CodeC2Ed\Reviews\Web\02-Metaphors.doc

Code Complete

2. Metaphors for a Richer Understanding of Software Development Page 5

135 instructions directly. A heuristic tells you how to discover the instructions for
136 yourself, or at least where to look for them.

137 Having directions that told you exactly how to solve your programming

138 problems would certainly make programming easier and the results more

139 predictable. But programming science isn’t yet that advanced and may never be.
140 The most challenging part of programming is conceptualizing the problem, and
141 many errors in programming are conceptual errors. Because each program is

142 conceptually unique, it’s difficult or impossible to create a general set of

143 directions that lead to a solution in every case. Thus, knowing how to approach
144 problems in general is at least as valuable as knowing specific solutions for

145 specific problems.

146 How do you use software metaphors? Use them to give you insight into your
147 programming problems and processes. Use them to help you think about your
148 programming activities and to help you imagine better ways of doing things.

149 You won’t be able to look at a line of code and say that it violates one of the

150 metaphors described in this chapter. Over time, though, the person who uses

151 metaphors to illuminate the software-development process will be perceived as
152 someone who has a better understanding of programming and produces better
153 code faster than people who don’t use them.

154 2.3 Common Software Metaphors

155 A confusing abundance of metaphors has grown up around software

156 development. Fred Brooks says that writing software is like farming, hunting
157 werewolves, or drowning with dinosaurs in a tar pit (1995). David Gries says it’s
158 a science (1981). Donald Knuth says it’s an art (1998). Watts Humphrey says it’s
159 a process (1989). P.J. Plauger and Kent Beck say it’s like driving a car (Plauger
160 1993, Beck 2000). Alistair Cockburn says it’s a game (2001). Eric Raymond

161 says it’s like a bazaar (2000). Paul Heckel says it’s like filming Snow White and
162 the Seven Dwarfs (1994). Which are the best metaphors?

163 Software Penmanship: Writing Code

164 The most primitive metaphor for software development grows out of the

165 expression “writing code.” The writing metaphor suggests that developing a

166 program is like writing a casual letter—you sit down with pen, ink, and paper
167 and write it from start to finish. It doesn’t require any formal planning, and you
168 figure out what you want to say as you go.

169 Many ideas derive from the writing metaphor. Jon Bentley says you should be
170 able to sit down by the fire with a glass of brandy, a good cigar, and your

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:40 PM

H:\books\CodeC2Ed\Reviews\Web\02-Metaphors.doc

Code Complete 2. Metaphors for a Richer Understanding of Software Development Page 6

171 favorite hunting dog to enjoy a “literate program” the way you would a good

172 novel. Brian Kernighan and P. J. Plauger named their programming-style book
173 The Elements of Programming Style (1978) after the writing-style book The

174 Elements of Style (Strunk and White 2000). Programmers often talk about

175 “program readability.”

176 KEY POINT For an individual’s work or for small-scale projects, the letter-writing metaphor
177 works adequately, but for other purposes it leaves the party early—it doesn’t

178 describe software development fully or adequately. Writing is usually a one-

179 person activity, whereas a software project will most likely involve many people
180 with many different responsibilities. When you finish writing a letter, you stuff it
181 into an envelope and mail it. You can’t change it anymore, and for all intents and
182 purposes it’s complete. Software isn’t as difficult to change and is hardly ever
183 fully complete. As much as 90 percent of the development effort on a typical
184 software system comes after its initial release, with two-thirds being typical

185 (Pigoski 1997). In writing, a high premium is placed on originality. In software
186 construction, trying to create truly original work is often less effective than

187 focusing on the reuse of design ideas, code, and test cases from previous

188 projects. In short, the writing metaphor implies a software-development process
189 that’s too simple and rigid to be healthy.

190 Ppjan to throw one away; Unfortunately, the letter-writing metaphor has been perpetuated by one of the
191 you will, anyhow. most popular software books on the planet, Fred Brooks’s The Mythical Man-
192 Erod Brooks Month (Brooks 1995). Brooks says, “Plan to throw one away; you will,

193 anyhow.” This conjures up an image of a pile of half-written drafts thrown into a

If you plan to throw one
away, you will throw

194 wastebasket. Planning to throw one away might be practical when you’re writing

195 a polite how-do-you-do to your aunt, and it might have been state-of-the-art
196 AWay two. software engineering practice in 1975, when Brooks wrote his book.
— Craig Zerouni
197
198 FO2xx01
199 Figure 2-1
200 The letter-writing metaphor suggests that the software process relies on expensive
201 trial and error rather than careful planning and design.
© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:40 PM

H:\books\CodeC2Ed\Reviews\Web\02-Metaphors.doc

Code Complete

202
203
204
205
206
207
208

209

210
211
212
213
214

215| KEY POINT

216
217

218 FURTHER READING For an
219 illustration of a different
farming metaphor, one that’s
applied to software
maintenance, see the chapter
222 «Qn the Origins of Designer
223 Intuition” in Rethinking

224 Systems Analysis and Design
205 (Weinberg 1988).

220
221

2. Metaphors for a Richer Understanding of Software Development Page 7

But extending the metaphor of “writing” software to a plan to throw one away is
poor advice for software development in the twenty-first century, when a major
system already costs as much as a 10-story office building or an ocean liner. It’s
easy to grab the brass ring if you can afford to sit on your favorite wooden pony
for an unlimited number of spins around the carousel. The trick is to get it the
first time around—or to take several chances when they’re cheapest. Other
metaphors better illuminate ways of attaining such goals.

Software Farming: Growing a System

In contrast to the rigid writing metaphor, some software developers say you
should envision creating software as something like planting seeds and growing
crops. You design a piece, code a piece, test a piece, and add it to the system a
little bit at a time. By taking small steps, you minimize the trouble you can get
into at any one time.

Sometimes a good technique is described with a bad metaphor. In such cases, try
to keep the technique and come up with a better metaphor. In this case, the
incremental technique is valuable, but the farming metaphor is terrible.

The idea of doing a little bit at a time might bear some resemblance to the way
crops grow, but the farming analogy is weak and uninformative, and it’s easy to
replace with the better metaphors described in the following sections. It’s hard to
extend the farming metaphor beyond the simple idea of doing things a little bit at
a time. If you buy into the farming metaphor, you might find yourself talking
about fertilizing the system plan, thinning the detailed design, increasing code
yields through effective land management, and harvesting the code itself. You’ll
talk about rotating in a crop of C++ instead of barley, of letting the land rest for a

226 year to increase the supply of nitrogen in the hard disk.

227 The weakness in the software-farming metaphor is its suggestion that you don’t

228 have any direct control over how the software develops. You plant the code

229 seeds in the spring. Farmer’s Almanac and the Great Pumpkin willing, you’ll

230 have a bumper crop of code in the fall.

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:40 PM

H:\books\CodeC2Ed\Reviews\Web\02-Metaphors.doc

Code Complete 2. Metaphors for a Richer Understanding of Software Development Page 8

231

232 FO02xx02

233 Figure 2-2

234 It’s hard to extend the farming metaphor to software development appropriately.

235 Software Oyster Farming: System Accretion

236 Sometimes people talk about growing software when they really mean software
237 accretion. The two metaphors are closely related, but software accretion is the
238 more insightful image. “Accretion,” in case you don’t have a dictionary handy,
239 means any growth or increase in size by a gradual external addition or inclusion.
240 Accretion describes the way an oyster makes a pearl, by gradually adding small
241 amounts of calcium carbonate. In geology, “accretion” means a slow addition to
242 land by the deposit of waterborne sediment. In legal terms, “accretion” means an
243 increase of land along the shores of a body of water by the deposit of waterborne
244 sediment.

245 CROSS-REFERENCE For This doesn’t mean that you have to learn how to make code out of waterborne
246 details on how to apply sediment; it means that you have to learn how to add to your software systems a

i tal strategies t . .
247 'NeTOmCNAl Strategles fo small amount at a time. Other words closely related to accretion are

system integration, see

99 ¢

248 g tion 29.2, “Integration “incremental,” “iterative,” “adaptive,” and “evolutionary.” Incremental

249 Frequency—Phased or designing, building, and testing are some of the most powerful software-

250 Incremental?” development concepts available.

251 In incremental development, you first make the simplest possible version of the
252 system that will run. It doesn’t have to accept realistic input, it doesn’t have to
253 perform realistic manipulations on data, it doesn’t have to produce realistic

254 output—it just has to be a skeleton strong enough to hold the real system as it’s
255 developed. It might call dummy classes for each of the basic functions you have
256 identified. This basic beginning is like the oyster’s beginning a pearl with a small
257 grain of sand.

258 After you’ve formed the skeleton, little by little you lay on the muscle and skin.
259 You change each of the dummy classes to real classes. Instead of having your
260 program pretend to accept input, you drop in code that accepts real input. Instead
261 of having your program pretend to produce output, you drop in code that

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:40 PM

H:\books\CodeC2Ed\Reviews\Web\02-Metaphors.doc

Code Complete 2. Metaphors for a Richer Understanding of Software Development Page 9

262 produces real output. You add a little bit of code at a time until you have a fully
263 working system.

264 The anecdotal evidence in favor of this approach is impressive. Fred Brooks,
265 who in 1975 advised building one to throw away, said that nothing in the decade
266 after he wrote his landmark book The Mythical Man-Month so radically changed
267 his own practice or its effectiveness as incremental development (1995). Tom
268 Gilb made the same point in his breakthrough book Principles of Software

269 Engineering Management (1988), which introduced Evolutionary Delivery and
270 laid the groundwork for much of today’s Agile programming approach.

271 Numerous current methodologies are based on this idea (Beck 2000, Cockburn
272 2001, Highsmith 2002, Reifer 2002, Martin 2003, Larman 2004).

273 As a metaphor, the strength of the incremental metaphor is that it doesn’t over
274 promise. It’s harder than the farming metaphor to extend inappropriately. The
275 image of an oyster forming a pearl is a good way to visualize incremental

276 development, or accretion.

277 Software Construction: Building Software

278 KEY POINT The image of “building” software is more useful than that of “writing” or

279 “growing” software. It’s compatible with the idea of software accretion and

280 provides more detailed guidance. Building software implies various stages of
281 planning, preparation, and execution that vary in kind and degree depending on
282 what’s being built. When you explore the metaphor, you find many other

283 parallels.

284 Building a 4-foot tower requires a steady hand, a level surface, and 10

285 undamaged beer cans. Building a tower 100 times that size doesn’t merely

286 require 100 times as many beer cans. It requires a different kind of planning and
287 construction altogether.

288 If you’re building a simple structure—a doghouse, say—you can drive to the
289 lumber store and buy some wood and nails. By the end of the afternoon, you’ll
290 have a new house for Fido. If you forget to provide for a door or make some

291 other mistake, it’s not a big problem; you can fix it or even start over from the
292 beginning. All you’ve wasted is part of an afternoon. This loose approach is

293 appropriate for small software projects too, If you use the wrong design for 1000
294 lines of code, you can refactor or start over completely without losing much.

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:40 PM

H:\books\CodeC2Ed\Reviews\Web\02-Metaphors.doc

Code Complete

2. Metaphors for a Richer Understanding of Software Development Page 10

295

296 FO02xx03

297 Figure 2-3

298 The penalty for a mistake on a simple structure is only a little time and maybe some
299 embarrassment.

300 If you’re building a house, the building process is a more complicated, and so are
301 the consequences of poor design. First you have to decide what kind of house

302 you want to build—analogous in software development to problem definition.
303 Then you and an architect have to come up with a general design and get it

304 approved. This is similar to software architectural design. You draw detailed

305 blueprints and hire a contractor. This is similar to detailed software design. You
306 prepare the building site, lay a foundation, frame the house, put siding and a roof
307 on it, and plumb and wire it. This is similar to software construction. When most
308 of the house is done, the landscapers and painters come in to make the best of
309 your property and the home you’ve built. This is similar to software

310 optimization. Throughout the process, various inspectors come to check the site,
311 foundation, frame, wiring, and other inspectables. This is similar to software

312 reviews, pair programming, and inspections.

313 Greater complexity and size imply greater consequences in both activities. In

314 building a house, materials are somewhat expensive, but the main expense is

315 labor. Ripping out a wall and moving it six inches is expensive not because you
316 waste a lot of nails but because you have to pay the people for the extra time it
317 takes to move the wall. You have to make the design as good as possible so that
318 you don’t waste time fixing mistakes that could have been avoided. In building a
319 software product, materials are even less expensive, but labor costs just as much.
320 Changing a report format is just as expensive as moving a wall in a house

321 because the main cost component in both cases is people’s time.

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:40 PM

H:\books\CodeC2Ed\Reviews\Web\02-Metaphors.doc

Code Complete 2. Metaphors for a Richer Understanding of Software Development Page 11

N

? =

Al

LIl

!

322

323 FO02xx04

324 Figure 2-4

325 More complicated structures require more careful planning.

326 What other parallels do the two activities share? In building a house, you won’t
327 try to build things you can buy already built. You’ll buy a washer and dryer,

328 dishwasher, refrigerator, and freezer. Unless you’re a mechanical wizard, you
329 won’t consider building them yourself. You’ll also buy prefabricated cabinets,
330 counters, windows, doors, and bathroom fixtures. If you’re building a software
331 system, you’ll do the same thing. You’ll make extensive use of high-level

332 language features rather than writing your own operating-system-level code. You
333 might also use prebuilt libraries of container classes, scientific functions, user
334 interface classes, and database-manipulation classes. It generally doesn’t make
335 sense to code things you can buy ready made.

336 If you’re building a fancy house with first-class furnishings, however, you might
337 have your cabinets custom made. You might have a dishwasher, refrigerator, and
338 freezer built in to look like the rest of your cabinets. You might have windows
339 custom made in unusual shapes and sizes. This customization has parallels in

340 software development. If you’re building a first-class software product, you

341 might build your own scientific functions for better speed or accuracy. You

342 might build your own container classes, user interface classes and database

343 classes to give your system a seamless, perfectly consistent look and feel.

344 Both building construction and software construction both benefit from

345 appropriate levels of planning. If you build software in the wrong order, it’s hard
346 to code, hard to test, and hard to debug. It can take longer to complete, or the

347 project can fall apart because everyone’s work is too complex and therefore too
348 confusing when it’s all combined.

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:40 PM

H:\books\CodeC2Ed\Reviews\Web\02-Metaphors.doc

Code Complete

2. Metaphors for a Richer Understanding of Software Development Page 12

349 Careful planning doesn’t necessarily mean exhaustive planning or over-planning.
350 You can plan out the structural supports and decide later whether to put in

351 hardwood floors or carpeting, what color to paint the walls, what roofing

352 material to use, and so on. A well-planned project improves your ability to

353 change your mind about details later. The more experienced you have with the
354 kind of software you’re building, the more details you can take for granted. You
355 just want to be sure that you plan enough so that lack of planning doesn’t create
356 major problems later.

357 The construction analogy also helps explain why different software projects

358 benefit from different development approaches. In building, you’d use different
359 levels of planning, design, and quality assurance if you’re building a warehouse
360 or a shopping mall than if you’re building a medical center or a nuclear reactor.
361 You’d use still different approaches for building a school, a skyscraper, or a

362 three bedroom home. Likewise, in software you might generally use flexible,
363 lightweight development approaches, but sometimes rigid, heavyweight

364 approaches are required to achieve safety goals and other goals.

365 Making changes in the software brings up another parallel with building

366 construction. To move a wall six inches costs more if the wall is load-bearing
367 than if it’s merely a partition between rooms. Similarly, making structural

368 changes in a program costs more than adding or deleting peripheral features.

369 Finally, the construction analogy provides insight into extremely large software
370 projects. Because the penalty for failure in an extremely large structure is severe,
371 the structure has to be over-engineered. Builders make and inspect their plans
372 carefully. They build in margins of safety; it’s better to pay 10 percent more for
373 stronger material than to have a skyscraper fall over. A great deal of attention is
374 paid to timing. When the Empire State Building was built, each delivery truck
375 had a 15-minute margin in which to make its delivery. If a truck wasn’t in place
376 at the right time, the whole project was delayed.

377 Likewise, for extremely large software projects, planning of a higher order is
378 needed than for projects that are merely large. Capers Jones reports that a one-
379 million line of code software system requires an average of 69 kinds of

380 documentation (1998). The requirements specification for a 1,000,000 line of
381 code system would typically be about 4,000-5,000 pages long, and the design
382 documentation can easily be two or three times as extensive as the requirements.
383 It’s unlikely that an individual would be able to understand the complete design
384 for a project of this size—or even read it. A greater degree of preparation is

385 appropriate.

386 We build software projects comparable in economic size to the Empire State

387 Building, and technical and managerial controls of similar stature are needed.

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:40 PM

H:\books\CodeC2Ed\Reviews\Web\02-Metaphors.doc

Code Complete

388 FURTHER READING For
389 Some good comments about

390

extending the construction
metaphor, see “What
391 Supports the Roof?”” (Starr

392 2003).

393

394

395| KEY POINT

396
397
398
399
400
401

402 CROSS-REFERENCE For
403 details on selecting and

404

combining methods in
design, see Section 5.3,
405 “Design Building Blocks:

406 Heuristics.”

407
408

409

410
411
412
413
414

415
416
417
418
419

CC2E.COM/0285

2. Metaphors for a Richer Understanding of Software Development Page 13

The analogy could be extended in a variety of other directions, which is why the
building-construction metaphor is so powerful. Many terms common in software
development derive from the building metaphor: software architecture,
scaffolding, construction, tearing code apart, plugging in a class. You’ll probably
hear many more.

Applying Software Techniques: The Intellectual
Toolbox

People who are effective at developing high-quality software have spent years
accumulating dozens of techniques, tricks, and magic incantations. The
techniques are not rules; they are analytical tools. A good craftsman knows the
right tool for the job and knows how to use it correctly. Programmers do too.
The more you learn about programming, the more you fill your mental toolbox
with analytical tools and the knowledge of when to use them and how to use
them correctly.

In software, consultants sometimes tell you to buy into certain software-
development methods to the exclusion of other methods. That’s unfortunate
because if you buy into any single methodology 100 percent, you’ll see the
whole world in terms of that methodology. In some instances, you’ll miss
opportunities to use other methods better suited to your current problem. The
toolbox metaphor helps to keep all the methods, techniques, and tips in
perspective—ready for use when appropriate.

Combining Metaphors

Because metaphors are heuristic rather than algorithmic, they are not mutually
exclusive. You can use both the accretion and the construction metaphors. You
can use “writing” if you want to, and you can combine writing with driving,
hunting for werewolves, or drowning in a tar pit with dinosaurs. Use whatever
metaphor or combination of metaphors stimulates your own thinking.

Using metaphors is a fuzzy business. You have to extend them to benefit from
the heuristic insights they provide. But if you extend them too far or in the wrong
direction, they’ll mislead you. Just as you can misuse any powerful tool, you can
misuse metaphors, but their power makes them a valuable part of your
intellectual toolbox.

Additional Resources

420

421 Among general books on metaphors, models, and paradigms, the touchstone

422 book is by Thomas Kuhn.

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:40 PM

H:\books\CodeC2Ed\Reviews\Web\02-Metaphors.doc

Code Complete 2. Metaphors for a Richer Understanding of Software Development Page 14

423 Kuhn, Thomas S. The Structure of Scientific Revolutions, 3d Ed., Chicago: The
424 University of Chicago Press, 1996. Kuhn’s book on how scientific theories

425 emerge, evolve, and succumb to other theories in a Darwinian cycle set the

426 philosophy of science on its ear when it was first published in 1962. It’s clear
427 and short, and it’s loaded with interesting examples of the rise and fall of

428 metaphors, models, and paradigms in science.

429 Floyd, Robert W. “The Paradigms of Programming.” 1978 Turing Award

430 Lecture. Communications of the ACM, August 1979, pp. 455-60. This is a

431 fascinating discussion of models in software development and applies Kuhn’s
432 ideas to the topic.

433 K ey Points

434 e Metaphors are heuristics, not algorithms. As such, they tend to be a little
435 sloppy.

436 e Metaphors help you understand the software-development process by

437 relating it to other activities you already know about.

438 e Some metaphors are better than others.

439 e Treating software construction as similar to building construction suggests
440 that careful preparation is needed and illuminates the difference between
441 large and small projects.

442 e Thinking of software-development practices as tools in an intellectual

443 toolbox suggests further that every programmer has many tools and that no
444 single tool is right for every job. Choosing the right tool for each problem is
445 one key to being an effective programmer.

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:40 PM

H:\books\CodeC2Ed\Reviews\Web\02-Metaphors.doc

Code Complete

3. Measure Twice, Cut Once: Upstream Prerequisites Page 1

Measure Twice, Cut Once:
Upstream Prerequisites

4 CC2E.COM/0309 Contents
5 3.1 Importance of Prerequisites
6 3.2 Determine the Kind of Software You’re Working On
7 3.3 Problem-Definition Prerequisite
8 3.4 Requirements Prerequisite
9 3.5 Architecture Prerequisite
10 3.6 Amount of Time to Spend on Upstream Prerequisites
11 Related Topics
12 Key construction decisions: Chapter 4
13 Effect of project size on construction and prerequisites: Chapter 27
14 Relationship between quality goals and construction activities: Chapter 20
15 Managing construction: Chapter 28
16 Design: Chapter 5
17 Before beginning construction of a house, a builder reviews blueprints, checks
18 that all permits have been obtained, and surveys the house’s foundation. A
19 builder prepares for building a skyscraper one way, a housing development a
20 different way, and a doghouse a third way. No matter what the project, the prepa-
21 ration is tailored to the project’s specific needs and done conscientiously before
22 construction begins.
23 This chapter describes the work that must be done to prepare for software con-
24 struction. As with building construction, much of the success or failure of the
25 project has already been determined before construction begins. If the foundation
26 hasn’t been laid well or the planning is inadequate, the best you can do during
27 construction is to keep damage to a minimum. If you want to create a polished
© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:41 PM

H:\books\CodeC2Ed\Reviews\Web\03-PrerequisitesHighLevel.doc

Code Complete

28
29

30
31
32
33
34

35
36
37
38
39
40
41
42

43

44 CROSS-REFERENCE Pay-
45 ing attention to quality is also
the best way to improve pro-
ductivity. For details, see
Section 20.5, “The General
7 Principle of Software Qual-

3. Measure Twice, Cut Once: Upstream Prerequisites Page 2

jewel, you have to start with a diamond in the rough. If you start with plans for a
brick, the best you can create is a fancy brick.

“Measure twice, cut once” is highly relevant to the construction part of software
development, which can account for as much as 65 percent of the total project
costs. The worst software projects end up doing construction two or three times
or more. Doing the most expensive part of the project twice is as bad an idea in
software as it is in any other line of work.

Although this chapter lays the groundwork for successful software construction,
it doesn’t discuss construction directly. If you’re feeling carnivorous or you’re
already well versed in the software-engineering life cycle, look for the construc-
tion meat beginning in Chapter 5. If you don’t like the idea of prerequisites to
construction, review Section 3.2, “Determine the Kind of Software You’re
Working On,” to see how prerequisites apply to your situation, and then take a
look at the data in Section 3.1 which describes the cost of not doing prerequi-
sites.

3.1 Importance of Prerequisites

A common denominator of programmers who build high-quality software is their
use of high-quality practices. Such practices emphasize quality at the beginning,
middle, and end of a project.

If you emphasize quality at the end of a project, you emphasize system testing.

48 jty.” Testing is what many people think of when they think of software quality assur-
49 ance. Testing, however, is only one part of a complete quality-assurance strat-
50 egy, and it’s not the most influential part. Testing can’t detect a flaw such as
51 building the wrong product or building the right product in the wrong way. Such
52 flaws must be worked out earlier than in testing—before construction begins.
53| KEY POINT If you emphasize quality in the middle of the project, you emphasize construc-
54 tion practices. Such practices are the focus of most of this book.
55 If you emphasize quality at the beginning of the project, you plan for, require,
56 and design a high-quality product. If you start the process with designs for a
57 Pontiac Aztek, you can test it all you want to, and it will never turn into a Rolls-
58 Royce. You might build the best possible Aztek, but if you want a Rolls-Royce,
59 you have to plan from the beginning to build one. In software development, you
60 do such planning when you define the problem, when you specify the solution,
61 and when you design the solution.

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:41 PM

H:\books\CodeC2Ed\Reviews\Web\03-PrerequisitesHighLevel.doc

Code Complete 3. Measure Twice, Cut Once: Upstream Prerequisites Page 3

62 Since construction is in the middle of a software project, by the time you get to
63 construction, the earlier parts of the project have already laid some of the

64 groundwork for success or failure. During construction, however, you should at
65 least be able to determine how good your situation is and to back up if you see
66 the black clouds of failure looming on the horizon. The rest of this chapter de-
67 scribes in detail why proper preparation is important and tells you how to deter-
68 mine whether you’re really ready to begin construction.

69 Do Prerequisites Apply to Modern Software Pro-
70 jects?

71 The methodology used Some people in have asserted that upstream activities such as architecture, de-

72 should be based on choice sign, and project planning aren’t useful on modern software projects. In the
73 of the latest and best, and main, such assertions are not well supported by research, past or present, or by

74 not based on ignorance. current data. (See the rest of this chapter for details.) Opponents of prerequisites
75 It should also be laced typically show examples of prerequisites that have been done poorly then point
76 [iberally with the old and out that such work isn’t effective. Upstream activities can be done well, how-
77 dependable. ever, and industry data from the 1970s to the present day clearly indicates that
8 _ Harlan Mills projects will run best if appropriate preparation activities are done before con-
79 struction begins in earnest.

80| KEY POINT The overarching goal of preparation is risk reduction: a good project planner

81 clears major risks out of the way as early as possible so that the bulk of the pro-
82 ject can proceed as smoothly as possible. By far the most common projects risks
83 in software development are poor requirements and poor project planning, thus
84 preparation tends to focus improving requirements and project plans.

85 Preparation for construction is not an exact science, and the specific approach to
86 risk reduction must be decided project by project. Details can vary greatly

87 among projects. For more on this, see Section 3.2, “Determine the Kind of Soft-
88 ware You’re Working On.”

89 Causes of Incomplete Preparation

90 You might think that all professional programmers know about the importance
91 of preparation and check that the prerequisites have been satisfied before jump-
92 ing into construction. Unfortunately, that isn’t so.

93 FURTHER READING For a A common cause of incomplete preparation is that the developers who are as-
94 description of a professional signed to work on the upstream activities do not have the expertise to carry out

development program that
that cultivates these skills,

96
see Chapter 16 of Profes- i
97 sional Software Development quality architectures are far from trivial, but most developers have not received

their assignments. The skills needed to plan a project, create a compelling busi-
ness case, develop comprehensive and accurate requirements, and create high-

98 (McConnell 2004). training in how to perform these activities. When developers don’t know how to

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:41 PM
H:\books\CodeC2Ed\Reviews\Web\03-PrerequisitesHighLevel.doc

Code Complete

99
100
101
102
103

104
105
106
107
108
109
110

111
112
113
114
115

116
117
118
119

FURTHER READING For
many entertaining variations
on this theme, read Gerald
Weinberg’s classic, The Psy-
chology of Computer Pro-

3. Measure Twice, Cut Once: Upstream Prerequisites Page 4

do upstream work, the recommendation to “do more upstream work” sounds like
nonsense: If the work isn’t being done well in the first place, doing more of it
will not be useful! Explaining how to perform these activities is beyond the
scope of this book, but the “Additional Resources” sections at the end of this
chapter provide numerous options for gaining that expertise.

Some programmers do know how to perform upstream activities, but they don’t
prepare because they can’t resist the urge to begin coding as soon as possible. If
you feed your horse at this trough, I have two suggestions. Suggestion 1: Read
the argument in the next section. It may tell you a few things you haven’t
thought of. Suggestion 2: Pay attention to the problems you experience. It takes
only a few large programs to learn that you can avoid a lot of stress by planning
ahead. Let your own experience be your guide.

A final reason that programmers don’t prepare is that managers are notoriously
unsympathetic to programmers who spend time on construction prerequisites.
People like Barry Boehm, Grady Booch, and Karl Wiegers have been banging
the requirements and design drums for 25 years, and you’d expect that managers
would have started to understand that software development is more than coding.

A few years ago, however, | was working on a Department of Defense project
that was focusing on requirements development when the Army general in
charge of the project came for a visit. We told him that we were developing re-
quirements and that we were mainly talking to our customer and writing docu-

120 gramming (Weinberg 1998). ments. He insisted on seeing code anyway. We told him there was no code, but
121 he walked around a work bay of 100 people, determined to catch someone pro-
122 gramming. Frustrated by seeing so many people away from their desks or work-
123 ing on documents, the large, round man with the loud voice finally pointed to the
124 engineer sitting next to me and bellowed, “What’s he doing? He must be writing
125 code!” In fact, the engineer was working on a document-formatting utility, but
126 the general wanted to find code, thought it looked like code, and wanted the en-
127 gineer to be working on code, so we told him it was code.

128 This phenomenon is known as the WISCA or WIMP syndrome: Why Isn’t Sam
129 Coding Anything? or Why Isn’t Mary Programming?

130 If the manager of your project pretends to be a brigadier general and orders you
131 to start coding right away, it’s easy to say, “Yes, Sir!” (What’s the harm? The
132 old guy must know what he’s talking about.) This is a bad response, and you

133 have several better alternatives. First, you can flatly refuse to do work in the

134 wrong order. If your relationship with your boss and your bank account are

135 healthy enough for you to be able to do this, good luck.

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:41 PM

H:\books\CodeC2Ed\Reviews\Web\03-PrerequisitesHighLevel.doc

Code Complete

136
137
138
139
140

141
142
143
144

145
146
147
148

149
150

151
152
153
154
155

156/ KEY POINT

3. Measure Twice, Cut Once: Upstream Prerequisites Page 5

Second, you can pretend to be coding when you’re not. Put an old program list-
ing on the corner of your desk. Then go right ahead and develop your require-
ments and architecture, with or without your boss’s approval. You’ll do the pro-
ject faster and with higher-quality results. From your boss’s perspective, igno-
rance is bliss.

Third, you can educate your boss in the nuances of technical projects. This is a
good approach because it increases the number of enlightened bosses in the
world. The next section presents an extended rationale for taking the time to do
prerequisites before construction.

Finally, you can find another job. Despite economic ups and downs, good pro-
grammers are in perennially short supply (BLS 2002), and life is too short to
work in an unenlightened programming shop when plenty of better alternatives
are available.

Utterly Compelling and Foolproof Argument for
Doing Prerequisites Before Construction

Suppose you’ve already been to the mountain of problem definition, walked a
mile with the man of requirements, shed your soiled garments at the fountain of
architecture, and bathed in the pure waters of preparedness. Then you know that
before you implement a system, you need to understand what the system is sup-
posed to do and how it’s supposed to do it.

Part of your job as a technical employee is to educate the nontechnical people

157 around you about the development process. This section will help you deal with
158 managers and bosses who have not yet seen the light. It’s an extended argument
159 for doing requirements and architecture—getting the critical aspects right—

160 before you begin coding, testing, and debugging. Learn the argument, and then
161 sit down with your boss and have a heart-to-heart talk about the programming
162 process.

163 Appeal to Logic

164 One of the key ideas in effective programming is that preparation is important. It
165 makes sense that before you start working on a big project, you should plan the
166 project. Big projects require more planning; small projects require less. From a
167 management point of view, planning means determining the amount of time,

168 number of people, and number of computers the project will need. From a tech-
169 nical point of view, planning means understanding what you want to build so

170 that you don’t waste money building the wrong thing. Sometimes users aren’t
171 entirely sure what they want at first, so it might take more effort than seems ideal
© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:41 PM

H:\books\CodeC2Ed\Reviews\Web\03-PrerequisitesHighLevel.doc

Code Complete

3. Measure Twice, Cut Once: Upstream Prerequisites Page 6

172 to find out what they really want. But that’s cheaper than building the wrong

173 thing, throwing it away, and starting over.

174 It’s also important to think about how to build the system before you begin to

175 build it. You don’t want to spend a lot of time and money going down blind al-
176 leys when there’s no need to, especially when that increases costs.

177 Appeal to Analogy

178 Building a software system is like any other project that takes people and money.
179 If you’re building a house, you make architectural drawings and blueprints be-
180 fore you begin pounding nails. You’ll have the blueprints reviewed and approved
181 before you pour any concrete. Having a technical plan counts just as much in

182 software.

183 You don’t start decorating the Christmas tree until you’ve put it in the stand.

184 You don’t start a fire until you’ve opened the flue. You don’t go on a long trip
185 with an empty tank of gas. You don’t get dressed before you take a shower, and
186 you don’t put your shoes on before your socks. You have to do things in the right
187 order in software too.

188 Programmers are at the end of the software food chain. The architect consumes
189 the requirements; the designer consumes the architecture; and the coder con-

190 sumes the design.

191 Compare the software food chain to a real food chain. In an ecologically sound
192 environment, seagulls eat fresh salmon. That’s nourishing to them because the
193 salmon ate fresh herring, and they in turn ate fresh water bugs. The result is a

194 healthy food chain. In programming, if you have healthy food at each stage in
195 the food chain, the result is healthy code written by happy programmers.

196 In a polluted environment, the water bugs have been swimming in nuclear waste.
197 The herring are contaminated by PCBs, and the salmon that eat the herring swam
198 through oil spills. The seagulls are, unfortunately, at the end of the food chain, so
199 they don’t eat just the oil in the bad salmon. They also eat the PCBs and the nu-
200 clear waste from the herring and the water bugs. In programming, if your re-

201 quirements are contaminated, they contaminate the architecture, and the architec-
202 ture in turn contaminates construction. This leads to grumpy, malnourished pro-
203 grammers and radioactive, polluted software that’s riddled with defects.

204 If you are planning a highly iterative project, you will need to identify the critical
205 requirements and architectural elements that apply to each piece you’re con-

206 structing before you begin construction. A builder who is building a housing de-
207 velopment doesn’t need to know every detail of every house in the development
208 before beginning construction on the first house. But the builder will survey the
© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:41 PM

H:\books\CodeC2Ed\Reviews\Web\03-PrerequisitesHighLevel.doc

Code Complete

209
210
211

212

213
214

215/ HARD DATA

216
217
218
219
220

221
222
223
224
225
226
227

228
229

230/ HARD DATA

231

3. Measure Twice, Cut Once: Upstream Prerequisites Page 7

site, map out sewer and electrical lines, and so on. If the builder doesn’t prepare
well, construction may be delayed when a sewer line needs to be dug under a
house that’s already been constructed.

Appeal to Data

Studies over the last 25 years have proven conclusively that it pays to do things
right the first time. Unnecessary changes are expensive.

Researchers at Hewlett-Packard, IBM, Hughes Aircraft, TRW, and other organi-
zations have found that purging an error by the beginning of construction allows
rework to be done 10 to 100 times less expensively than when it’s done in the
last part of the process, during system test or after release (Fagan 1976; Hum-
phrey, Snyder, and Willis 1991; Leffingwell 1997; Willis et al 1998; Grady
1999; Shull, et al, 2002; Boehm and Turner 2004).

In general, the principle is to find an error as close as possible to the time at
which it was introduced. The longer the defect stays in the software food chain,
the more damage it causes further down the chain. Since requirements are done
first, requirements defects have the potential to be in the system longer and to be
more expensive. Defects inserted into the software upstream also tend to have
broader effects than those inserted further downstream. That also makes early
defects more expensive.

Table 3-1 shows the relative expense of fixing defects depending on when
they’re introduced and when they’re found.

Table 3-1. Average Cost of Fixing Defects Based on When They're In-
troduced and When They’re Detected

Time Detected
Time Introduced Re- Archi- | Con- System | Post-
quire- tecture | struc- Test Re-
ments tion lease
Requirements 1 3 5-10 10 10-100
Architecture — 1 10 15 25-100
Construction — — 1 10 10-25
232 Source: Adapted from “Design and Code Inspections to Reduce Errors in Program
233 Development” (Fagan 1976), Software Defect Removal (Dunn 1984), “Software
234 Process Improvement at Hughes Aircraft” (Humphrey, Snyder, and Willis 1991),
235 ““Calculating the Return on Investment from More Effective Requirements Manage-
236 ment” (Leffingwell 1997), “Hughes Aircraft’s Widespread Deployment of a Con-
237 tinuously Improving Software Process™ (Willis et al 1998), ““An Economic Release
238 Decision Model: Insights into Software Project Management” (Grady 1999), “What
© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:41 PM

H:\books\CodeC2Ed\Reviews\Web\03-PrerequisitesHighLevel.doc

Code Complete

239
240

241
242
243

244
245

246
247
248
249
250

251| HARD DATA

3. Measure Twice, Cut Once: Upstream Prerequisites Page 8

We Have Learned About Fighting Defects™ (Shull et al 2002), and Balancing Agility
and Discipline: A Guide for the Perplexed (Boehm and Turner 2004).

The data in Table 3-1 shows that, for example, an architecture defect that costs
$1000 to fix when the architecture is being created can cost $15,000 to fix during
system test. Figure 3-1 illustrates the same phenomenon.

Phase in Which a

Defect Is

Introduced Cost
/ B

Requirements\ A\/_)_(/

Architecture

\ A\)
S S N N =

Requirements . Construction Post-Release
Architecture System test

Phase in Which a Defect Is Detected

FO3xx01

Figure 3-1

The cost to fix a defect rises dramatically as the time from when it’s introduced to
when it’s detected increases. This remains true whether the project is highly sequen-
tial (doing 100 percent of requirements and design up front) or highly iterative (do-
ing 5 percent of requirements and design up front).

The average project still exerts most of its defect-correction effort on the right

252 side of Figure 3-1, which means that debugging and associated rework takes

253 about 50 percent of the time spent in a typical software development cycle (Mills
254 1983; Boehm 1987a; Cooper and Mullen 1993; Fishman 1996; Haley 1996;

255 Wheeler, Brykczynski, and Meeson 1996; Jones 1998, Shull et al 2002, Wiegers
256 2002). Dozens of companies have found that simply focusing on correcting de-
257 fects earlier rather than later in a project can cut development costs and sched-
258 ules by factors of two or more (McConnell 2004). This is a healthy incentive to
259 fix your problems as early as you can.

260 Boss-Readiness Test

261 When you think your boss understands the importance of completing prerequi-
262 sites before moving into construction, try the test below to be sure.

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:41 PM

H:\books\CodeC2Ed\Reviews\Web\03-PrerequisitesHighLevel.doc

Code Complete

3. Measure Twice, Cut Once: Upstream Prerequisites Page 9

263 Which of these statements are self-fulfilling prophecies?
264 e We’d better start coding right away because we’re going to have a lot of
265 debugging to do.
266 e We haven’t planned much time for testing because we’re not going to find
267 many defects.
268 e We’ve investigated requirements and design so much that I can’t think of
269 any major problems we’ll run into during coding or debugging.
270 All of these statements are self-fulfilling prophecies. Aim for the last one.
271 If you’re still not convinced that prerequisites apply to your project, the next sec-
272 tion will help you decide.
273 3.2 Determine the Kind of Software You're
274 Working On
275 Capers Jones, Chief Scientist at Software Productivity Research, summarized 20
276 years of software research by pointing out that he and his colleagues have seen
277 40 different methods for gathering requirements, 50 variations in working on
278 software designs, and 30 kinds of testing applied to projects in more than 700
279 different programming languages (Jones 2003).
280 Different kinds of software projects call for different balances between prepara-
281 tion and construction. Every project is unique, but projects do tend to fall into
282 general development styles. Table 3-2shows three of the most common kinds of
283 projects and lists the practices that are typically best suited to each kind of pro-
284 ject.
285 Table 3-2. Typical good practices for three common kinds of software
286 projects
Typical Good Practices

Kind of Business Mission-Critical Embedded Life-

Software Systems Systems Critical Systems
© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:41 PM

H:\books\CodeC2Ed\Reviews\Web\03-PrerequisitesHighLevel.doc

Code Complete

3. Measure Twice, Cut Once: Upstream Prerequisites

Typical Good Practices

Page 10

Kind of Business Mission-Critical Embedded Life-
Software Systems Systems Critical Systems
Typical ap- Internet site Embedded software ~ Avionics software
plications Intranet site Games Embedded software
Inventory manage- Internet site Medical devices
ment Packaged software Operating systems
Games Software tools Packaged software
Management infor- Web services
mation systems
Payroll system
Lifecycle Agile development Staged delivery Staged delivery
models (extreme program-

Planning and
management

Require-
ments

Design

Construction

© 1993-2003 Steven C. McConnell. All Rights Reserved.

ming, scrum, time-
box development,
and so on)
Evolutionary proto-
typing

Incremental project
planning
As-needed test and
QA planning
Informal change con-
trol

Informal require-
ments specification

Design and coding
are combined

Pair programming or
individual coding
Informal check-in
procedure or no
check-in procedure

H:\books\CodeC2Ed\Reviews\Web\03-PrerequisitesHighLevel.doc

Evolutionary deliv-
ery
Spiral development

Basic up-front plan-
ning

Basic test planning
As-needed QA plan-
ning

Formal change con-
trol

Semi-formal re-
quirements specifica-
tion

As-needed require-
ments reviews

Architectural design
Informal detailed
design

As-needed design
reviews

Pair programming or
individual coding
Informal check-in
procedure
As-needed code re-
views

Spiral development
Evolutionary deliv-
ery

Extensive up-front
planning

Extensive test plan-
ning

Extensive QA plan-
ning

Rigorous change
control

Formal requirements
specification

Formal requirements
inspections

Architectural design
Formal architecture
inspections

Formal detailed de-
sign

Formal detailed de-
sign inspections

Pair programming or
individual coding
Formal check-in pro-
cedure

Formal code inspec-
tions

1/13/2004 2:41 PM

Code Complete

3. Measure Twice, Cut Once: Upstream Prerequisites

Typical Good Practices

Page 11

Kind of Business Mission-Critical Embedded Life-
Software Systems Systems Critical Systems
Testingand Developers test their ~ Developers test their ~ Developers test their
QA own code own code own code
Test-first develop- Test-first develop- Test-first develop-
ment ment ment
Little or no testing by Separate testing Separate testing
a separate test group group group
Separate QA group
Deployment Informal deployment Formal deployment Formal deployment
procedure procedure procedure
287
288 On real projects, you’ll find infinite variations on the three themes presented in
289 this table, however the generalities in the table are illuminating. Business sys-
290 tems projects tend to benefit from highly iterative approaches, in which plan-
291 ning, requirements, and architecture are interleaved with construction, system
292 testing and quality assurance activities. Life-critical systems tend to require more
293 sequential approaches—requirements stability is part of what’s needed to ensure
294 ultra-high levels of reliability.
295 Some writers have asserted that projects that use iterative techniques don’t need
296 to focus on prerequisites much at all, but that point of view is misinformed. Itera-
297 tive approaches tend to reduce the impact of inadequate upstream work, but they
208 don’t eliminate it. Consider the example shown in Table 3-3 of a project that’s
299 conducted sequentially and that relies solely on testing to discover defects. In
300 this approach, the defect correction (rework) costs will be clustered at the end of
301 the project.
302 Table 3-3. Effect of short-changing prerequisites on sequential and it-
303 erative projects. This data is for purposes of illustration only
Approach #1 Approach #2
Sequential Approach Iterative Approach
without Prerequisites without Prerequisites
Project comple- Cost of Cost of Cost of Cost of
tion status Work Rework Work Rework
10% $100,000 $0 $100,000 $75,000
20% $100,000 $0 $100,000 $75,000
30% $100,000 $0 $100,000 $75,000
40% $100,000 $0 $100,000 $75,000

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:41 PM

H:\books\CodeC2Ed\Reviews\Web\03-PrerequisitesHighLevel.doc

Code Complete

3. Measure Twice, Cut Once: Upstream Prerequisites Page 12

50% $100,000 $0 $100,000 $75,000
60% $100,000 $0 $100,000 $75,000
70% $100,000 $0 $100,000 $75,000
80% $100,000 $0 $100,000 $75,000
90% $100,000 $0 $100,000 $75,000
100% $100,000 $0 $100,000 $75,000
End-of-Project $0 $1,000,000 $0 $0
Rework
TOTAL $1,000,000 $1,000,000 | $1,000,000 $750,000
GRAND TOTAL $2,000,000 $1,750,000
304
305 The iterative project that abbreviates or eliminates prerequisites will differ in two
306 ways from a sequential project that does the same thing prerequisites. First, aver-
307 age defect correction costs will be lower because defects will tend to be detected
308 closer to the time they were inserted into the software. However, the defects will
309 still be detected late in each iteration, and correcting them will require parts of
310 the software to be redesigned, recoded, and retested—which makes the defect-
311 correction cost higher than it needs to be.
312 Second, with iterative approaches costs will be absorbed piecemeal, throughout
313 the project, rather than being clustered at the end. When all the dust settles, the
314 total cost will be similar but it won’t seem as high because the price will have
315 been paid in small installments over the course of the project rather than paid all
316 at once at the end.
317 As Table 3-4 illustrates, a focus on prerequisites can reduce costs regardless of
318 whether you use an iterative or a sequential approach. Iterative approaches are
319 usually a better option for many reasons, but an iterative approach that ignores
320 prerequisites can end up costing significantly more than a sequential project that
321 pays close attention to prerequisites.
322 Table 3-4. Effect of focusing on prerequisites on sequential and itera-
323 tive projects. This datais for purposes of illustration only
Approach #3 Approach #4
Sequential Approach Iterative Approach with
with Prerequisites Prerequisites
Project comple- Cost of Cost of Cost of Cost of
tion status Work Rework Work Rework
10% $100,000 $20,000 $100,000 $10,000
20% $100,000 $20,000 $100,000 $10,000
© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:41 PM

H:\books\CodeC2Ed\Reviews\Web\03-PrerequisitesHighLevel.doc

Code Complete 3. Measure Twice, Cut Once: Upstream Prerequisites Page 13

30% $100,000 $20,000 $100,000 $10,000
40% $100,000 $20,000 $100,000 $10,000
50% $100,000 $20,000 $100,000 $10,000
60% $100,000 $20,000 $100,000 $10,000
70% $100,000 $20,000 $100,000 $10,000
80% $100,000 $20,000 $100,000 $10,000
90% $100,000 $20,000 $100,000 $10,000
100% $100,000 $20,000 $100,000 $10,000
End-of-Project $0 $0 $0 $0
Rework
TOTAL $1,000,000 $200,000 | $1,000,000 $100,000
GRAND TOTAL $1,200,000 $1,100,000
324| KEY POINT As Table 3-4 suggested, most projects are neither completely sequential nor
325 completely iterative. It isn’t practical to specify 100 percent of the requirements
326 or design up front, but most projects find value in identifying at least the most
327 critical requirements and architectural elements up front.
328 One realistic approach is to plan to specify about 80 percent of the requirements
329 up front, allocate time for additional requirements to be specified later, and then
330 practice systematic change control to accept only the most valuable new re-
331 quirements as the project progresses.
332 Error! Objects cannot be created from editing field codes.
333 FO3xx02
334 Figure 3-2
335 Activities will overlap to some degree on most projects, even those that are highly
336 sequential.
337 Another alternative is to specify only the most important 20 percent of the re-
338 quirements up front and plan to develop the rest of the software in small incre-
339 ments, specifying additional requirements and designs as you go.
340 Error! Objects cannot be created from editing field codes.
341 FO3xx03
342 Figure 3-3
343 On other projects, activities will overlap for the duration of the project. One key to
344 successful construction is understanding the degree to which prerequisites have been
345 completed and adjusting your approach accordingly.
© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:41 PM

H:\books\CodeC2Ed\Reviews\Web\03-PrerequisitesHighLevel.doc

Code Complete

346
347
348
349

350

CROSS-REFERENCE For
details on how to adapt your
development approach for
programs of different sizes,
see Chapter 27, “How Pro-
gram Size Affects Construc-

3. Measure Twice, Cut Once: Upstream Prerequisites Page 14

The extent to which prerequisites need to be satisfied up front will vary with the
project type indicated in Table 3-2, project formality, technical environment,
staff capabilities, and project business goals. You might choose a more sequen-
tial (up-front) approach when:

e The requirements are fairly stable

tion.”
351 e The design is straightforward and fairly well understood
352 e The development team is familiar with the applications area
353 e The project contains little risk
354 e Long-term predictability is important
355 e The cost of changing requirements, design, and code downstream is likely to
356 be high
357 You might choose a more iterative (as-you-go) approach when:
358 e The requirements are not well understood or you expect them to be unstable
359 for other reasons
360 e The design is complex, challenging, or both
361 e The development team is unfamiliar with the applications area
362 e The project contains a lot of risk
363 e Long-term predictability is not important
364 e The cost of changing requirements, design, and code downstream is likely to
365 be low
366 You can adapt the prerequisites to your specific project by making them more or
367 less formal and more or less complete, as you see fit. For a detailed discussion of
368 different approaches to large and small projects (also known as the different ap-
369 proaches to formal and informal projects), see Chapter 27, “How Program Size
370 Affects Construction.”
371 The net impact on construction prerequisites is that you should first determine
372 what construction prerequisites are well-suited to your project. Some projects
373 spend too little time on prerequisites, which exposes construction to an unneces-
374 sarily high rate of destabilizing changes and prevents the project from making
375 consistent progress. Some project do too much up front; they doggedly adhere to
376 requirements and plans that have been invalidated by downstream discoveries,
377 and that can also impede progress during construction.
378 Now that you’ve studied Table 3-2 and determined what prerequisites are appro-
379 priate for your project, the rest of this chapter describes how to determine
© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:41 PM

H:\books\CodeC2Ed\Reviews\Web\03-PrerequisitesHighLevel.doc

Code Complete 3. Measure Twice, Cut Once: Upstream Prerequisites Page 15

380 whether each specific construction prerequisite has been “prereq’d” or “pre-
381 wrecked.”
382 3.3 Problem-Definition Prerequisite
383 |f the ‘box’ is the bound- The first prerequisite you need to fulfill before beginning construction is a clear
384 ary of constraints and statement of the problem that the system is supposed to solve. This is sometimes
385 conditions, then the trick called “product vision,” “mission statement,” and “product definition.” Here it’s
386 s to find the box.... Don’t called “problem definition.” Since this book is about construction, this section
387 think outside the box— doesn’t tell you how to write a problem definition; it tells you how to recognize
388 find the box.” whether one has been written at all and whether the one that’s written will form a
389 __Andy Hunt and Dave good foundation for construction.

Thomas
390 A problem definition defines what the problem is without any reference to possi-
391 ble solutions. It’s a simple statement, maybe one or two pages, and it should
392 sound like a problem. The statement “We can’t keep up with orders for the Giga-
393 tron” sounds like a problem and is a good problem definition. The statement
394 “We need to optimize our automated data-entry system to keep up with orders
395 for the Gigatron” is a poor problem definition. It doesn’t sound like a problem; it
396 sounds like a solution.
397 Problem definition comes before detailed requirements work, which is a more in-
398 depth investigation of the problem.

Future
Improvements

/ System testing \
/ Construction \
/ Architecture \
/ Requirements \
/ Problem Definition \
399
400 FO3xx02
401 Figure 3-2
402 The problem definition lays the foundation for the rest of the programming process.
© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:41 PM

H:\books\CodeC2Ed\Reviews\Web\03-PrerequisitesHighLevel.doc

Code Complete 3. Measure Twice, Cut Once: Upstream Prerequisites Page 16

403 The problem definition should be in user language, and the problem should be
404 described from a user’s point of view. It usually should not be stated in technical
405 computer terms. The best solution might not be a computer program. Suppose
406 you need a report that shows your annual profit. You already have computerized
407 reports that show quarterly profits. If you’re locked into the programmer mind-
408 set, you’ll reason that adding an annual report to a system that already does quar-
409 terly reports should be easy. Then you’ll pay a programmer to write and debug a
410 time-consuming program that calculates annual profits. If you’re not locked into
411 the computer mind-set, you’ll pay your secretary to create the annual figures by
412 taking one minute to add up the quarterly figures on a pocket calculator.

413 The exception to this rule applies when the problem is with the computer: com-
414 pile times are too slow or the programming tools are buggy. Then it’s appropri-
415 ate to state the problem in computer or programmer terms.

416 e

417 FO3xx03

418 Figure 3-3

419 Without a good problem definition, you might put effort into solving the wrong prob-
420 lem. Be sure you know what you’re aiming at before you shoot.

421| KEY POINT The penalty for failing to define the problem is that you can waste a lot of time
422 solving the wrong problem. This is a double-barreled penalty because you also
423 don’t solve the right problem.

424 3.4 Requirements Prerequisite

425 Requirements describe in detail what a software system is supposed to do, and
426 they are the first step toward a solution. The requirements activity is also known
427 as “requirements development,” “requirements analysis,” “analysis,” “‘require-
428 ments definition,” “software requirements,” “specification,” “functional spec,”
429 and “spec.”

430 Why Have Official Requirements?

431 An explicit set of requirements is important for several reasons.

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:41 PM

H:\books\CodeC2Ed\Reviews\Web\03-PrerequisitesHighLevel.doc

Code Complete 3. Measure Twice, Cut Once: Upstream Prerequisites Page 17

432 Explicit requirements help to ensure that the user rather than the programmer

433 drives the system’s functionality. If the requirements are explicit, the user can
434 review them and agree to them. If they’re not, the programmer usually ends up
435 making requirements decisions during programming. Explicit requirements keep
436 you from guessing what the user wants.

437 Explicit requirements also help to avoid arguments. You decide on the scope of
438 the system before you begin programming. If you have a disagreement with an-
439 other programmer about what the program is supposed to do, you can resolve it
440 by looking at the written requirements.

441| KEY POINT Paying attention to requirements helps to minimize changes to a system after

442 development begins. If you find a coding error during coding, you change a few
443 lines of code and work goes on. If you find a requirements error during coding,
444 you have to alter the design to meet the changed requirement. You might have to
445 throw away part of the old design, and because it has to accommodate code

446 that’s already written, the new design will take longer than it would have in the
447 first place. You also have to discard code and test cases affected by the require-
448 ment change and write new code and test cases. Even code that’s otherwise unaf-
449 fected must be retested so that you can be sure the changes in other areas haven’t
450 introduced any new errors.

451 HARD DATA As Table 3-1 reported, data from numerous organizations indicates that on large
452 projects an error in requirements detected during the architecture stage is typi-
453 cally 3 times as expensive to correct as it would be if it were detected during the
454 requirements stage. If detected during coding, it’s 5-10 times as expensive; dur-
455 ing system test, 10 times; and post-release, a whopping 10-100 times as expen-
456 sive as it would be if it were detected during requirements development. On

457 smaller projects with lower administrative costs, the multiplier post-release is
458 closer to 5-10 than 100 (Boehm and Turner 2004). In either case, it isn’t money
459 you’d want to have taken out of your salary.

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:41 PM

H:\books\CodeC2Ed\Reviews\Web\03-PrerequisitesHighLevel.doc

Code Complete

460
461

462
463
464

465
466
467
468
469
470

471

472 Requirements are like
473 water. They’re easier to
474 puild on when they’re

475 frozen.

476
—Anon.

477

478
479
480
481
482
483
484
485
486

487| HARD DATA

3. Measure Twice, Cut Once: Upstream Prerequisites Page 18

N B

FO3xx04

Figure 3-4
Without good requirements, you can have the right general problem but miss the
mark on specific aspects of the problem.

Specifying requirements adequately is a key to project success, perhaps even
more important than effective construction techniques. Many good books have
been written about how to specify requirements well. Consequently, the next few
sections don’t tell you how to do a good job of specifying requirements, they tell
you how to determine whether the requirements have been done well and how to
make the best of the requirements you have.

The Myth of Stable Requirements

Stable requirements are the holy grail of software development. With stable re-
quirements, a project can proceed from architecture to design to coding to testing
in a way that’s orderly, predictable, and calm. This is software heaven! You have
predictable expenses, and you never have to worry about a feature costing 100
times as much to implement as it would otherwise because your user didn’t think
of it until you were finished debugging.

It’s fine to hope that once your customer has accepted a requirements document,
no changes will be needed. On a typical project, however, the customer can’t
reliably describe what is needed before the code is written. The problem isn’t
that the customers are a lower life-form. Just as the more you work with the pro-
ject, the better you understand it, the more they work with it, the better they un-
derstand it. The development process helps customers better understand their
own needs, and this is a major source of requirements changes (Curtis, Krasner,
and Iscoe 1988, Jones 1998, Wiegers 2003). A plan to follow the requirements
rigidly is actually a plan not to respond to your customer.

How much change is typical? Studies at IBM and other companies have found

488 that the average project experiences about a 25 percent change in requirements
489 during development (Boehm 1981, Jones 1994, Jones 2000), which typically
© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:41 PM

H:\books\CodeC2Ed\Reviews\Web\03-PrerequisitesHighLevel.doc

Code Complete 3. Measure Twice, Cut Once: Upstream Prerequisites Page 19

490 accounts for 70 to 85 percent of the rework on a typical project (Leffingwell

491 1997, Wiegers 2003).

492 Maybe you think the Pontiac Aztek was the greatest car ever made, belong to the
493 Flat Earth Society, and vote for Ross Perot every four years. If you do, go ahead
494 and believe that requirements won’t change on your projects. If, on the other

495 hand, you’ve stopped believing in Santa Claus and the Tooth Fairy, or at least
496 have stopped admitting it, you can take several steps to minimize the impact of
497 requirements changes.

498 Handling Requirements Changes During Construc-
499 tion

500 KEY POINT Here are several things you can do to make the best of changing requirements
501 during construction.

502 Use the requirements checklist at the end of the section to assess the quality
503 of your requirements

504 If your requirements aren’t good enough, stop work, back up, and make them
505 right before you proceed. Sure, it feels like you’re getting behind if you stop cod-
506 ing at this stage. But if you’re driving from Chicago to Los Angeles, is it a waste
507 of time to stop and look at a road map when you see signs for New York? No. If
508 you’re not heading in the right direction, stop and check your course.

509 Make sure everyone knows the cost of requirements changes

510 Clients get excited when they think of a new feature. In their excitement, their
511 blood thins and runs to their medulla oblongata and they become giddy, forget-
512 ting all the meetings you had to discuss requirements, the signing ceremony, and
513 the completed requirements document. The easiest way to handle such feature-
514 intoxicated people is to say, “Gee, that sounds like a great idea. Since it’s not in
515 the requirements document, I’ll work up a revised schedule and cost estimate so
516 that you can decide whether you want to do it now or later.” The words “sched-
517 ule” and “cost” are more sobering than coffee and a cold shower, and many

518 “must haves” will quickly turn into “nice to haves.”

519 If your organization isn’t sensitive to the importance of doing requirements first,
520 point out that changes at requirements time are much cheaper than changes later.
521 Use this chapter’s “Utterly Compelling and Foolproof Argument for Doing Pre-
522 requisites Before Construction.”

523 CROSS-REFERENCE For Set up a change-control procedure
524 details on handling changes If your client’s excitement persists, consider establishing a formal change-
505 10 design and code, see Sec-

) X control board to review such proposed changes. It’s all right for customers to
tion 28.2, “Configuration

, change their minds and to realize that they need more capabilities. The problem
Management.

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:41 PM
H:\books\CodeC2Ed\Reviews\Web\03-PrerequisitesHighLevel.doc

Code Complete

527
528
529
530
531

532
533
534
535
536
537
538
539

540
541
542
543
544
545
546

547

548
549
550
551
552

553
554
555
556
557

558

559
560

561
562

563

© 1993-2003 Steven C. McConnell. All Rights Reserved.

FURTHER READING For
details on development ap-
proaches that support flexible
requirements, see Rapid De-
velopment (McConnell
1996).

CROSS-REFERENCE For
details on iterative develop-
ment approaches, see “Iter-

ate” in Section 5.4 and Sec-
tion 29.3, “Incremental Inte-
gration Strategies.”

ERFSEREHERBNCE For
details on the differences
between formal and informal
projects (often caused by
differences in project size),
see Chapter 27, “How Pro-
gram Size Affects Construc-
tion.”

3. Measure Twice, Cut Once: Upstream Prerequisites Page 20

is their suggesting changes so frequently that you can’t keep up. Having a built-
in procedure for controlling changes makes everyone happy. You’re happy be-
cause you know that you’ll have to work with changes only at specific times.
Your customers are happy because they know that you have a plan for handling
their input.

Use development approaches that accommodate changes

Some development approaches maximize your ability to respond to changing
requirements. An evolutionary prototyping approach helps you explore a sys-
tem’s requirements before you send your forces in to build it. Evolutionary de-
livery is an approach that delivers the system in stages. You can build a little, get
a little feedback from your users, adjust your design a little, make a few changes,
and build a little more. The key is using short development cycles so that you
can respond to your users quickly.

Dump the project

If the requirements are especially bad or volatile and none of the suggestions
above are workable, cancel the project. Even if you can’t really cancel the pro-
ject, think about what it would be like to cancel it. Think about how much worse
it would have to get before you would cancel it. If there’s a case in which you
would dump it, at least ask yourself how much difference there is between your
case and that case.

Checklist: Requirements

The requirements checklist contains a list of questions to ask yourself about your
project’s requirements. This book doesn’t tell you how to do good requirements
development, and the list won’t tell you how to do one either. Use the list as a
sanity check at construction time to determine how solid the ground that you’re
standing on is—where you are on the requirements Richter scale.

Not all of the checklist questions will apply to your project. If you’re working on
an informal project, you’ll find some that you don’t even need to think about.
You’ll find others that you need to think about but don’t need to answer for-
mally. If you’re working on a large, formal project, however, you may need to
consider every one.

Specific Functional Requirements

U Are all the inputs to the system specified, including their source, accuracy,
range of values, and frequency?

U Are all the outputs from the system specified, including their destination,
accuracy, range of values, frequency, and format?

O Are all output formats specified for web pages, reports, and so on?

1/13/2004 2:41 PM

H:\books\CodeC2Ed\Reviews\Web\03-PrerequisitesHighLevel.doc

Code Complete 3. Measure Twice, Cut Once: Upstream Prerequisites Page 21
564 O Are all the external hardware and software interfaces specified?

565 U Are all the external communication interfaces specified, including handshak-
566 ing, error-checking, and communication protocols?

567 O Are all the tasks the user wants to perform specified?

568 O Is the data used in each task and the data resulting from each task specified?
569 Specific Non-Functional (Quality) Requirements

570 Q Is the expected response time, from the user’s point of view, specified for all
571 necessary operations?

572 U Are other timing considerations specified, such as processing time, data-

573 transfer rate, and system throughput?

574 U Is the level of security specified?

575 Q Is the reliability specified, including the consequences of software failure,
576 the vital information that needs to be protected from failure, and the strategy
577 for error detection and recovery?

578 U Is maximum memory specified?

579 O Is the maximum storage specified?

580 U Is the maintainability of the system specified, including its ability to adapt to
581 changes in specific functionality, changes in the operating environment, and
582 changes in its interfaces with other software?

583 O Is the definition of success included? Of failure?

584 Requirements Quality

585 O Are the requirements written in the user’s language? Do the users think so?
586 U Does each requirement avoid conflicts with other requirements?

587 U Are acceptable trade-offs between competing attributes specified—for ex-
588 ample, between robustness and correctness?

589 U Do the requirements avoid specifying the design?

590 U Are the requirements at a fairly consistent level of detail? Should any re-

591 quirement be specified in more detail? Should any requirement be specified
592 in less detail?

593 U Are the requirements clear enough to be turned over to an independent group
594 for construction and still be understood?

595 O Is each item relevant to the problem and its solution? Can each item be

596 traced to its origin in the problem environment?

597 U Is each requirement testable? Will it be possible for independent testing to
598 determine whether each requirement has been satisfied?

599 U Are all possible changes to the requirements specified, including the likeli-
600 hood of each change?

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:41 PM

H:\books\CodeC2Ed\Reviews\Web\03-PrerequisitesHighLevel.doc

Code Complete

601

602
603

604
605

606
607
608

609

610

611 CROSS-REFERENCE For
612 more information on design
at all levels, see Chapters 5
through 9.
4

615
616
617
618
619

620
621
622
623
624

625/ KEY POINT

3. Measure Twice, Cut Once: Upstream Prerequisites Page 22

Requirements Completeness

U Where information isn’t available before development begins, are the areas
of incompleteness specified?

O Are the requirements complete in the sense that if the product satisfies every
requirement, it will be acceptable?

U Are you comfortable with all the requirements? Have you eliminated re-
quirements that are impossible to implement and included just to appease
your customer or your boss?

3.5 Architecture Prerequisite

Software architecture is the high-level part of software design, the frame that
holds the more detailed parts of the design (Buschman, et al, 1996; Fowler 2002;
Bass Clements, Kazman 2003; Clements et al, 2003). Architecture is also known
as “system architecture,” “high-level design,” and “top-level design.” Typically,
the architecture is described in a single document referred to as the “architecture
specification” or “top-level design.” Some people make a distinction between
architecture and high-level design—architecture refers to design constraints that
apply system-wide, whereas high-level design refers to design constraints that
apply at the subsystem or multiple-class level, but not necessarily system wide.

Because this book is about construction, this section doesn’t tell you how to de-
velop a software architecture; it focuses on how to determine the quality of an
existing architecture. Because architecture is one step closer to construction than
requirements, however, the discussion of architecture is more detailed than the
discussion of requirements.

Why have architecture as a prerequisite? Because the quality of the architecture

626 determines the conceptual integrity of the system. That in turn determines the

627 ultimate quality of the system. A well thought-out architecture provides the

628 structure needed to maintain a system’s conceptual integrity from the top levels

629 down the bottom. It provides guidance to programmers—at a level of detail ap-

630 propriate to the skills of the programmers and to the job at hand. It partitions the

631 work so that multiple developers or multiple development teams can work inde-

632 pendently.

633 Good architecture makes construction easy. Bad architecture makes construction

634 almost impossible.

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:41 PM

H:\books\CodeC2Ed\Reviews\Web\03-PrerequisitesHighLevel.doc

Code Complete

635
636

637
638
639

640| HARD DATA

641
642
643
644
645
646

647

648 CROSS-REFERENCE For
gag details on lower-level pro-
gram design, see Chapters 5

650
through 9.
651

652
653
654

655

656 1f you can’t explain

657 something to a six-year-
658 old, you really don’t un-
659 derstand it yourself. —
660 Alpert Einstein

3. Measure Twice, Cut Once: Upstream Prerequisites Page 23

FO3xx05

Figure 3-5
Without good software architecture, you may have the right problem but the wrong
solution. It may be impossible to have successful construction.

Architectural changes are expensive to make during construction or later. The
time needed to fix an error in a software architecture is on the same order as that
needed to fix a requirements error—that is, more than that needed to fix a coding
error (Basili and Perricone 1984, Willis 1998). Architecture changes are like re-
quirements changes in that seemingly small changes can be far-reaching.
Whether the architectural changes arise from the need to fix errors or the need to
make improvements, the earlier you can identify the changes, the better.

Typical Architectural Components

Many components are common to good system architectures. If you’re building
the whole system yourself, your work on the architecture, will overlap your work
on the more detailed design. In such a case, you should at least think about each
architectural component. If you’re working on a system that was architected by
someone else, you should be able to find the important components without a
bloodhound, a deerstalker cap, and a magnifying glass. In either case, here are
the architectural components to consider.

Program Organization

A system architecture first needs an overview that describes the system in broad
terms. Without such an overview, you’ll have a hard time building a coherent
picture from a thousand details or even a dozen individual classes. If the system
were a little 12-piece jigsaw puzzle, your two-year-old could solve it between
spoonfuls of strained asparagus. A puzzle of 12 software classes or 12 subsys-

661 tems is harder to put together, and if you can’t put it together, you won’t under-

662 stand how a class you’re developing contributes to the system.

663 In the architecture, you should find evidence that alternatives to the final organi-

664 zation were considered and find the reasons the organization used was chosen

665 over the alternatives. It’s frustrating to work on a class when it seems as if the

666 class’s role in the system has not been clearly conceived. By describing the or-

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:41 PM

H:\books\CodeC2Ed\Reviews\Web\03-PrerequisitesHighLevel.doc

Code Complete

667
668
669
670

671
672
673
674
675
676
677
678
679

680
681
682
683
684

685
686
687

688

689
690
691

693

694
695
696
697
698

699

700
701
702
703
704

© 1993-2003 Steven C. McConnell. All Rights Reserved.

CROSS-REFERENCE For
details on different size build-
ing blocks in design, see
“Levels of Design” in Section
5.2.

CROSS-REFERENCE Mini
mizing what each building
block knows about other
building blocks is a key part
of information hiding. For
details, see “Hide Secrets
(Information Hiding)” in
Section 5.3.

CROSS-REFERENCE For
details on class design, see
Chapter 6, “Working
Classes.”

CROSS-REFERENCE For
details on working with vari-
ables, see Chapters 10
through 13.

3. Measure Twice, Cut Once: Upstream Prerequisites

ganizational alternatives, the architecture provides the rationale for the system
organization and shows that each class has been carefully considered. One re-
view of design practices found that the design rationale is at least as important
for maintenance as the design itself (Rombach 1990).

The architecture should define the major building blocks in a program. Depend-
ing on the size of the program, each building block might be a single class, or it
might be a subsystem consisting of many classes. Each building block is a class,
or a collection of classes or routines that work together on high-level functions
such as interacting with the user, displaying web pages, interpreting commands,
encapsulating business rules, or accessing data. Every feature listed in the re-
quirements should be covered by at least one building block. If a function is
claimed by two or more building blocks, their claims should cooperate, not con-
flict.

What each building block is responsible for should be well defined. A building
block should have one area of responsibility, and it should know as little as pos-
sible about other building blocks’ areas of responsibility. By minimizing what
each building block knows about each other building block, you localize infor-
mation about the design into single building blocks.

The communication rules for each building block should be well defined. The
architecture should describe which other building blocks the building block can
use directly, which it can use indirectly, and which it shouldn’t use at all.

Major Classes

The architecture should specify the major classes to be used. It should identify
the responsibilities of each major class and how the class will interact with other
classes. It should include descriptions of the class hierarchies, of state transitions,
and of object persistence. If the system is large enough, it should describe how
classes are organized into subsystems.

The architecture should describe other class designs that were considered and
give reasons for preferring the organization that was chosen. The architecture
doesn’t need to specify every class in the system; aim for the 80/20 rule: specify
the 20 percent of the classes that make up 80 percent of the systems’ behavior
(Jacobsen, Booch, and Rumbaugh 1999; Kruchten 2000).

Data Design

The architecture should describe the major files and table designs to be used. It
should describe alternatives that were considered and justify the choices that
were made. If the application maintains a list of customer IDs and the architects
have chosen to represent the list of IDs using a sequential-access list, the docu-
ment should explain why a sequential-access list is better than a random-access

H:\books\CodeC2Ed\Reviews\Web\03-PrerequisitesHighLevel.doc

Page 24

1/13/2004 2:41 PM

Code Complete 3. Measure Twice, Cut Once: Upstream Prerequisites Page 25

705 list, stack, or hash table. During construction, such information gives you insight
706 into the minds of the architects. During maintenance, the same insight is an in-
707 valuable aid. Without it, you’re watching a foreign movie with no subtitles.

708 Data should normally be accessed directly by only one subsystem or class, ex-
709 cept through access classes or routines that allow access to the data in controlled
710 and abstract ways. This is explained in more detail in “Hide Secrets (Information
711 Hiding)” in Section 5.3.

712 The architecture should specify the high-level organization and contents of any
713 databases used. The architecture should explain why a single database is prefer-
714 able to multiple databases (or vice versa), identify possible interactions with

715 other programs that access the same data, explain what views have been created
716 on the data, and so on.

717 Business Rules

718 If the architecture depends on specific business rules, it should identify them and
719 describe the impact the rules have on the system’s design. For example, suppose
720 the system is required to follow a business rule that customer information should
721 be no more than 30 seconds out of date. In that case, the impact that has on the
722 architecture’s approach to keeping customer information up to date and synchro-
723 nized should be described.

724 User Interface Design

725 Sometimes the user interface is specified at requirements time. If it isn’t, it

726 should be specified in the software architecture. The architecture should specify
727 major elements of web page formats, GUIs, command line interfaces, and so on.
728 Careful architecture of the user interface makes the difference between a well-
729 liked program and one that’s never used.

730 The architecture should be modularized so that a new user interface can be sub-
731 stituted without affecting the business rules and output parts of the program. For
732 example, the architecture should make it fairly easy to lop off a group of interac-
733 tive interface classes and plug in a group of command line classes. This ability is
734 often useful, especially since command line interfaces are convenient for soft-
735 ware testing at the unit or subsystem level.

736 The design of user interfaces deserves its own book-length discussion but is out-
737 side the scope of this book.

738 Input/Output

739 Input/output is another area that deserves attention in the architecture. The archi-
740 tecture should specify a look-ahead, look-behind, or just-in-time reading scheme.
© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:41 PM

H:\books\CodeC2Ed\Reviews\Web\03-PrerequisitesHighLevel.doc

Code Complete 3. Measure Twice, Cut Once: Upstream Prerequisites Page 26

741 And it should describe the level at which I/O errors are detected: at the field,

742 record, stream, or file level.

743 Resource Management

744 The architecture should describe a plan for managing scarce resources such as
745 database connections, threads, and handles. Memory management is another im-
746 portant area for the architecture to treat in memory-constrained applications ar-
747 eas like driver development and embedded systems. The architecture should es-
748 timate the resources used for nominal and extreme cases. In a simple case, the
749 estimates should show that the resources needed are well within the capabilities
750 of the intended implementation environment. In a more complex case, the appli-
751 cation might be required to more actively manage its own resources. If it is, the
752 resource manager should be architected as carefully as any other part of the sys-
753 tem.

754 CC2E.COM/0330 Security

755 FURTHER READING For an The architecture should describe the approach to design-level and code-level

756 cxcellent discussion of soft- security. If a threat model has not previously been built, it should be built at ar-

ware security, see Writing

757
Secure Code, 2d Ed. (Howard

chitecture time. Coding guidelines should be developed with security implica-

758 4nd LeBlanc 2003) as well as tions in mind, 1ncl.ud1ng approaches to haimdlmg buffers; rules for handling un-
759 the January 2002 issue of trusted data (data input from users, cookies, configuration data, other external
760 |IEEE Software. interfaces); encryption; level of detail contained in error messages; protecting

761 secret data that’s in memory; and other issues.

762 Performance

763 FURTHER READING For If performance is a concern, performance goals should be specified in the re-

764 additional information on quirements. Performance goals can include both speed and memory use.

designing systems for per-
formance, see Connie

765 .
Smith’s Performance Engi-

The architecture should provide estimates and explain why the architects believe

766 peering of Software Systems the goa1§ are achievable. If certain aregs are at risk .of failing to meet .thelr goals,
767 (1990). the architecture should say so. If certain areas require the use of specific algo-
768 rithms or data types to meet their performance goals, the architecture should say
769 so. The architecture can also include space and time budgets for each class or
770 object.

771 Scalability

772 Scalability is the ability of a system to grow to meet future demands. The archi-
773 tecture should describe how the system will address growth in number of users,
774 number of servers, number of network nodes, database size, transaction volume,
775 and so on. If the system is not expected to grow and scalability is not an issue,
776 the architecture should make that assumption explicit.

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:41 PM

H:\books\CodeC2Ed\Reviews\Web\03-PrerequisitesHighLevel.doc

Code Complete 3. Measure Twice, Cut Once: Upstream Prerequisites Page 27

777 Interoperability

778 If the system is expected to share data or resources with other software or hard-
779 ware, the architecture should describe how that will be accomplished.

780 Internationalization/Localization

781 “Internationalization” is the technical activity of preparing a program to support
782 multiple locales. Internationalization is often known as “I18N” because the first
783 and last characters in “internationalization” are “I”” and “N” and because there
784 are 18 letters in the middle of the word. “Localization” (known as “L10n” for the
785 same reason) is the activity of translating a program to support a specific local
786 language.

787 Internationalization issues deserve attention in the architecture for an interactive
788 system. Most interactive systems contain dozens or hundreds of prompts, status
789 displays, help messages, error messages, and so on. Resources used by the

790 strings should be estimated. If the program is to be used commercially, the archi-
791 tecture should show that the typical string and character-set issues have been

792 considered, including character set used (ASCII, DBCS, EBCDIC, MBCS, Uni-
793 code, ISO 8859, and so on), kinds of strings used (C strings, Visual Basic

794 Strings, and so on) maintaining the strings without changing code, and translat-
795 ing the strings into foreign languages with minimal impact on the code and the
796 user interface. The architecture can decide to use strings in line in the code where
797 they’re needed, keep the strings in a class and reference them through the class
798 interface, or store the strings in a resource file. The architecture should explain
799 which option was chosen and why.

800 Error Processing

go1[HARD DATA Error processing is turning out to be one of the thorniest problems of modern

802 computer science, and you can’t afford to deal with it haphazardly. Some people
803 have estimated that as much as 90 percent of a program’s code is written for ex-
804 ceptional, error-processing cases or housekeeping, implying that only 10 percent
805 is written for nominal cases (Shaw in Bentley 1982). With so much code dedi-
806 cated to handling errors, a strategy for handling them consistently should be

807 spelled out in the architecture.

808 Error handling is often treated as a coding-convention—level issue, if it’s treated
809 at all. But because it has system-wide implications, it is best treated at the archi-
810 tectural level. Here are some questions to consider:

811 e [s error processing corrective or merely detective? If corrective, the program
812 can attempt to recover from errors. If it’s merely detective, the program can
813 continue processing as if nothing had happened, or it can quit. In either case,
814 it should notify the user that it detected an error.

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:41 PM

H:\books\CodeC2Ed\Reviews\Web\03-PrerequisitesHighLevel.doc

Code Complete

815
816
817
818
819
820

821
822
823
824

825
826
827
828
829

830
831
832

833
834
835
836

837
838
839
840

841

842
843
844
845

846

CROSS-REFERENCE A
consistent method of han-
dling bad parameters is an-
other aspect of error-
processing strategy that

should be addressed architec-

turally. For examples, see
Chapter 8, “Defensive Pro-
gramming.”

FURTHER READING For a
good introduction to fault
tolerance, see the July 2001
issue of IEEE Software. In
addition to providing a good
introduction, the articles cite
many key books and key

3. Measure Twice, Cut Once: Upstream Prerequisites Page 28

Is error detection active or passive? The system can actively anticipate er-
rors—for example, by checking user input for validity—or it can passively
respond to them only when it can’t avoid them—for example, when a com-
bination of user input produces a numeric overflow. It can clear the way or
clean up the mess. Again, in either case, the choice has user-interface impli-
cations.

How does the program propagate errors? Once it detects an error, it can im-
mediately discard the data that caused the error, it can treat the error as an
error and enter an error-processing state, or it can wait until all processing is
complete and notify the user that errors were detected (somewhere).

What are the conventions for handling error messages? If the architecture
doesn’t specify a single, consistent strategy, the user interface will appear to
be a confusing macaroni-and-dried-bean collage of different interfaces in
different parts of the program. To avoid such an appearance, the architecture
should establish conventions for error messages.

Inside the program, at what level are errors handled? You can handle them at
the point of detection, pass them off to an error-handling class, or pass them
up the call chain.

What is the level of responsibility of each class for validating its input data?
Is each class responsible for validating its own data, or is there a group of
classes responsible for validating the system’s data? Can classes at any level
assume that the data they’re receiving is clean?

Do you want to use your environment’s built-in exception handling mecha-
nism, or build your own? The fact that an environment has a particular error-
handling approach doesn’t mean that it’s the best approach for your re-
quirements.

Fault Tolerance

The architecture should also indicate the kind of fault tolerance expected. Fault
tolerance is a collection of techniques that increase a system’s reliability by de-
tecting errors, recovering from them if possible, and containing their bad effects
if not.

For example, a system could make the computation of the square root of a num-

847 articles on the topic. ber fault tolerant in any of several ways:

848 The system might back up and try again when it detects a fault. If the first

849 answer is wrong, it would back up to a point at which it knew everything

850 was all right and continue from there.

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:41 PM

H:\books\CodeC2Ed\Reviews\Web\03-PrerequisitesHighLevel.doc

Code Complete

3. Measure Twice, Cut Once: Upstream Prerequisites Page 29

851 e The system might have auxiliary code to use if it detects a fault in the pri-
852 mary code. In the example, if the first answer appears to be wrong, the sys-
853 tem switches over to an alternative square-root routine and uses it instead.
854 e The system might use a voting algorithm. It might have three square-root
855 classes that each use a different method. Each class computes the square

856 root, and then the system compares the results. Depending on the kind of
857 fault tolerance built into the system, it then uses the mean, the median, or the
858 mode of the three results.

859 e The system might replace the erroneous value with a phony value that it

860 knows to have a benign effect on the rest of the system.

861 Other fault-tolerance approaches include having the system change to a state of
862 partial operation or a state of degraded functionality when it detects an error. It
863 can shut itself down or automatically restart itself. These examples are necessar-
864 ily simplistic. Fault tolerance is a fascinating and complex subject—

865 unfortunately, one that’s outside the scope of this book.

866 Architectural Feasibility

867 The designers might have concerns about a system’s ability to meet its perform-
868 ance targets, work within resource limitations, or be adequately supported by the
869 implementation environments. The architecture should demonstrate that the sys-
870 tem is technically feasible. If infeasibility in any area could render the project
871 unworkable, the architecture should indicate how those issues have been investi-
872 gated—through proof-of-concept prototypes, research, or other means. These
873 risks should be resolved before full-scale construction begins.

874 Overengineering

875 Robustness is the ability of a system to continue to run after it detects an error.
876 Often an architecture specifies a more robust system than that specified by the
877 requirements. One reason is that a system composed of many parts that are

878 minimally robust might be less robust than is required overall. In software, the
879 chain isn’t as strong as its weakest link; it’s as weak as all the weak links multi-
880 plied together. The architecture should clearly indicate whether programmers
881 should err on the side of overengineering or on the side of doing the simplest
882 thing that works.

883 Specifying an approach to over-engineering is particularly important because
884 many programmers over-engineer their classes automatically, out of a sense of
885 professional pride. By setting expectations explicitly in the architecture, you can
886 avoid the phenomenon in which some classes are exceptionally robust and others
887 are barely adequate.

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:41 PM

H:\books\CodeC2Ed\Reviews\Web\03-PrerequisitesHighLevel.doc

Code Complete

888

889
890
891
892
893
894
895
896

897
898
899

900

901
902
903

904

905
906
907
908
909
910
911
912

913
914
915
916
917
918
919
920
921
922
923

© 1993-2003 Steven C. McConnell. All Rights Reserved.

CROSS-REFERENCE For
a list of kinds of commer-
cially available software
components and libraries, see
“Code Libraries” in Section
30.3.

CROSS-REFERENCE For
details on handling changes
systematically, see Section
28.2, “Configuration Man-
agement.”

Design bugs are often
subtle and occur by
evolution with early
assumptions being
forgotten as new features
or uses are added to a
system.

3. Measure Twice, Cut Once: Upstream Prerequisites Page 30

Buy-vs.-Build Decisions

The most radical solution to building software is not to build it at all—to buy it
instead. You can buy GUI controls, database managers, image processors, graph-
ics and charting components, Internet communications components, security and
encryption components, spreadsheet tools, text processing tools—the list is
nearly endless. One of the greatest advantages of programming in modern GUI
environments is the amount of functionality you get automatically: graphics
classes, dialog box managers, keyboard and mouse handlers, code that works
automatically with any printer or monitor, and so on.

If the architecture isn’t using off-the-shelf components, it should explain the
ways in which it expects custom-built components to surpass ready-made librar-
ies and components.

Reuse Decisions

If the plan calls for using pre-existing software, the architecture should explain
how the reused software will be made to conform to the other architectural
goals—if it will be made to conform.

Change Strategy

Because building a software product is a learning process for both the program-
mers and the users, the product is likely to change throughout its development.
Changes arise from volatile data types and file formats, changed functionality,
new features, and so on. The changes can be new capabilities likely to result
from planned enhancements, or they can be capabilities that didn’t make it into
the first version of the system. Consequently, one of the major challenges facing
a software architect is making the architecture flexible enough to accommodate
likely changes.

The architecture should clearly describe a strategy for handling changes. The
architecture should show that possible enhancements have been considered and
that the enhancements most likely are also the easiest to implement. If changes
are likely in input or output formats, style of user interaction, or processing re-
quirements, the architecture should show that the changes have all been antici-
pated and that the effects of any single change will be limited to a small number
of classes. The architecture’s plan for changes can be as simple as one to put
version numbers in data files, reserve fields for future use, or design files so that
you can add new tables. If a code generator is being used, the architecture should
show that the anticipated changes are within the capabilities of the code genera-
tor.

1/13/2004 2:41 PM

H:\books\CodeC2Ed\Reviews\Web\03-PrerequisitesHighLevel.doc

Code Complete 3. Measure Twice, Cut Once: Upstream Prerequisites Page 31

924 CROSS-REFERENCE For The architecture should indicate the strategies that are used to delay commit-

925 @ full explanation of delaying ment. For example, the architecture might specify that a table-driven technique

commitment, see “Choose be used rather than hard-coded if tests. It might specify that data for the table is

926
Binding Time Consciously”

927 . Section 5.3. to be kept in an external file rather than coded inside the program, thus allowing
928 changes in the program without recompiling.
929 General Architectural Quality
930 CROSS-REFERENCE For A good architecture specification is characterized by discussions of the classes in
931 More information about how the system, of the information that’s hidden in each class, and of the rationales
932 (Slzzgzlaztgliufzshifgl?i’;z for including and excluding all possible design alternatives.

of Software Quality.”
933 The architecture should be a polished conceptual whole with few ad hoc addi-
934 tions. The central thesis of the most popular software-engineering book ever, The
935 Mythical Man-Month, is that the essential problem with large systems is main-
936 taining their conceptual integrity (Brooks 1995). A good architecture should fit
937 the problem. When you look at the architecture, you should be pleased by how
938 natural and easy the solution seems. It shouldn’t look as if the problem and the
939 architecture have been forced together with duct tape.
940 You might know of ways in which the architecture was changed during its de-
941 velopment. Each change should fit in cleanly with the overall concept. The archi-
942 tecture shouldn’t look like a House appropriations bill complete with pork-
943 barrel, boondoggle riders for each representative’s home district.
944 The architecture’s objectives should be clearly stated. A design for a system with
945 a primary goal of modifiability will be different from one with a goal of uncom-
946 promised performance, even if both systems have the same function.
947 The architecture should describe the motivations for all major decisions. Be wary
948 of “we’ve always done it that way” justifications. One story goes that Beth
949 wanted to cook a pot roast according to an award-winning pot roast recipe
950 handed down in her husband’s family. Her husband, Abdul, said that his mother
951 had taught him to sprinkle it with salt and pepper, cut both ends off, put it in the
952 pan, cover it, and cook it. Beth asked, “Why do you cut both ends off?”” Abdul
953 said, “I don’t know. I’ve always done it that way. Let me ask my mother.” He
954 called her, and she said, “I don’t know. I’ve always done it that way. Let me ask
955 your grandmother.” She called his grandmother, who said, “I don’t know why
956 you do it that way. I did it that way because it was too big to fit in my pan.”
957 Good software architecture is largely machine and language independent. Admit-
958 tedly, you can’t ignore the construction environment. By being as independent of
959 the environment as possible, however, you avoid the temptation to over-architect
960 the system or to do a job that you can do better during construction. If the pur-
© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:41 PM

H:\books\CodeC2Ed\Reviews\Web\03-PrerequisitesHighLevel.doc

Code Complete 3. Measure Twice, Cut Once: Upstream Prerequisites Page 32

961 pose of a program is to exercise a specific machine or language, this guideline
962 doesn’t apply.

963 The architecture should tread the line between under-specifying and over-

964 specifying the system. No part of the architecture should receive more attention
965 than it deserves, or be over-designed. Designers shouldn’t pay attention to one
966 part at the expense of another. The architecture should address all requirements
967 without gold-plating (without containing elements that are not required).

968 The architecture should explicitly identify risky areas. It should explain why

969 they’re risky and what steps have been taken to minimize the risk.

970 Finally, you shouldn’t be uneasy about any parts of the architecture. It shouldn’t
971 contain anything just to please the boss. It shouldn’t contain anything that’s hard
972 for you to understand. You’re the one who’ll implement it; if it doesn’t make
973 sense to you, how can you implement it?

CC2E.COM/0337

974 Checklist: Architecture

975 Here’s a list of issues that a good architecture should address. The list isn’t in-
976 tended to be a comprehensive guide to architecture but to be a pragmatic way of
977 evaluating the nutritional content of what you get at the programmer’s end of the
978 software food chain. Use this checklist as a starting point for your own checklist.
979 As with the requirements checklist, if you’re working on an informal project,
980 you’ll find some items that you don’t even need to think about. If you’re work-
981 ing on a larger project, most of the items will be useful.

982 Specific Architectural Topics

983 U Is the overall organization of the program clear, including a good architec-
984 tural overview and justification?

985 U Are major building blocks well defined, including their areas of responsibil-
986 ity and their interfaces to other building blocks?

987 U Are all the functions listed in the requirements covered sensibly, by neither
988 too many nor too few building blocks?

989 O Are the most critical classes described and justified?

990 U Is the data design described and justified?

991 U Is the database organization and content specified?

992 U Are all key business rules identified and their impact on the system de-

993 scribed?

994 O s a strategy for the user interface design described?

995 O Is the user interface modularized so that changes in it won’t affect the rest of
996 the program?

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:41 PM

H:\books\CodeC2Ed\Reviews\Web\03-PrerequisitesHighLevel.doc

Code Complete 3. Measure Twice, Cut Once: Upstream Prerequisites Page 33

997 Q Is a strategy for handling I/0O described and justified?

998 U Are resource-use estimates and a strategy for resource management de-

999 scribed and justified?
1000 O Are the architecture’s security requirements described?
1001 U Does the architecture set space and speed budgets for each class, subsystem,
1002 or functionality area?
1003 O Does the architecture describe how scalability will be achieved?
1004 U Does the architecture address interoperability?
1005 U s a strategy for internationalization/localization described?
1006 U Is a coherent error-handling strategy provided?
1007 U Is the approach to fault tolerance defined (if any is needed)?
1008 U Has technical feasibility of all parts of the system been established?
1009 O Is an approach to overengineering specified?
1010 U Are necessary buy-vs.-build decisions included?
1011 O Does the architecture describe how reused code will be made to conform to
1012 other architectural objectives?
1013 O Is the architecture designed to accommodate likely changes?
1014 O Does the architecture describe how reused code will be made to conform to
1015 other architectural objectives?
1016 General Architectural Quality
1017 U Does the architecture account for all the requirements?
1018 O Is any part over- or under-architected? Are expectations in this area set out
1019 explicitly?
1020 U Does the whole architecture hang together conceptually?
1021 O Is the top-level design independent of the machine and language that will be
1022 used to implement it?
1023 U Are the motivations for all major decisions provided?
1024 O Are you, as a programmer who will implement the system, comfortable with
1025 the architecture?
1026

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:41 PM

H:\books\CodeC2Ed\Reviews\Web\03-PrerequisitesHighLevel.doc

Code Complete

1027

1028

1029
1030
1031
1032
1033
1034

1035
1036
1037
1038
1039

1040
1041
1042

1043
1044
1045
1046
1047
1048

CROSS-REFERENCE The
amount of time you spend on
prerequisites will depend on
your project type. For details
on adapting prerequisites to
your specific project, see
Section 3.2, “Determine the
Kind of Software You’re
Working On,” earlier in this
chapter.

CROSS-REFERENCE For
approaches to handling
changing requirements, see
“Handling Requirements
Changes During Construc-
tion” in Section 3.4, earlier in
this chapter.

3. Measure Twice, Cut Once: Upstream Prerequisites Page 34

3.6 Amount of Time to Spend on Upstream
Prerequisites

The amount of time to spend on problem definition, requirements, and software
architecture varies according to the needs of your project. Generally, a well-run
project devotes about 10 to 20 percent of its effort and about 20 to 30 percent of
its schedule to requirements, architecture, and up-front planning (McConnell
1998, Kruchten 2000). These figures don’t include time for detailed design—
that’s part of construction.

If requirements are unstable and you’re working on a large, formal project,
you’ll probably have to work with a requirements analyst to resolve require-
ments problems that are identified early in construction. Allow time to consult
with the requirements analyst and for the requirements analyst to revise the re-
quirements before you’ll have a workable version of the requirements.

If requirements are unstable and you’re working on a small, informal project,
allow time for defining the requirements well enough that their volatility will
have a minimal impact on construction.

If the requirements are unstable on any project—formal or informal—treat re-
quirements work as its own project. Estimate the time for the rest of the project
after you’ve finished the requirements. This is a sensible approach since no one
can reasonably expect you to estimate your schedule before you know what
you’re building. It’s as if you were a contractor called to work on a house. Your
customer says, “What will it cost to do the work?” You reasonably ask, “What

1049 do you want me to do?” Your customer says, “I can’t tell you, but how much
1050 will it cost?” You reasonably thank the customer for wasting your time and go
1051 home.
1052 With a building, it’s clear that it’s unreasonable for clients to ask for a bid before
1053 telling you what you’re going to build. Your clients wouldn’t want you to show
1054 up with wood, hammer, and nails and start spending their money before the ar-
1055 chitect had finished the blueprints. People tend to understand software develop-
1056 ment less than they understand two-by-fours and sheetrock, however, so the cli-
1057 ents you work with might not immediately understand why you want to plan re-
1058 quirements development as a separate project. You might need to explain your
1059 reasoning to them.
1060 When allocating time for software architecture, use an approach similar to the
1061 one for requirements development. If the software is a kind that you haven’t
1062 worked with before, allow more time for the uncertainty of designing in a new
1063 area. Ensure that the time you need to create a good architecture won’t take away
© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:41 PM

H:\books\CodeC2Ed\Reviews\Web\03-PrerequisitesHighLevel.doc

Code Complete

1064
1065

CC2E.COM/0344

3. Measure Twice, Cut Once: Upstream Prerequisites Page 35

from the time you need for good work in other areas. If necessary, plan the archi-
tecture work as a separate project too.

Additional Resources

1066

1067 Requirements

1068 CC2E.COM/0351 Here are a few books that give much more detail on requirements development.
1069 Wiegers, Karl. Software Requirements, 2d Ed. Redmond, WA: Microsoft Press,
1070 2003. This is a practical, practitioner-focused book that describes the nuts and
1071 bolts of requirements activities including requirements elicitation, requirements
1072 analysis, requirements specification, requirements validation, and requirements
1073 management.

1074 Robertson, Suzanne and James Robertson. Mastering the Requirements Process,
1075 Reading, MA: Addison Wesley, 1999. This is a good alternative to Wiegers’
1076 book for the more advanced requirements practitioner.

1077 CC2E.COM/0358 Gilb, Tom. Competitive Engineering, Reading, Mass.: Addison Wesley, 2004.
1078 This book describes Gilb’s requirements language known as “Planguage.” The
1079 book covers Gilb’s specific approach to requirements engineering, design and
1080 design evaluation, and evolutionary project management. This book can be

1081 downloaded from Gilb’s website at www.gilb.com.

1082 IEEE Std 830-1998. IEEE Recommended Practice for Software Requirements
1083 Specifications, Los Alamitos, CA: IEEE Computer Society Press. This document
1084 is the IEEE-ANSI guide for writing software requirements specifications. It de-
1085 scribes what should be included in the specification document and shows several
1086 alternative outlines for one.

1087 CC2E.COM/0365 Abran, Alain, et al. Swebok: Guide to the Software Engineering Body of Knowl-
1088 edge, Los Alamitos, CA: IEEE Computer Society Press, 2001. This contains a
1089 detailed description of the body of software-requirements knowledge. It may
1090 also be downloaded from www.swebok.org.

1091 Other good alternatives include:

1092 Lauesen, Soren. Software Requirements: Styles and Techniques, Boston, Mass.:
1093 Addison Wesley, 2002.

1094 Kovitz, Benjamin, L. Practical Software Requirements: A Manual of Content
1095 and Style, Manning Publications Company, 1998.

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:41 PM

H:\books\CodeC2Ed\Reviews\Web\03-PrerequisitesHighLevel.doc

Code Complete 3. Measure Twice, Cut Once: Upstream Prerequisites Page 36

1096 Cockburn, Alistair. Writing Effective Use Cases, Boston, Mass.: Addison

1097 Wesley, 2000.

1098 Software Architecture

1099 CC2E.COM/0372 Numerous books on software architecture have been published in the past few
1100 years. Here are some of the best:

1101 Bass, Len, Paul Clements, and Rick Kazman. Software Architecture in Practice,
1102 Second Edition, Boston, Mass.: Addison Wesley, 2003.

1103 Buschman, Frank, et al. Pattern-Oriented Software Architecture, Volume 1: A
1104 System of Patterns, New York: John Wiley & Sons, 1996.

1105 Clements, Paul, ed.. Documenting Software Architectures: Views and Beyond,
1106 Boston, Mass.: Addison Wesley, 2003.

1107 Clements, Paul, Rick Kazman, and Mark Klein. Evaluating Software Architec-
1108 tures: Methods and Case Studies, Boston, Mass.: Addison Wesley, 2002.

1109 Fowler, Martin. Patterns of Enterprise Application Architecture, Boston, Mass.:
1110 Addison Wesley, 2002.

1111 Jacobson, Ivar, Grady Booch, James Rumbaugh, 1999. The Unified Software
1112 Development Process, Reading, Mass.: Addison Wesley, 1999.

1113 IEEE Std 1471-2000. Recommended Practice for Architectural Description of
1114 Software Intensive Systems, Los Alamitos, CA: IEEE Computer Society Press.
1115 This document is the IEEE-ANSI guide for creating software architecture speci-
1116 fications.

1117 General Software Development Approaches

1118 CC2E.COM/0379 Many books are available that map out different approaches to conducting a
1119 software project. Some are more sequential, and some are more iterative.

1120 McConnell, Steve. Software Project Survival Guide. Redmond, WA: Microsoft
1121 Press, 1998. This book presents one particular way to conduct a project. The ap-
1122 proach presented emphasizes deliberate up-front planning, requirements devel-
1123 opment, and architecture work followed by careful project execution. It provides
1124 long-range predictability of costs and schedules, high quality, and a moderate
1125 amount of flexibility.

1126 Kruchten, Philippe. The Rational Unified Process: An Introduction, 2d Ed.,
1127 Reading, Mass.: Addison Wesley, 2000. This book presents a project approach
1128 that is “architecture centric and use-case driven.” Like Software Project Survival
© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:41 PM

H:\books\CodeC2Ed\Reviews\Web\03-PrerequisitesHighLevel.doc

Code Complete

3. Measure Twice, Cut Once: Upstream Prerequisites Page 37

1129 Guide, it focuses on up-front work that provides good long-range predictability
1130 of costs and schedules, high quality, and moderate flexibility. This book’s ap-
1131 proach requires somewhat more sophisticated use than the approaches described
1132 in Software Project Survival Guide and Extreme Programming Explained: Em-
1133 brace Change.

1134 Jacobson, Ivar, Grady Booch, James Rumbaugh. The Unified Software Devel-
1135 opment Process, Reading, Mass.: Addison Wesley, 1999. This book is a more in-
1136 depth treatment of the topics covered in The Rational Unified Process: An Intro-
1137 duction, 2d Ed.

1138 Beck, Kent. Extreme Programming Explained: Embrace Change, Reading,

1139 Mass.: Addison Wesley, 2000. Beck describes a highly iterative approach that
1140 focuses on developing requirements and designs iteratively, in conjunction with
1141 construction. The extreme programming approach offers little long-range pre-
1142 dictability but provides a high degree of flexibility.

1143 Gilb, Tom. Principles of Software Engineering Management. Wokingham, Eng-
1144 land: Addison-Wesley. Gilb’s approach explores critical planning, requirements,
1145 and architecture issues early in a project, then continuously adapts the project
1146 plans as the project progresses. This approach provides a combination of long-
1147 range predictability, high quality, and a high degree of flexibility. It requires
1148 more sophistication than the approaches described in Software Project Survival
1149 Guide and Extreme Programming: Embrace Change.

1150 McConnell, Steve. Rapid Development. Redmond, WA: Microsoft Press, 1996.
1151 This book presents a toolbox approach to project planning. An experienced pro-
1152 ject planner can use the tools presented in this book to create a project plan that
1153 is highly adapted to a project’s unique needs.

1154 Boehm, Barry and Richard Turner. Balancing Agility and Discipline: A Guide
1155 for the Perplexed, Boston, Mass.: Addison Wesley, 2003. This book explores the
1156 contrast between agile development and plan-driven development styles. Chapter
1157 3 has 4 especially revealing sections: A Typical Day using PSP/TSP, A Typical
1158 Day using Extreme Programming, A Crisis Day using PSP/TSP, and A Crisis
1159 Day using Extreme Programming. Chapter 5 is on using risk to balance agility,
1160 which provides incisive guidance for selecting between agile and plan-driven
1161 methods. Chapter 6, Conclusions, is also well balanced and gives great perspec-
1162 tive. Appendix E is a gold mine of empirical data on agile practices.

1163 Larman, Craig. Agile and Iterative Development: A Manager’s Guide, Boston,
1164 Mass.: Addison Wesley, 2004. This is a well-researched introduction to flexible,
1165 evolutionary development styles. It overviews Scrum, Extreme Programming,
1166 the Unified Process, and Evo.

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:41 PM

H:\books\CodeC2Ed\Reviews\Web\03-PrerequisitesHighLevel.doc

Code Complete 3. Measure Twice, Cut Once: Upstream Prerequisites Page 38

CC2E.COM/0386

1167 Checklist: Upstream Prerequisites
1168 O Have you identified the kind of software project you’re working on and tai-
1169 lored your approach appropriately?
1170 O Are the requirements sufficiently well-defined and stable enough to begin
1171 construction (see the requirements checklist for details)?
1172 U Is the architecture sufficiently well defined to begin construction (see the
1173 architecture checklist for details)?
1174 U Have other risks unique to your particular project been addressed, such that
1175 construction is not exposed to more risk than necessary?
1176
1177 Key Points
1178 e The overarching goal of preparing for construction is risk reduction. Be sure
1179 your preparation activities are reducing risks, not increasing them.
1180 e If you want to develop high-quality software, attention to quality must be
1181 part of the software-development process from the beginning to the end. At-
1182 tention to quality at the beginning has a greater influence on product quality
1183 than attention at the end.
1184 e Part of a programmer’s job is to educate bosses and coworkers about the
1185 software-development process, including the importance of adequate prepa-
1186 ration before programming begins.

1187 e The kind of project you’re working significantly affects construction prereq-
1188 uisites—many projects should be highly iterative, and some should be more
1189 sequential.

1190 e [fa good problem definition hasn’t been specified, you might be solving the
1191 wrong problem during construction.

1192 e [fa good requirements work hasn’t been done, you might have missed im-
1193 portant details of the problem. Requirements changes cost 20 to 100 times as
1194 much in the stages following construction as they do earlier, so be sure the
1195 requirements are right before you start programming.

1196 e Ifa good architectural design hasn’t been done, you might be solving the
1197 right problem the wrong way during construction. The cost of architectural
1198 changes increases as more code is written for the wrong architecture, so be
1199 sure the architecture is right too.

1200 e Understand what approach has been taken to the construction prerequisites
1201 on your project and choose your construction approach accordingly.

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:41 PM

H:\books\CodeC2Ed\Reviews\Web\03-PrerequisitesHighLevel.doc

Code Complete

4. Key Construction Decisions Page 1

A

1

2 Key Construction Decisions

3 CC2E.COM/0489 Contents

4 4.1 Choice of Programming Language

5 4.2 Programming Conventions

6 4.3 Your Location on the Technology Wave

7 4.4 Selection of Major Construction Practices

Related Topics
Upstream prerequisites: Chapter 3
10 Determine the kind of software you’re working on: Section 3.1
11 Formality needed with programs of different sizes: Chapter 27
12 Managing construction: Chapter 28
13 Software design: Chapter 5, and Chapters 6 through 9
14 Once you’re sure an appropriate groundwork has been laid for construction,
15 preparation turns toward more construction-specific decisions. Chapter 3
16 discussed the software equivalent of blueprints and construction permits. You
17 might not have had much control over those preparations, and so the focus of
18 that chapter was on assessing what you’ve got to work with at the time
19 construction begins. This chapter focuses on preparations that individual
20 programmers and technical leads are responsible for, directly or indirectly. It
21 discusses the software equivalent of how to select specific tools for your tool belt
22 and how to load your truck before you head out to the jobsite.
23 If you feel you’ve read enough about construction preparations already, you
24 might skip ahead to Chapter 5.
25 4.1 Choice of Programming Language
26 By relieving the brain of all unnecessary work, a good
27 notation sets it free to concentrate on more advanced
© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:42 PM

H:\books\CodeC2Ed\Reviews\Web\04-PrerequisitesProgramming.doc

Code Complete 4. Key Construction Decisions Page 2

28 problems, and in effect increases the mental power of the race.
29 Before the introduction of the Arabic notation, multiplication
30 was difficult, and the division even of integers called into play
31 the highest mathematical faculties. Probably nothing in the
32 modern world would have more astonished a Greek
33 mathematician than to learn that ... a huge proportion of the
34 population of Western Europe could perform the operation of
35 division for the largest numbers. This fact would have seemed
36 to him a sheer impossibility.... Our modern power of easy
37 reckoning with decimal fractions is the almost miraculous
38 result of the gradual discovery of a perfect notation.
39 —Alfred North Whitehead
40 The programming language in which the system will be implemented should be
41 of great interest to you since you will be immersed in it from the beginning of
42 construction to the end.
43 Studies have shown that the programming-language choice affects productivity
44 and code quality in several ways.
45 Programmers are more productive using a familiar language than an unfamiliar
46 one. Data from the Cocomo II estimation model shows that programmers
47 working in a language they’ve used for three years or more are about 30 percent
48 more productive than programmers with equivalent experience who are new to a
49 language (Boehm, et al 2000). An earlier study at IBM found that programmers
50 who had extensive experience with a programming language were more than
51 three times as productive as those with minimal experience (Walston and Felix
52 1977).
53| HARD DATA Programmers working with high-level languages achieve better productivity and
54 quality than those working with lower-level languages. Languages such as C++,
55 Java, Smalltalk, and Visual Basic have been credited with improving
56 productivity, reliability, simplicity, and comprehensibility by factors of 5 to 15
57 over low-level languages such as assembly and C (Brooks 1987, Jones 1998,
58 Boehm 2000). You save time when you don’t need to have an awards ceremony
59 every time a C statement does what it’s supposed to. Moreover, higher-level
60 languages are more expressive than lower-level languages. Each line of code
61 says more. Table 4-1 shows typical ratios of source statements in several high-
62 level languages to the equivalent code in C. A higher ratio means that each line
63 of code in the language listed accomplishes more than does each line of code in
64 C.

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:42 PM

H:\books\CodeC2Ed\Reviews\Web\04-PrerequisitesProgramming.doc

Code Complete

4. Key Construction Decisions Page 3

65 Table 4-1. Ratio of High-Level-Language Statements to Equivalent C
66 Code

Language Level relativeto C

C ltol

C++ 1to2.5

Fortran 95 Ito2

Java 1to2.5

Perl 1to6

Smalltalk 1to6

SQL 1to 10

Visual Basic 1to4.5
67 Source: Adapted from Estimating Software Costs (Jones 1998) and Software Cost
68 Estimation with Cocomo II (Boehm 2000).
69 Data from IBM points to another language characteristic that influences
70 productivity: Developers working in interpreted languages tend to be more
71 productive than those working in compiled languages (Jones 1986a). In
72 languages that are available in both interpreted and compiled forms (such as
73 Visual Basic), you can productively develop programs in the interpreted form
74 and then release them in the better-performing compiled form.
75 Some languages are better at expressing programming concepts than others. You
76 can draw a parallel between natural languages such as English and programming
77 languages such as Java and C++. In the case of natural languages, the linguists
78 Sapir and Whorf hypothesize a relationship between the expressive power of a
79 language and the ability to think certain thoughts. The Sapir-Whorf hypothesis
80 says that your ability to think a thought depends on knowing words capable of
81 expressing the thought. If you don’t know the words, you can’t express the
82 thought, and you might not even be able to formulate it (Whorf 1956).
83 Programmers may be similarly influenced by their languages. The words
84 available in a programming language for expressing your programming thoughts
85 certainly determine how you express your thoughts and might even determine
86 what thoughts you can express.
87 Evidence of the effect of programming languages on programmers’ thinking is
88 common. A typical story goes like this: “We were writing a new system in C++,
89 but most of our programmers didn’t have much experience in C++. They came
90 from Fortran backgrounds. They wrote code that compiled in C++, but they were
91 really writing disguised Fortran. They stretched C++ to emulate Fortran’s bad
92 features (such as gotos and global data) and ignored C++’s rich set of object-

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:42 PM

H:\books\CodeC2Ed\Reviews\Web\04-PrerequisitesProgramming.doc

Code Complete

4. Key Construction Decisions Page 4

93 oriented capabilities.” This phenomenon has been reported throughout the
94 industry for many years (Hanson 1984, Yourdon 1986a).
95 Language Descriptions
96 The development histories of some languages are interesting, as are their general
97 capabilities. Here are descriptions of the most common languages in use today.
98 Ada
99 Ada is a general-purpose, high-level programming language based on Pascal. It
100 was developed under the aegis of the Department of Defense and is especially
101 well suited to real-time and embedded systems. Ada emphasizes data abstraction
102 and information hiding and forces you to differentiate between the public and
103 private parts of each class and package. “Ada” was chosen as the name of the
104 language in honor of Ada Lovelace, a mathematician who is considered to have
105 been the world’s first programmer. Today Ada is used primarily in military,
106 space, and avionics systems.
107 Assembly Language
108 Assembly language, or “assembler,” is a kind of low-level language in which
109 each statement corresponds to a single machine instruction. Because the
110 statements use specific machine instructions, an assembly language is specific to
111 a particular processor—for example, specific Intel or Motorola CPUs. Assembler
112 is regarded as the second-generation language. Most programmers avoid it
113 unless they’re pushing the limits in execution speed or code size.
114 C
115 C is a general-purpose, mid-level language that is originally associated with the
116 UNIX operating system. C has some high-level language features, such as
117 structured data, structured control flow, machine independence, and a rich set of
118 operators. It has also been called a “portable assembly language” because it
119 makes extensive use of pointers and addresses, has some low-level constructs
120 such as bit manipulation, and is weakly typed.
121 C was developed in the 1970s at Bell Labs. It was originally designed for and
122 used on the DEC PDP-11—whose operating system, C compiler, and UNIX
123 application programs were all written in C. In 1988, an ANSI standard was
124 issued to codify C, which was revised in 1999. C was the de facto standard for
125 microcomputer and workstation programming in the 1980s and 1990s.
126 C++
127 C++, an object-oriented language founded on C, was developed at Bell
128 Laboratories in the 1980s. In addition to being compatible with C, C++ provides
© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:42 PM

H:\books\CodeC2Ed\Reviews\Web\04-PrerequisitesProgramming.doc

Code Complete

4. Key Construction Decisions Page 5

129 classes, polymorphism, exception handling, templates, and it provides more

130 robust type checking than C does.

131 C#

132 C# is a general-purpose, object-oriented language and programming

133 environment developed by Microsoft with syntax similar to C, C++, and Java
134 and provides extensive tools that aid development on Microsoft platforms.

135 Cobol

136 Cobol is an English-like programming language that was originally developed in
137 1959-1961 for use by the Department of Defense. Cobol is used primarily for
138 business applications and is still one of the most widely used languages today,
139 second only to Visual Basic in popularity (Feiman and Driver 2002). Cobol has
140 been updated over the years to include mathematical functions and object-

141 oriented capabilities. The acronym “Cobol” stands for Common Business-

142 Oriented Language.

143 Fortran

144 Fortran was the first high-level computer language, introducing the ideas of

145 variables and high-level loops. “Fortran” stands for FORmula TRANslation.

146 Fortran was originally developed in the 1950s and has seen several significant
147 revisions, including Fortran 77 in 1977, which added block structured if-then-
148 else statements and character-string manipulations. Fortran 90 added user-

149 defined data types, pointers, classes, and a rich set of operations on arrays.

150 Fortran is used mainly in scientific and engineering applications.

151 Java

152 Java is an object-oriented language with syntax similar to C and C++ that was
153 developed by Sun Microsystems, Inc. Java was designed to run on any platform
154 by converting Java source code to byte code, which is then run in each platform
155 within an environment known as a virtual machine. Java is in widespread use for
156 programming Web applications.

157 JavaScript

158 JavaScript is an interpreted scripting language that is loosely related to Java. It is
159 used primarily for adding simple functions and online applications to web pages.
160 Perl

161 Perl is a string-handling language that is based on C and several Unix utilities,
162 created at Jet Propulsion Laboratories. Perl is often used for system

163 administration tasks such as creating build scripts as well as for report generation
164 and processing. The acronym “Perl” stands for Practical Extraction and Report
165 Language.

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:42 PM

H:\books\CodeC2Ed\Reviews\Web\04-PrerequisitesProgramming.doc

Code Complete 4. Key Construction Decisions Page 6
166 PHP
167 PHP is an open-source scripting language with a simple syntax similar to Perl,
168 Bourne Shell, JavaScript, and C. PHP runs on all major operating systems to
169 execute server-side interactive functions. It can be embedded in web pages to
170 access and present database information. The acronym “PHP” originally stood
171 for Personal Home Page, but now stands for PHP: Hypertext Processor.
172 Python
173 Python is an interpreted, interactive, object-oriented language that focuses on
174 working with strings. It is used most commonly for writing scripts and small
175 Web applications and also contains some support for creating larger programs. It
176 runs in numerous environments.
177 SQL
178 SQL is the de facto standard language for querying, updating, and managing
179 relational databases. SQL stands for Structured Query Language. Unlike other
180 languages listed in this section, SQL is a “declarative language”—meaning that
181 it does not define a sequence of operations, but rather the result of some
182 operations.
183 Visual Basic
184 The original version of Basic was a high-level language developed at Dartmouth
185 College in the 1960s. The acronym BASIC stands for Beginner’s All-purpose
186 Symbolic Instruction Code. Visual Basic is a high-level, object-oriented, visual
187 programming version of Basic developed by Microsoft that was originally
188 designed for creating Windows applications. It has since been extended to
189 support customization of desktop applications such as Microsoft Office, creation
190 of web programs, and other applications. Experts report that by the early 2000s
191 more professional developers are working in Visual Basic than in any other
192 language (Feiman and Driver 2002).
193 Language-Selection Quick Reference
194 Table 4-2 provides a thumbnail sketch of languages suitable for various
195 purposes. It can point you to languages you might be interested in learning more
196 about. But don’t use it as a substitute for a careful evaluation of a specific
197 language for your particular project. The classifications are broad, so take them
198 with a grain of salt, particularly if you know of specific exceptions.
199 Table 4-2. The Best and Worst Languages for Particular Kinds of
200 Programs

Kind of Program Best Languages Worst Languages

Command-line Cobol, Fortran, SQL -
© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:42 PM

H:\books\CodeC2Ed\Reviews\Web\04-PrerequisitesProgramming.doc

Code Complete

201
202
203

204

205
206
207
208
209
210

211
212

CROSS-REFERENCE For
more details on the power of

conventions, see Sections
11.3 through 11.5.

4. Key Construction Decisions

Page 7

processing

Cross-platform
development

Java, Perl, Python

Assembler, C#, Visual Basic

Database manipulation

SQL, Visual Basic

Assembler, C

Direct memory

Assembler, C, C++

C#, Java, Visual Basic

manipulation
Distributed system CH#, Java -
Dynamic memory use C, C++, Java -

Easy-to-maintain
program

C++, Java, Visual Basic

Assembler, Perl

Fast execution

Assembler, C, C++,
Visual Basic

JavaScript, Perl, Python

For environments with
limited memory

Assembler, C

C#, Java, Visual Basic

Mathematical Fortran Assembler
calculation
Quick-and-dirty project | Perl, PHP, Python, Assembler

Visual Basic

Real-time program

C, C++, Assembler

C#, Java, Python, Perl, Visual
Basic

Report writing Cobol, Perl, Visual Assembler, Java
Basic

Secure program C#, Java C, C++

String manipulation Perl, Python C

Web development

C#, Java, JavaScript,
PHP, Visual Basic

Assembler, C

Some languages simply don’t support certain kinds of programs, and those have not
been listed as “worst” languages. For example, Perl is not listed as a “worst
language” for mathematical calculations.

4.2 Programming Conventions

In high-quality software, you can see a relationship between the conceptual

integrity of the architecture and its low-level implementation. The

implementation must be consistent with the architecture that guides it and

consistent internally. That’s the point of construction guidelines for variable

names, class names, routine names, formatting conventions, and commenting

conventions.

In a complex program, architectural guidelines give the program structural

balance and construction guidelines provide low-level harmony, articulating

© 1993-2003 Steven C. McConnell. All Rights Reserved.

H:\books\CodeC2Ed\Reviews\Web\04-PrerequisitesProgramming.doc

1/13/2004 2:42 PM

Code Complete 4. Key Construction Decisions Page 8

213 each class as a faithful part of a comprehensive design. Any large program

214 requires a controlling structure that unifies its programming-language details.
215 Part of the beauty of a large structure is the way in which its detailed parts bear
216 out the implications of its architecture. Without a unifying discipline, your

217 creation will be a jumble of poorly coordinated classes and sloppy variations in
218 style.

219 What if you had a great design for a painting, but one part was classical, one

220 impressionist, and one cubist? It wouldn’t have conceptual integrity no matter
221 how closely you followed its grand design. It would look like a collage. A

222 program needs low-level integrity too.

223| KEY POINT Before construction begins, spell out the programming conventions you’ll use.
224 They’re at such a low level of detail that they’re nearly impossible to retrofit into
225 software after it’s written. Details of such conventions are provided throughout
226 the book.

227 4.3 Your Location on the Technology Wave
228 During my career I’ve seen the PC’s star rise while the mainframes’ star dipped
229 toward the horizon. I’ve seen GUI programs replace character-based programs.
230 And I’ve seen the Web ascend while Windows declines. I can only assume that
231 by the time you read this some new technology will be in ascendance, and web
232 programming as [know it today (2004) will be on its way out. These technology
233 cycles, or waves, imply different programming practices depending on where
234 you find yourself on the wave.

235 In mature technology environments—the end of the wave, such as web

236 programming in the mid 2000s—we benefit from a rich software development
237 infrastructure. Late-wave environments provide numerous programming

238 language choices, comprehensive error checking for code written in those

239 languages, powerful debugging tools, and automatic, reliable performance

240 optimization. The compilers are nearly bug free. The tools are well documented
241 in vendor literature, in third party books and articles, and in extensive web

242 resources. Tools are integrated, so you can do UI, database, reports, and business
243 logic from within a single environment. If you do run into problems, you can

244 readily find quirks of the tools described in FAQs. Many consultants and training
245 classes are also available.

246 In early-wave environments—web programming in the mid 1990s, for

247 example—the situation is the opposite. Few programming language choices are
248 available, and those languages tend to be buggy and poorly documented.

249 Programmers spend significant amounts of time simply trying to figure out how
© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:42 PM

H:\books\CodeC2Ed\Reviews\Web\04-PrerequisitesProgramming.doc

Code Complete 4. Key Construction Decisions Page 9

250 the language works instead of writing new code. Programmers also spend

251 countless hours working around bugs in the language products, underlying

252 operating system, and other tools. Programming tools in early-wave

253 environments tend to be primitive. Debuggers might not exist at all, and

254 compiler optimizers are still only a gleam in some programmer’s eye. Vendors
255 revise their compiler version often, and it seems that each new version breaks
256 significant parts of your code. Tools aren’t integrated, and so you tend to work
257 with different tools for Ul, database, reports, and business logic. The tools tend
258 not to be very compatible, and you can expend a significant amount of effort just
259 to keep existing functionality working against the onslaught of compiler and

260 library releases. Test automation is especially valuable because it helps you more
261 quickly detect defects arising from changes in the development environment. If
262 you run into trouble, reference literature exists on the web in some form, but it
263 isn’t always reliable, and, if the available literature is any guide, every time you
264 encounter a problem it seems as though you’re the first one to do so.

265 These comments might seem like a recommendation to avoid early-wave

266 programming, but that isn’t their intent. Some of the most innovative

267 applications arise from early-wave programs, like Turbo Pascal, Lotus 123,

268 Microsoft Word, and the Mosaic browser. The point is that how you spend your
269 programming days will depend on where you are on the technology wave. If

270 you’re in the late part of the wave, you can plan to spend most of your day

271 steadily writing new functionality. If you’re in the early part of the wave, you
272 can assume that you’ll spend a sizeable portion of your time trying to figure out
273 undocumented features of your programming language, debugging errors that
274 turn out to be defects in the library code, revising code so that it will work with a
275 new release of some vendor’s library, and so on.

276 When you find yourself working in a primitive environment, realize that the

277 programming practices described in this book can help you even more than they
278 can in mature environments. As David Gries pointed out, your programming

279 tools don’t have to determine how you think about programming (1981). Gries
280 makes a distinction between programming in a language vs. programming into a
281 language. Programmers who program “in” a language limit their thoughts to

282 constructs that the language directly support. If the language tools are primitive,
283 the programmer’s thoughts will also be primitive.

284 Programmers who program “into” a language first decide what thoughts they

285 want to express, and then they determine how to express those thoughts using the
286 tools provided by their specific language.

287 In the early days of Visual Basic I was frustrated because I wanted to keep the
288 business logic, the UI, and the database separate in the product I was developing,
289 but there wasn’t any built-in way to do that in VB. I knew that if [wasn’t

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:42 PM

H:\books\CodeC2Ed\Reviews\Web\04-PrerequisitesProgramming.doc

Code Complete

4. Key Construction Decisions Page 10

290 careful, over time some of my VB “forms” would end up containing business
291 logic, some forms would contain database code, and some would contain

292 neither—I would end up never being able to remember which code was located
293 in which place. I had just completed a C++ project that had done a poor job of
294 separating those issues, and I didn’t want to experience déja vu of those

295 headaches in a different language.

296 Consequently, I adopted a design convention that the .frm file (the form file) was
297 allowed only to retrieve data from the database and store data back into the

298 database. It wasn’t allowed to communicate that data directly to other parts of
299 the program. Each form supported an IsFormCompleted() routine, which was
300 used by the calling routine to determine whether the form that had been activated
301 had saved its data or not. ISFormCompleted() was the only public routine that
302 forms were allowed to have. Forms also weren’t allowed to contain any business
303 logic. All other code had to be contained in an associated .bas file, including

304 validity checks for entries in the form.

305 VB did not encourage this kind of approach. It encouraged programmers to put
306 as much code into the .frm file as possible, and it didn’t make it easy for the .frm
307 file to call back into an associated .bas file.

308 This convention was pretty simple, but as I got deeper into my project, I found
309 that it helped me avoid numerous cases in which I would have been writing

310 convoluted code without the convention. I would have been loading forms but
311 keeping them hidden so that I could call the data-validity checking routines

312 inside them, or I would have been copying code from the forms into other

313 locations, and then maintaining parallel code in multiple places. The

314 IsFormCompleted() convention also kept things simple. Because every form

315 worked exactly the same way, I never had to second-guess the semantics of

316 IsFormCompleted()—it meant the same thing every time it was used.

317 VB didn’t support this convention directly, but the use of a simple programming
318 convention—programming into the language—made up for VB’s lack of

319 structure at that time and helped keep the project intellectually manageable.

320 Understanding the distinction between programming in a language and

321 programming into one is critical to understanding this book. Most of the

322 important programming principles depend not on specific languages but on the
323 way you use them. If your language lacks constructs that you want to use or is
324 prone to other kinds of problems, try to compensate for them. Invent your own
325 coding conventions, standards, class libraries, and other augmentations.

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:42 PM

H:\books\CodeC2Ed\Reviews\Web\04-PrerequisitesProgramming.doc

Code Complete 4. Key Construction Decisions Page 11

326 4.4 Selection of Major Construction

327 Practices

328 Part of preparing for construction is deciding which of the many available good
329 practices you’ll emphasize. Some projects use pair programming and test-first
330 development, while others use solo development and formal inspections. Either
331 technique can work well depending on specific circumstances of the project.
332 The following checklist summarizes the specific practices you should

333 consciously decide to include or exclude during construction. Details of the

334 practices are contained throughout the book.

CC2E.COM/0496

335 Checklist: Major Construction Practices
336 Coding
337 U Have you defined coding conventions for names, comments, and formatting?
338 U Have you defined specific coding practices that are implied by the
339 architecture, such as how error conditions will be handled, how security will
340 be addressed, and so on?
341 U Have you identified your location on the technology wave and adjusted your
342 approach to match? If necessary, have you identified how you will program
343 into the language rather than being limited by programming in it?
344 Teamwork
345 O Have you defined an integration procedure, that is, have you defined the
346 specific steps a programmer must go through before checking code into the
347 master sources?
348 O Will programmers program in pairs, or individually, or some combination of
349 the two?

CROSS-REFERENCE For _
350 more details on quality Quality Assurance
351 assurance, sce Chapt'er 20, O Will programmers write test cases for their code before writing the code
352 The Software-Quality itself?

Landscape.”
353 O Will programmers write unit tests for the their code regardless of whether
354 they write them first or last?
355 O Will programmers step through their code in the debugger before they check
356 itin?
357 U Will programmers integration-test their code before they check it in?
358 U Will programmers review or inspect each others’ code?
© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:42 PM

H:\books\CodeC2Ed\Reviews\Web\04-PrerequisitesProgramming.doc

Code Complete 4. Key Construction Decisions Page 12
CROSS-REFERENCE For
359) Tools
more details on tools, see
360 Chapter 30, “Programming U Have you selected a revision control tool?
agy 1001 U Have you selected a language and language version or compiler version?
362 U Have you decided whether to allow use of non-standard language features?
363 U Have you identified and acquired other tools you’ll be using—editor,
364 refactoring tool, debugger, test framework, syntax checker, and so on?
365
366 K ey Points
367 e Every programming language has strengths and weaknesses. Be aware of the
368 specific strengths and weaknesses of the language you’re using.
369 e Establish programming conventions before you begin programming. It’s
370 nearly impossible to change code to match them later.
371 e More construction practices exist than you can use on any single project.
372 Consciously choose the practices that are best suited to your project.
373 ® Your position on the technology wave determines what approaches will be
374 effective—or even possible. Identify where you are on the technology wave,
375 and adjust your plans and expectations accordingly.
© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:42 PM

H:\books\CodeC2Ed\Reviews\Web\04-PrerequisitesProgramming.doc

Code Complete 5. Design in Construction Page 1

: Design in Construction

3 CC2E.COM/0578 Contents

4 5.1 Design Challenges

5 5.2 Key Design Concepts

6 5.3 Design Building Blocks: Heuristics

7 5.4 Design Practices

8 5.5 Comments on Popular Methodologies

9 Related Topics
10 Software architecture: Section 3.5
11 Characteristics of high-quality classes: Chapter 6
12 Characteristics of high-quality routines: Chapter 7
13 Defensive programming: Chapter 8
14 Refactoring: Chapter 24
15 How program size affects construction: Chapter 27
16 SOME PEOPLE MIGHT ARGUE THAT design isn’t really a construction
17 activity, but on small projects, many activities are thought of as construction,
18 often including design. On some larger projects, a formal architecture might
19 address only the system-level issues and much design work might intentionally
20 be left for construction. On other large projects, the design might be intended to
21 be detailed enough for coding to be fairly mechanical, but design is rarely that
22 complete—the programmer usually designs part of the program, officially or
23 otherwise.
24 CROSS-REFERENCE For On small, informal projects, a lot of design is done while the programmer sits at
25 details on the different levels the keyboard. “Design” might be just writing a class interface in pseudocode

of formality required on large before writing the details. It might be drawing diagrams of a few class

and small projects, see

21 Chapter 27, “How Program }]) !
28 Size Affects Construction.” design pattern seems like a better choice. Regardless of how it’s done, small

relationships before coding them. It might be asking another programmer which

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:42 PM
H:\books\CodeC2Ed\Reviews\Web\05-Design-HighLevel.doc

Code Complete 5. Design in Construction Page 2

29 projects benefit from careful design just as larger projects do, and recognizing
30 design as an explicit activity maximizes the benefit you will receive from it.

31 Design is a huge topic, so only a few aspects of it are considered in this chapter.
32 A large part of good class or routine design is determined by the system

33 architecture, so be sure that the architecture prerequisite discussed in Section 3.5
34 has been satisfied. Even more design work is done at the level of individual

35 classes and routines, described in Chapters 6 and 7.

36 If you’re already familiar with software design topics, you might want to read
37 the introduction in the next section, and hit the highlights in the sections about
38 design challenges in Section 5.1 and key heuristics in Section 5.3.

39 5.1 Design Challenges

40 CROSS-REFERENCE The The phrase “software design” means the conception, invention, or contrivance of
41 difference between heuristic a scheme for turning a specification for a computer program into an operational
and deterministic processes is
described in Chapter 2,

43 “Metaphors for a Richer

program. Design is the activity that links requirements to coding and debugging.
A good top-level design provides a structure that can safely contain multiple

44 Understanding of Software lower level designs. Good design is useful on small projects and indispensable
45 Development.” on large projects.
46 Design is also marked by numerous challenges, which are outlined in this
47 section.
48 Design is a Wicked Problem
49 Horst Rittel and Melvin Webber defined a “wicked” problem as one that could
50 be clearly defined only by solving it, or by solving part of it (1973). This
51 paradox implies, essentially, that you have to “solve” the problem once in order
52 to clearly define it and then solve it again to create a solution that works. This
53 process is practically motherhood and apple pie in software development (Peters
54 and Tripp 1976).

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:42 PM

H:\books\CodeC2Ed\Reviews\Web\05-Design-HighLevel.doc

Code Complete

55
56

57
58

59
60

The picture of the
software designer
deriving his design in a
rational, error-free way
from a statement of
requirements is quite
unrealistic. No system has
ever been developed in
that way, and probably
none ever will. Even the
small program
developments shown in
textbooks and papers are
unreal. They have been
revised and polished until
the author has shown us
what he wishes he had
done, not what actually
did happen.

—David Parnas and Paul
Clements

5. Design in Construction Page 3

FO5xx01
Figure 5-1
The Tacoma Narrows bridge—an example of a wicked problem.

In my part of the world, a dramatic example of such a wicked problem was the
design of the original Tacoma Narrows bridge. At the time the bridge was built,

61 the main consideration in designing a bridge was that it be strong enough to
62 support its planned load. In the case of the Tacoma Narrows bridge, wind created
63 an unexpected, side-to-side harmonic ripple. One blustery day in 1940, the ripple
64 grew uncontrollably until the bridge collapsed.
65 This is a good example of a wicked problem because, until the bridge collapsed,
66 its engineers didn’t know that aerodynamics needed to be considered to such an
67 extent. Only by building the bridge (solving the problem) could they learn about
68 the additional consideration in the problem that allowed them to build another
69 bridge that still stands.
70 One of the main differences between programs you develop in school and those
71 you develop as a professional is that the design problems solved by school
72 programs are rarely, if ever, wicked. Programming assignments in school are
73 devised to move you in a beeline from beginning to end. You’d probably want to
74 hog tie a teacher who gave you a programming assignment, then changed the
75 assignment as soon as you finished the design, and then changed it again just as
76 you were about to turn in the completed program. But that very process is an
77 everyday reality in professional programming.

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:42 PM

H:\books\CodeC2Ed\Reviews\Web\05-Design-HighLevel.doc

Code Complete 5. Design in Construction Page 4

78 Design is a Sloppy Process

79 The finished software design should look well organized and clean, but the
80 process used to develop the design isn’t nearly as tidy as the end result.

81 FURTHER READING Fora Design is sloppy because you take many false steps and go down many blind
g2 fuller exploration of this alleys—you make a lot of mistakes. Indeed, making mistakes is the point of

g3 Viewpoint, see “A Rational design—it’s cheaper to make mistakes and correct designs that it would be to

Design Process: How and

84 ” make the same mistakes, recognize them later, and have to correct full-blown
Why to Fake It” (Parnas and o o]

85 Clements 1986). code. Design is sloppy because a good solution is often only subtly different

86 from a poor one.

87 CROSS-REFERENCE For Design is also sloppy because it’s hard to know when your design is “good

gg @ better answer to this enough.” How much detail is enough? How much design should be done with a
question, see “How Much . .

89 formal design notation, and how much should be left to be done at the keyboard?

Design is Enough?” in

90 gooii - When are you done? Since design is open-ended, the most common answer to
ection 5.4 later in this
91 chapter. that question is “When you’re out of time.”
92 Design is About Trade-Offs and Priorities
93 In an ideal world, every system could run instantly, consume zero storage space,
94 use zero network bandwidth, never contain any errors, and cost nothing to build.
95 In the real world, a key part of the designer’s job is to weigh competing design
96 characteristics and strike a balance among those characteristics. If a fast response
97 rate is more important than minimizing development time, a designer will choose
98 one design. If minimizing development time is more important, a good designer
99 will craft a different design.
100 Design Involves Restrictions
101 The point of design is partly to create possibilities and partly to restrict
102 possibilities. If people had infinite time, resources and space to build physical
103 structures, you would see incredible sprawling buildings with one room for each
104 shoe and hundreds of rooms. This is how software is developed. The constraints
105 of limited resources for constructing buildings force simplifications of the
106 solution that ultimately improve the solution. The goal in software design is the
107 same.
108 Design is Non-Deterministic
109 If you send three people away to design the same program, they can easily return
110 with three vastly different designs, each of which could be perfectly acceptable.
111 There might be more than one way to skin a cat, but there are usually dozens of
112 ways to design a computer program.
© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:42 PM

H:\books\CodeC2Ed\Reviews\Web\05-Design-HighLevel.doc

Code Complete

113

114| KEY POINT

115
116
117
118
119

120

121
122
123
124
125

126
127
128
129

130

FURTHER READING Softwa
re isn’t the only kind of
structure that changes over
time. For an interesting
insight into how physical
structures evolve, see How
Buildings Learn (Brand
1995).

5. Design in Construction Page 5

Design is a Heuristic Process

Because design is non-deterministic, design techniques tend to be “heuristics”—
“rules of thumb” or “things to try that sometimes work,” rather than repeatable
processes that are guaranteed to produce predictable results. Design involves
trial and error. A design tool or technique that worked well on one job or on one
aspect of a job might not work as well on the next project. No tool is right for
everything.

Design is Emergent

A tidy way of summarizing these attributes of design is to say that design is
“emergent” (Bain and Shalloway 2004). Designs don’t spring fully formed
directly from someone’s brain. They evolve and improve through design
reviews, informal discussions, experience writing the code itself, and experience
revising the code itself.

Virtually all systems undergo some degree of design changes during their initial
development, and then they typically change to a greater extent as they’re
extended into later versions. The degree to which change is beneficial or
acceptable depends on the nature of the software being built.

5.2 Key Design Concepts

131 Good design depends on understanding a handful of key concepts. This section

132 discusses the role of complexity, desirable characteristics of designs, and levels

133 of design.

134 Software’s Primary Technical Imperative:

135 Managing Complexity

136 To understand the importance of managing complexity, it’s useful to refer to

137 Fred Brook’s landmark paper, “No Silver Bullets” (1987).

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:42 PM

H:\books\CodeC2Ed\Reviews\Web\05-Design-HighLevel.doc

Code Complete

138

139
140
141
142
143
144
145

146

There are two ways of
constructing a software
design: One way is to
make it so simple that
there are obviously no
deficiencies and the other
is to make it so
complicated that there are
no obvious deficiencies.

5. Design in Construction Page 6

Accidental and Essential Difficulties

Brooks argues that software development is made difficult because of two
different classes of problems—the essential and the accidental. In referring to
these two terms, Brooks draws on a philosophical tradition going back to
Aristotle. In philosophy, the essential properties are the properties that a thing
must have in order to be that thing. A car must have an engine, wheels, and
doors to be a car. If it doesn’t have any of those essential properties, then it isn’t
really a car.

Accidental properties are the properties a thing just happens to have, that don’t

147 really bear on whether the thing is really that kind of thing. A car could have a
148 —CAR. Hoare V38, a turbocharged 4-cylinder, or some other kind of engine and be a car

149 regardless of that detail. A car could have two doors or four, it could have skinny
150 wheels or mag wheels. All those details are accidental properties. You could also
151 think of accidental properties as coincidental, discretionary, optional, and

152 happenstance.

153 Brooks observes that the major accidental difficulties in software were addressed
154 long ago. Accidental difficulties related to clumsy language syntaxes were

155 largely eliminated in the evolution from assembly language to third generation
156 languages and have declined in significance incrementally since then. Accidental
157 difficulties related to non-interactive computers were resolved when time-share
158 operating systems replaced batch-mode systems. Integrated programming

159 environments further eliminated inefficiencies in programming work arising

160 from tools that worked poorly together.

161 Brooks argues that progress on software’s remaining essential difficulties is

162 bound to be slower. The reason is that, at its essence, software development

163 consists of working out all the details of a highly intricate, interlocking set of
164 concepts. The essential difficulties arise from the necessity of interfacing with
165 the complex, disorderly real-world; accurately and completely identifying the
166 dependencies and exception cases; designing solutions that can’t be just

167 approximately correct but that must be exactly correct; and so on. Even if we

168 could invent a programming language that used the same terminology as the

169 real-world problem we’re trying to solve, programming would still be difficult
170 because it is so challenging to determine precisely how the real world works. As
171 software addresses ever-larger real-world problems, the interactions among the
172 real-world entities become increasingly intricate, and that in turn increases the
173 essential difficulty of the software solutions.

174 The root of all these essential difficulties is complexity—both accidental and

175 essential.

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:42 PM

H:\books\CodeC2Ed\Reviews\Web\05-Design-HighLevel.doc

Code Complete

176

177 One symptom that you

178 have bogged down in

179 complexity overload is

180 when you find yourself

181 doggedly applying a

182 method that is clearly

183 jrrelevant, at least to any

184 outside observer. It is like
the mechanically inept

185 person whose car breaks

186 jown—so he puts water

187 in the battery and empties
the ashtrays.

—P.J. Plauger
189

190
191
192
193
194
195
196
197

198
199
200
201
202
203
204
205

206 CROSS-REFERENCE For
27 discussion on the way
complexity affects other
programming issues, see
“Software’s Primary

210 Technical Imperative:

211 Managing Complexity” in
212 Section 5.2 and Section 34.1,
213 “Conquer Complexity.”

208
209

5. Design in Construction Page 7

Importance of Managing Complexity

When software-project surveys report causes of project failure, they rarely
identify technical reasons as the primary causes of project failure. Projects fail
most often because of poor requirements, poor planning, or poor management.
But when projects do fail for reasons that are primarily technical, the reason is
often uncontrolled complexity. The software is allowed to grow so complex that
no one really knows what it does. When a project reaches the point at which no
one really understands the impact that code changes in one area will have on
other areas, progress grinds to a halt.

Managing complexity is the most important technical topic in software
development. In my view, it’s so important, that Software’s Primary Technical
Imperative has to be managing complexity.

Complexity is not a new feature of software development. Computing pioneer
Edsger Dijkstra gave pointed out that computing is the only profession in which
a single mind is obliged to span the distance from a bit to a few hundred
megabytes, a ratio of 1 to 10, or nine orders of magnitude (Dijkstra 1989). This
gigantic ratio is staggering. Dijkstra put it this way: “Compared to that number
of semantic levels, the average mathematical theory is almost flat. By evoking
the need for deep conceptual hierarchies, the automatic computer confronts us
with a radically new intellectual challenge that has no precedent in our history.”
Of course software has become even more complex since 1989, and Dijkstra’s
ratio of 1 to 10° could easily be more like 1 to 10" today.

Dijkstra pointed out that no one’s skull is really big enough to contain a modern
computer program (Dijkstra 1972), which means that we as software developers
shouldn’t try to cram whole programs into our skulls at once; we should try to
organize our programs in such a way that we can safely focus on one part of it at
a time. The goal is to minimize the amount of a program you have to think about
at any one time. You might think of this as mental juggling—the more mental
balls the program requires you to keep in the air at once, the more likely you’ll
drop one of the balls, leading to a design or coding error.

At the software-architecture level, the complexity of a problem is reduced by
dividing the system into subsystems. Humans have an easier time
comprehending several simple pieces of information than one complicated piece.
The goal of all software-design techniques is to break a complicated problem
into simple pieces. The more independent the subsystems are, the more you
make it safe to focus on one bit of complexity at a time. Carefully defined
objects separate concerns so that you can focus on one thing at a time. Packages
provide the same benefit at a higher level of aggregation.

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:42 PM
H:\books\CodeC2Ed\Reviews\Web\05-Design-HighLevel.doc

Code Complete 5. Design in Construction Page 8

214 Keeping routines short helps reduce your mental workload. Writing programs in
215 terms of the problem domain rather than in low-level implementation details and
216 working at the highest level of abstraction reduce the load on your brain.

217 The bottom line is that programmers who compensate for inherent human

218 limitations write code that’s easier for themselves and others to understand and
219 that has fewer errors.

220 How to Attack Complexity

221 There are three sources of overly costly, ineffective designs:

222 e A complex solution to a simple problem

223 e A simple, incorrect solution to a complex problem

224 e An inappropriate, complex solution to a complex problem

225 As Dijkstra pointed out, modern software is inherently complex, and no matter
226 how hard you try, you’ll eventually bump into some level of complexity that’s
227 inherent in the real-world problem itself. This suggests a two-prong approach to
228 managing complexity:

229| KEY POINT e Minimize the amount of essential complexity that anyone’s brain has to deal
230 with at any one time.

231 e Keep accidental complexity from needlessly proliferating.

232 Once you understand that all other technical goals in software are secondary to
233 managing complexity, many design considerations become straightforward.

234 Desirable Characteristics of a Design

235 A high-quality design has several general characteristics. If you could achieve all
236 these goals, your design would be considered very good indeed. Some goals

237 contradict other goals, but that’s the challenge of design—creating a good set of
238 trade-offs from competing objectives. Some characteristics of design quality are
239 also characteristics of the program: reliability, performance, and so on. Others
240 are internal characteristics of the design.

241 Here’s a list of internal design characteristics:

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:42 PM

H:\books\CodeC2Ed\Reviews\Web\05-Design-HighLevel.doc

Code Complete 5. Design in Construction Page 9

242 Minimal complexity

243 CROSS-REFERENCE Thes The primary goal of design should be to minimize complexity for all the reasons

244 © characteristics are related to Jegeribed in the last section. Avoid making “clever” designs. Clever designs are
general software-quality usually hard to understand. Instead make “simple” and “easy-to-understand”

attributes. For details on . . .
designs. If your design doesn’t let you safely ignore most other parts of the

general attributes, see Section

247 0.1, “Characteristics of program when you’re immersed in one specific part, the design isn’t doing its
248 Software Quality.” job.

249 Ease of maintenance

250 Ease of maintenance means designing for the maintenance programmer.

251 Continually imagine the questions a maintenance programmer would ask about
252 the code you’re writing. Think of the maintenance programmer as your audience,
253 and then design the system to be self-explanatory.

254 Minimal connectedness

255 Minimal connectedness means designing so that you hold connections among
256 different parts of a program to a minimum. Use the principles of strong cohesion,
257 loose coupling, and information hiding to design classes with as few

258 interconnections as possible. Minimal connectedness minimizes work during

259 integration, testing, and maintenance.

260 Extensibility

261 Extensibility means that you can enhance a system without causing violence to
262 the underlying structure. You can change a piece of a system without affecting
263 other pieces. The most likely changes cause the system the least trauma.

264 Reusability

265 Reusability means designing the system so that you can reuse pieces of it in

266 other systems.

267 High fan-in

268 High fan-in refers to having a high number of classes that use a given class. High
269 fan-in implies that a system has been designed to make good use of utility

270 classes at the lower levels in the system.

271 HARD DATA Low-to-medium fan-out

272 Low-to-medium fan-out means having a given class use a low-to-medium

273 number of other classes. High fan-out (more than about seven) indicates that a
274 class uses a large number of other classes and may therefore be overly complex.
275 Researchers have found that the principle of low fan out is beneficial whether
276 you’re considering the number of routines called from within a routine or from
277 within a class (Card and Glass 1990; Basili, Briand, and Melo 1996).

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:42 PM

H:\books\CodeC2Ed\Reviews\Web\05-Design-HighLevel.doc

Code Complete 5. Design in Construction Page 10

278 Portability

279 Portability means designing the system so that you can easily move it to another
280 environment.

281 Leanness

282 Leanness means designing the system so that it has no extra parts (Wirth 1995,
283 McConnell 1997). Voltaire said that a book is finished not when nothing more
284 can be added but when nothing more can be taken away. In software, this is

285 especially true because extra code has to be developed, reviewed, tested, and

286 considered when the other code is modified. Future versions of the software

287 must remain backward-compatible with the extra code. The fatal question is “It’s
288 easy, so what will we hurt by putting it in?”

289 Stratification

290 Stratified design means trying to keep the levels of decomposition stratified so
291 that you can view the system at any single level and get a consistent view.

292 Design the system so that you can view it at one level without dipping into other
293 levels.

294 CROSS-REFERENCE For If you’re writing a modern system that has to use a lot of older, poorly designed
295 more on working with old code, write a layer of the new system that’s responsible for interfacing with the

systems, see Section 24.6,

296 _ . old code. Design the layer so that it hides the poor quality of the old code,
“Refactoring Strategies.” . . .

297 presenting a consistent set of services to the newer layers. Then have the rest of

298 the system use those classes rather than the old code. The beneficial effects of

299 stratified design in such a case are (1) it compartmentalizes the messiness of the

300 bad code and (2) if you’re ever allowed to jettison the old code, you won’t need

301 to modify any new code except the interface layer.

302 Standard techniques

303 CROSS-REFERENCE An The more a system relies on exotic pieces, the more intimidating it will be for

304 especially valuable kind of someone trying to understand it the first time. Try to give the whole system a

t ization is th f
305 ° ar?dardlza 1on 15 Hhe Uuse 0 familiar feeling by using standardized, common approaches.
design patterns, which are

discussed in “Look for

306 Common Design Patterns” in L evel S Of Des | g n

Section 5.3.
307 Design is needed at several different levels of detail in a software system. Some
308 design techniques apply at all levels, and some apply at only one or two. Figure
309 5-2 illustrates the levels.
© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:42 PM

H:\books\CodeC2Ed\Reviews\Web\05-Design-HighLevel.doc

Code Complete

5. Design in Construction Page 11

Software system @)

Division into

subsystems/packages e @ D

Division into classes
within packages

1
C] —J
Division into data and %

_ e o - —
routines within classes -

Internal routine design @

310

311 FO5xx02

312 Figure 5-2

313 The levels of design in a program. The system (1) is first organized into subsystems
314 (2). The subsystems are further divided into classes (3), and the classes are divided
315 into routines and data (4). The inside of each routine is also designed (5).

316 Level 1: Software System

317 The first level is the entire system. Some programmers jump right from the

318 system level into designing classes, but it’s usually beneficial to think through
319 higher level combinations of classes, such as subsystems or packages.

320 Level 2: Division into Subsystems or Packages

321 The main product of design at this level is the identification of all major

322 subsystems. The subsystems can be big—database, user interface, business logic,
323 command interpreter, report engine, and so on. The major design activity at this
324 level is deciding how to partition the program into major subsystems and

325 defining how each subsystem is allowed to use each other subsystems. Division
326 at this level is typically needed on any project that takes longer than a few

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:42 PM

H:\books\CodeC2Ed\Reviews\Web\05-Design-HighLevel.doc

Code Complete

5. Design in Construction Page 12

327 weeks. Within each subsystem, different methods of design might be used—

328 choosing the approach that best fits each part of the system. In Figure 5-2, design
329 at this level is shown in (2).

330 Of particular importance at this level are the rules about how the various

331 subsystems can communicate. If all subsystems can communicate with all other
332 subsystems, you lose the benefit of separating them at all. Make the subsystem
333 meaningful by restricting communications.

334 Suppose for example that you define a system with six subsystems, like this:

335 Error! Objects cannot be created from editing field codes.

336 FO5xx03

337 Figure 5-3

338 An example of a system with six subsystems.

339 When there are no rules, the second law of thermodynamics will come into play
340 and the entropy of the system will increase. One way in which entropy increases
341 is that, without any restrictions on communications among subsystems,

342 communication will occur in an unrestricted way, like this:

343 Error! Objects cannot be created from editing field codes.

344 FO5xx04

345 Figure 5-4

346 An example of what happens with no restrictions on inter-subsystem

347 communications.

348 As you can see, every subsystem ends up communicating directly with every
349 other subsystem, which raises some important questions:

350 e How many different parts of the system does a developer need to understand
351 at least a little bit to change something in the graphics subsystem?

352 e What happens when you try to use the financial analytics in another system?
353 e What happens when you want to put a new user interface on the system,

354 perhaps a command-line UI for test purposes?

355 e What happens when you want to put data storage on a remote machine?

356 You might think of the lines between subsystems as being hoses with water

357 running through them. If you want to reach in and pull out a subsystem, that

358 subsystem is going to have some hoses attached to it. The more hoses you have
359 to disconnect and reconnect, the more wet you’re going to get. You want to

360 architect your system so that if you pull out a subsystem to use elsewhere you
361 won’t have very many hoses to reconnect and those hoses will reconnect easily.
© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:42 PM

H:\books\CodeC2Ed\Reviews\Web\05-Design-HighLevel.doc

Code Complete

5. Design in Construction Page 13

362 With forethought, all of these issues can be addressed with little extra work.

363 Allow communication between subsystems only on a “need to know” basis—and
364 it had better be a good reason. If in doubt, it’s easier to restrict communication
365 early and relax it later than it is to relax it early and then try to tighten it up later
366 after you’ve coded several hundred inter-subsystem calls.

367 Figure 5-5 shows how a few communication guidelines could change the system
368 depicted in Figure 5-4:

369 Error! Objects cannot be created from editing field codes.

370 FO5xx05

371 Figure 5-5

372 With a few communication rules, you can simplify subsystem interactions

373 significantly.

374 To keep the connections easy to understand and maintain, err on the side of

375 simple inter-subsystem relations. The simplest relationship is to have one

376 subsystem call routines in another. A more involved relationship is to have one
377 subsystem contain classes from another. The most involved relationship is to
378 have classes in one subsystem inherit from classes in another.

379 A good general rule is that a system-level diagram like Figure 5-5 should be an
380 acyclic graph. In other words, a program shouldn’t contain any circular

381 relationships in which Class A uses Class B, Class B uses Class C, and Class C
382 uses Class A.

383 On large programs and families of programs, design at the subsystem level

384 makes a difference. If you believe that your program is small enough to skip

385 subsystem-level design, at least make the decision to skip that level of design a
386 conscious one.

387 Common Subsystems

388 Some kinds of subsystems appear time and again in different systems. Here are
389 some of the usual suspects.

390 Business logic

391 Business logic is the laws, regulations, policies, and procedures that you encode
392 into a computer system. If you’re writing a payroll system, you might encode
393 rules from the IRS about the number of allowable withholdings and the

394 estimated tax rate. Additional rules for a payroll system might come from a

395 union contract specifying overtime rates, vacation and holiday pay, and so on. If
396 you’re writing a program to quote auto insurance rates, rules might come from
397 state regulations on required liability coverages, actuarial rate tables, or

398 underwriting restrictions.

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:42 PM

H:\books\CodeC2Ed\Reviews\Web\05-Design-HighLevel.doc

Code Complete 5. Design in Construction Page 14

399 User interface

400 Create a subsystem to isolate user-interface components so that the user interface

401 can evolve without damaging the rest of the program. In most cases, a user-

402 interface subsystem uses several subordinate subsystems or classes for GUI

403 interface, command line interface, menu operations, window management, help

404 system, and so forth.

405 Database access

406 You can hide the implementation details of accessing a database so that most of

407 the program doesn’t need to worry about the messy details of manipulating low-

408 level structures and can deal with the data in terms of how it’s used at the

409 business-problem level. Subsystems that hide implementation details provide a

410 valuable level of abstraction that reduces a program’s complexity. They

411 centralize database operations in one place and reduce the chance of errors in

412 working with the data. They make it easy to change the database design structure

413 without changing most of the program.

414 System dependencies

415 Package operating-system dependencies into a subsystem for the same reason

416 you package hardware dependencies. If you’re developing a program for

417 Microsoft Windows, for example, why limit yourself to the Windows

418 environment? Isolate the Windows calls in a Windows-interface subsystem. If

419 you later want to move your program to a Macintosh or Linux, all you’ll have to

420 change is the interface subsystem. This functionality can be too extensive to

421 implement the details on your own, but it’s readily available in any of several

422 commercial code libraries.

423 Level 3: Division into Classes

424 FURTHER READING For a Design at this level includes identifying all classes in the system. For example, a

425 good discuSSiO_n of database database-interface subsystem might be further partitioned into data access classes

426 deSign_’ sec Agile Database and persistence framework classes as well as database meta data. Figure 5-2,
Techniques (Ambler 2003).

427 Level 3, shows how one of Level 2’s subsystems might be divided into classes,

428 and it implies that the other three subsystems shown at Level 2 are also

429 decomposed into classes.

430 Details of the ways in which each class interacts with the rest of the system are

431 also specified as the classes are specified. In particular, the class’s interface is

432 defined. Overall, the major design activity at this level is making sure that all the

433 subsystems have been decomposed to a level of detail fine enough that you can

434 implement their parts as individual classes.

435 The division of subsystems into classes is typically needed on any project that

436 takes longer than a few days. If the project is large, the division is clearly distinct

437 from the program partitioning of Level 2. If the project is very small, you might

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:42 PM

H:\books\CodeC2Ed\Reviews\Web\05-Design-HighLevel.doc

Code Complete

438
439

440
a1
442
443
444
445
446
447
448
449
450
451

452

453 CROSS-REFERENCE For

454 details on characteristics of
high-quality classes, see
Chapter 6, “Working

Classes.”
457

458
459
460

461
462
463

464

465 In other words—and this
466 s the rock-solid principle
467 on which the whole of the
468 Corporation’s
469 Galaxywide success is
470 founded—their
471 fundamental design flaws
472 are completely hidden by
their superficial design
flaws.
—Douglas Adams

5. Design in Construction Page 15

move directly from the whole-system view of Level 1 to the classes view of
Level 3.

Classes vs. Objects

A key concept in object-oriented design is the differentiation between objects
and classes. An object is any specific entity that exists in your program at run
time. A class is any abstract entity represented by the program. A class is the
static thing you look at in the program listing. An object is the dynamic thing
with specific values and attributes you see when you run the program. For
example, you could declare a class Person that had attributes of name, age,
gender, and so on. At run time you would have the objects nancy, hank, diane,
tony, and so on—that is, specific instances of the class. If you’re familiar with
database terms, it’s the same as the distinction between “schema” and “instance.”
This book uses the terms informally and generally refers to classes and objects
more or less interchangeably.

Level 4: Division into Routines

Design at this level includes dividing each class into routines. The class interface
defined at Level 3 will define some of the routines. Design at Level 4 will detail
the class’s private routines. When you examine the details of the routines inside
a class, you can see that many routines are simple boxes, but a few are composed
of hierarchically organized routines, which require still more design.

The act of fully defining the class’s routines often results in a better
understanding of the class’s interface, and that causes corresponding changes to
the interface, that is, changes back at Level 3.

This level of decomposition and design is often left up to the individual
programmer, and it is needed on any project that takes more than a few hours. It
doesn’t need to be done formally, but it at least needs to be done mentally.

Level 5: Internal Routine Design

Design at the routine level consists of laying out the detailed functionality of the
individual routines. Internal routine design is typically left to the individual
programmer working on an individual routine. The design consists of activities
such as writing pseudocode, looking up algorithms in reference books, deciding
how to organize the paragraphs of code in a routine, and writing programming-
language code. This level of design is always done, though sometimes it’s done
unconsciously and poorly rather than consciously and well. The diagram in
Figure 5-2 indicates the level at which this occurs in the routine marked with a 5.

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:42 PM
H:\books\CodeC2Ed\Reviews\Web\05-Design-HighLevel.doc

Code Complete

473

474
475
476
477
478
479
480

481
482
483
484
485
486
487

488

489
490
491

492

493

Ask not first what the
system does; ask WHAT it
does it to!

—Bertrand Meyer

CROSS-REFERENCE For
more details on designing

5. Design in Construction Page 16

5.3 Design Building Blocks: Heuristics

Software developers tend to like our answers cut and dried: “Do A, B, and C,
and X, Y, Z will follow every time.” We take pride in learning arcane sets of
steps that produce desired effects, and we become annoyed when instructions
don’t work as advertised. This desire for deterministic behavior is highly
appropriate to detailed computer programming—where that kind of strict
attention to detail makes or breaks a program. But software design is a much
different story.

Because design is non-deterministic, skillful application of an effective set of
heuristics is the core activity in good software design. The following sections
describe a number of heuristics—ways to think about a design that sometime
produce good design insights. You might think of heuristics as the guides for the
trials in “trial and error.” You undoubtedly have run across some of these before.
Consequently, the following sections describe each of the heuristics in terms of
Software’s Primary Technical Imperative: Managing Complexity.

Find Real-World Objects

The first and most popular approach to identifying design alternatives is the “by
the book” object-oriented approach, which focuses on identifying real-world and
synthetic objects.

The steps in designing with objects are

o Identify the objects and their attributes (methods and data).

494 ysing classes, see Chapter 6, e Determine what can be done to each object.

495 Working Classes. e Determine what each object can do to other objects.

496 e Determine the parts of each object that will be visible to other objects—
497 which parts will be public and which will be private.

498 e Define each object’s public interface.

499 These steps aren’t necessarily performed in order, and they’re often repeated.
500 Iteration is important. Each of these steps is summarized below.

501 Identify the objects and their attributes

502 Computer programs are usually based on real-world entities. For example, you
503 could base a time-billing system on real-world employees, clients, time cards,
504 and bills. Figure 5-6 shows an object-oriented view of such a billing system.

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:42 PM

H:\books\CodeC2Ed\Reviews\Web\05-Design-HighLevel.doc

Code Complete

5. Design in Construction Page 17

Client
Employee name
billingAddress

trilfl‘;ne accountBalance

billingRate currentBillingAmount

GetHoursForMonth() EnterPayment()

1 /} billingEmployee _ _ 1 /N clientToBill
clientToBill | 1
* * * \/ bills
Time Card Bill

hours billDate

date * 0.1

projectCode billingRecords BillForClient()
505
506 FO5xx06
507 Figure 5-6
508 This billing system is composed of four major objects. The objects have been
509 simplified for this example.
510 Identifying the objects’ attributes is no more complicated than identifying the
511 objects themselves. Each object has characteristics that are relevant to the
512 computer program. For example, in the time-billing system, an employee object
513 has a name, a title, and a billing rate. A client object has a name, a billing
514 address, and an account balance. A bill object has a billing amount, a client
515 name, a billing date, and so on.
516 Objects in a graphical user interface system would include windows, dialog
517 boxes, buttons, fonts, and drawing tools. Further examination of the problem
518 domain might produce better choices for software objects than a one-to-one
519 mapping to real-world objects, but the real-world objects are a good place to
520 start.
521 Determine what can be done to each object
522 A variety of operations can be performed on each object. In the billing system
523 shown in Figure 5-6, an employee object could have a change in title or billing
524 rate. A client object can have its name or billing address changed, and so on.
525 Determine what each object can do to other objects
526 This step is just what it sounds like. The two generic things objects can do to
527 each other are containment and inheritance. Which objects can contain which
528 other objects? Which objects can inherit from which other objects? In Figure 5-
529 6, a time card can contain an employee and a client. A bill can contain one or
© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:42 PM

H:\books\CodeC2Ed\Reviews\Web\05-Design-HighLevel.doc

Code Complete

530
531
532

533
534
535
536

CROSS-REFERENCE For
details on classes and
information hiding, see “Hide
Secrets (Information
Hiding)” in Section 5.3.

5. Design in Construction Page 18

more time cards. In addition, a bill can indicate that a client has been billed. A
client can enter payments against a bill. A more complicated system would
include additional interactions.

Determine the parts of each object that will be visible to other objects
One of the key design decisions is identifying the parts of an object that should
be made public and those that should be kept private. This decision has to be
made for both data and services.

537 Define each object’s interface

538 Define the formal, syntactic, programming-language-level interfaces to each
539 object. This includes services offered by the class as well as inheritance

540 relationships among classes.

541 When you finish going through the steps to achieve a top-level object-oriented
542 system organization, you’ll iterate in two ways. You’ll iterate on the top-level
543 system organization to get a better organization of classes. You’ll also iterate on
544 each of the classes you’ve defined, driving the design of each class to a more
545 detailed level.

546 Form Consistent Abstractions

547 Abstraction is the ability to engage with a concept while safely ignoring some of
548 its details— handling different details at different levels. Any time you work
549 with an aggregate, you’re working with an abstraction. If you refer to an object
550 as a “house” rather than a combination of glass, wood, and nails, you’re making
551 an abstraction. If you refer to a collection of houses as a “town,” you’re making
552 another abstraction.

553 Base classes are abstractions that allow you to focus on common attributes of a
554 set of derived classes and ignore the details of the specific classes while you’re
555 working on the base class. A good class interface is an abstraction that allows
556 you to focus on the interface without needing to worry about the internal

557 workings of the class. The interface to a well-designed routine provides the same
558 benefit at a lower level of detail, and the interface to a well-designed package or
559 subsystem provides that benefit at a higher level of detail.

560 From a complexity point of view, the principal benefit of abstraction is that it
561 allows you to ignore irrelevant details. Most real-world objects are already

562 abstractions of some kind. A house is an abstraction of windows, doors, siding,
563 wiring, plumbing, insulation, and a particular way of organizing them. A door is
564 in turn an abstraction of a particular arrangement of a rectangular piece of

565 material with hinges and a doorknob. And the doorknob is an abstraction of a
566 particular formation of brass, nickel, iron, or steel.

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:42 PM

H:\books\CodeC2Ed\Reviews\Web\05-Design-HighLevel.doc

Code Complete

567
568
569
570
571

572

573
574

575
576

577
578
579

CROSS-REFERENCE For
more details on abstraction in
class design, see “Good
Abstraction” in Section 6.2.

5. Design in Construction Page 19

People use abstraction continuously. If you had to deal with individual wood
fibers, varnish molecules, steel molecules every time you approached your front
door, you’d hardly make it out of your house in the morning. As Figure 5-7
suggests, abstraction is a big part of how we deal with complexity in the real

world.

FO5xx07
Figure 5-7
Abstraction allows you to take a simpler view of a complex concept.

Software developers sometimes build systems at the wood-fiber, varnish-
molecule, and steel-molecule level. This makes the systems overly complex and
intellectually hard to manage. When programmers fail to provide larger

580 programming abstractions, the system itself sometimes fails to make it out the
581 front door. Good programmers create abstractions at the routine-interface level,
582 class-interface level, package-interface level—in other words, the doorknob

583 level, door level, and house level—and that supports faster and safer

584 programming.

585 Encapsulate Implementation Details

586 Encapsulation picks up where abstraction leaves off. Abstraction says, “You’re
587 allowed to look at an object at a high level of detail.” Encapsulation says,

588 “Furthermore, you aren’t allowed to look at an object at any other level of

589 detail.”

590 To continue the housing-materials analogy: Encapsulation is a way of saying that
591 you can look at the outside of the house, but you can’t get close enough to make
592 out the door’s details. You are allowed to know that there’s a door, and you’re
593 allowed to know whether the door is open or closed, but you’re not allowed to
594 know whether the door is made of wood, fiberglass, steel, or some other

595 material, and you’re certainly not allowed to look at each individual wood fiber.
© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:42 PM

H:\books\CodeC2Ed\Reviews\Web\05-Design-HighLevel.doc

Code Complete

5. Design in Construction Page 20

596 As Figure 5-8 suggests, encapsulation helps to manage complexity by forbidding
597 you to look at the complexity The section titled “Good Encapsulation” in Section
598 6.2 provides more background on encapsulation as it applies to class design.

599

600 FO5xx08

601 Figure 5-8

602 Encapsulation says that, not only are you allowed to take a simpler view of a

603 complex concept, you are not allowed to look at any of the details of the complex

604 concept. What you see is what you get—it’s all you get!

605 Inherit When Inheritance Simplifies the Design

606 In designing a software system, you’ll often find objects that are much like other
607 objects, except for a few differences. In an accounting system, for instance, you
608 might have both full-time and part-time employees. Most of the data associated
609 with both kinds of employees is the same, but some is different. In object-

610 oriented programming, you can define a general type of employee and then

611 define full-time employees as general employees, except for a few differences,
612 and part-time employees also as general employees, except for a few differences.
613 When an operation on an employee doesn’t depend on the type of employee, the
614 operation is handled as if the employee were just a general employee. When the
615 operation depends on whether the employee is full-time or part-time, the

616 operation is handled differently.

617 Defining similarities and differences among such objects is called “inheritance”
618 because the specific part-time and full-time employees inherit characteristics

619 from the general-employee type.

620 The benefit of inheritance is that it works synergistically with the notion of

621 abstraction. Abstraction deals with objects at different levels of detail. Recall the
622 door that was a collection of certain kinds of molecules at one level; a collection
623 of wood fibers at the next; and something that keeps burglars out of your house
© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:42 PM

H:\books\CodeC2Ed\Reviews\Web\05-Design-HighLevel.doc

Code Complete

5. Design in Construction Page 21

624 at the next level. Wood has certain properties (for example, you can cut it with a
625 saw or glue it with wood glue), and two-by-fours or cedar shingles have the

626 general properties of wood as well as some specific properties of their own.

627 Inheritance simplifies programming because you write a general routine to

628 handle anything that depends on a door’s general properties and then write

629 specific routines to handle specific operations on specific kinds of doors. Some
630 operations, such as Open() or Close(), might apply regardless of whether the

631 door is a solid door, interior door, exterior door, screen door, French door, or
632 sliding glass door. The ability of a language to support operations like Open() or
633 Close() without knowing until run time what kind of door you’re dealing with is
634 called “polymorphism.” Object-oriented languages such as C++, Java, and

635 Visual Basic support inheritance and polymorphism.

636 Inheritance is one of object-oriented programming’s most powerful tools. It can
637 provide great benefits when used well and it can do great damage when used
638 naively. For details, see “Inheritance (“is a” relationships)” in Section 6.3.

639 Hide Secrets (Information Hiding)

640 Information hiding is part of the foundation of both structured design and
641 object-oriented design. In structured design, the notion of “black boxes”

642 comes from information hiding. In object-oriented design, it gives rise to the
643 concepts of encapsulation and modularity, and it is associated with the

644 concept of abstraction.

645 Information hiding first came to public attention in a paper published by

646 David Parnas in 1972 called “On the Criteria to Be Used in Decomposing
647 Systems Into Modules.” Information hiding is characterized by the idea of
648 “secrets,” design and implementation decisions that a software developer
649 hides in one place from the rest of a program.

650 In the 20th Anniversary edition of The Mythical Man-Month, Fred Brooks
651 concluded that his criticism of information hiding was one of the few ways in
652 which the first edition of his book was wrong. “Parnas was right, and I was
653 wrong about information hiding,” he proclaimed (Brooks 1995). Barry

654 Boehm reported that information hiding was a powerful technique for

655 eliminating rework, and he pointed out that it was particularly effective in
656 incremental, high-change environments (Boehm 1987).

657 Information hiding is a particularly powerful heuristic for Software’s Primary
658 Technical Imperative because, from its name on, it emphasizes hiding

659 complexity.

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:42 PM

H:\books\CodeC2Ed\Reviews\Web\05-Design-HighLevel.doc

Code Complete

5. Design in Construction Page 22

660 Secrets and the Right to Privacy

661 In information hiding, each class (or package or routine) is characterized by the
662 design or construction decisions that it hides from all other classes. The secret
663 might be an area that’s likely to change, the format of a file, the way a data type
664 is implemented, or an area that needs to be walled off from the rest of the

665 program so that errors in that area cause as little damage as possible. The class’s
666 job is to keep this information hidden and to protect its own right to privacy.
667 Minor changes to a system might affect several routines within a class, but they
668 should not ripple beyond the class interface.

669 One key task in designing a class is deciding which features should be known
670 outside the class and which should remain secret. A class might use 25 routines
671 and expose only 5 of them, using the other 20 internally. A class might use

672 several data types and expose no information about them. This aspect of class
673 design is also known as “visibility” since it has to do with which features of the
674 class are “visible” or “exposed” outside the class.

675 The interface to a class should reveal as little as possible about its inner

676 workings. A class is a lot like an iceberg: Seven-eighths is under water, and you
677 can see only the one-eighth that’s above the surface.

678

679 FO5xx09

680 Figure 5-9

681 A good class interface is like the tip of an iceberg, leaving most of the class

682 unexposed.

683 Designing the class interface is an iterative process just like any other aspect of
684 design. If you don’t get the interface right the first time, try a few more times
685 until it stabilizes. If it doesn’t stabilize, you need to try a different approach.

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:42 PM

H:\books\CodeC2Ed\Reviews\Web\05-Design-HighLevel.doc

Code Complete 5. Design in Construction Page 23

686 An Example of Information Hiding

687 Suppose you have a program in which each object is supposed to have a

688 unique ID stored in a member variable called id. One design approach would
689 be to use integers for the IDs and to store the highest ID assigned so far in a
690 global variable called g_maxld. As each new object is allocated, perhaps in
691 each object’s constructor, you could simply use the statement

692 id = ++g_maxId;

693 That would guarantee a unique id, and it would add the absolute minimum of
694 code in each place an object is created. What could go wrong with that?

695 A lot of things could go wrong. What if you want to reserve ranges of [Ds for
696 special purposes? What if you want to be able to reuse the IDs of objects that
697 have been destroyed? What if you want to add an assertion that fires when
698 you allocate more IDs than the maximum number you’ve anticipated? If you
699 allocated IDs by spreading id = ++g_maxld statements throughout your

700 program, you would have to change code associated with every one of those
701 statements.

702 The way that new IDs are created is a design decision that you should hide. If
703 you use the phrase ++g_maxld throughout your program, you expose the way
704 anew ID is created, which is simply by incrementing g_maxld. If instead you
705 put the statement

706 id = NewId(Q);

707 throughout your program, you hide the information about how new IDs are
708 created. Inside the Newld() routine you might still have just one line of code,
709 return (++g_maxld) or its equivalent, but if you later decide to reserve

710 certain ranges of IDs for special purposes or to reuse old IDs, you could

711 make those changes within the Newld() routine itself—without touching

712 dozens or hundreds of id = Newld() statements. No matter how complicated
713 the revisions inside Newld() might become, they wouldn’t affect any other
714 part of the program.

715 Now suppose you discover you need to change the type of the ID from an

716 integer to a string. If you’ve spread variable declarations like int id

717 throughout your program, your use of the Newld() routine won’t help. You’ll
718 still have to go through your program and make dozens or hundreds of

719 changes.

720 An additional secret to hide is the ID’s type. In C++ you could use a simple
721 typedef to declare your IDs to be of 1dType—a user-defined type that resolves
722 to int—rather than directly declaring them to be of type int. Alternatively, in
723 C++ and other languages you could create a simple 1dType class. Once again,
© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:42 PM

H:\books\CodeC2Ed\Reviews\Web\05-Design-HighLevel.doc

Code Complete

724
725

726/ KEY POINT

727
728

729
730

731
732

733
734

735
736
737

738

739
740
741

742
743
744
745
746
747

748
749
750
751
752

753
754
755
756
757

FURTHER READING Parts
of this section are adapted
from “Designing Software
for Ease of Extension and
Contraction” (Parnas 1979).

CROSS-REFERENCE For
more on accessing global
data through class interfaces,
see “Using Access Routines
Instead of Global Data” in
Section 13.3.

5. Design in Construction Page 24

hiding a design decision makes a huge difference in the amount of code
affected by a change.

Information hiding is useful at all levels of design, from the use of named
constants instead of literals, to creation of data types, to class design, routine
design, and subsystem design.

Two Categories of Secrets

Secrets in information hiding fall into two general camps

e Hiding complexity so that your brain doesn’t have to deal with it unless
you’re specifically concerned with it

e Hiding sources of change so that when change occurs the effects are
localized

Sources of complexity include complicated data types, file structures, boolean
tests, involved algorithms, and so on. A comprehensive list of sources of change
is described later in this chapter.

Barriers to Information Hiding

In a few instances, information hiding is truly impossible, but most of the
barriers to information hiding are mental blocks built up from the habitual use of
other techniques.

Excessive Distribution Of Information

One common barrier to information hiding is an excessive distribution of
information throughout a system. You might have hard-coded the literal 100
throughout a system. Using 100 as a literal decentralizes references to it. It’s
better to hide the information in one place, in a constant MAX_EMPLOYEES
perhaps, whose value is changed in only one place.

Another example of excessive information distribution is interleaving interaction
with human users throughout a system. If the mode of interaction changes—say,
from a GUI interface to a command-line interface—virtually all the code will
have to be modified. It’s better to concentrate user interaction in a single class,
package, or subsystem you can change without affecting the whole system.

Yet another example would be a global data element—perhaps an array of
employee data with 1000 elements maximum that’s accessed throughout a
program. If the program uses the global data directly, information about the data
item’s implementation—such as the fact that it’s an array and has a maximum of
1000 elements—will be spread throughout the program. If the program uses the

758 data only through access routines, only the access routines will know the
759 implementation details.
© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:42 PM

H:\books\CodeC2Ed\Reviews\Web\05-Design-HighLevel.doc

Code Complete

760
761
762
763

764
765

766
767
768
769
770
771

772
773
774
775
776
77
778

779
780
781
782
783

784
785
786
787
788

CROSS-REFERENCE Cod
e-level performance
optimizations are discussed
in Chapter 25, “Code-Tuning
Strategies” and Chapter 26,

5. Design in Construction Page 25

Circular Dependencies

A more subtle barrier to information hiding is circular dependencies, as when a
routine in class A calls a routine in class B, and a routine in class B calls a routine
in class A.

Avoid such dependency loops. They make it hard to test a system because you
can’t test either class A or class B until at least part of the other is ready.

Class Data Mistaken For Global Data

If you’re a conscientious programmer, one of the barriers to effective
information hiding might be thinking of class data as global data and avoiding it
because you want to avoid the problems associated with global data. While the
road to programming hell is paved with global variables, class data presents far
fewer risks.

Global data is generally subject to two problems: (1) Routines operate on global
data without knowing that other routines are operating on it; and (2) routines are
aware that other routines are operating on the global data, but they don’t know
exactly what they’re doing to it. Class data isn’t subject to either of these
problems. Direct access to the data is restricted to a few routines organized into a
single class. The routines are aware that other routines operate on the data, and
they know exactly which other routines they are.

Of course this whole discussion assumes that your system makes use of well-
designed, small classes. If your program is designed to use huge classes that
contain dozens of routines each, the distinction between class data and global
data will begin to blur, and class data will be subject to many of the same
problems as global data.

Perceived Performance Penalties

A final barrier to information hiding can be an attempt to avoid performance
penalties at both the architectural and the coding levels. You don’t need to worry
at either level. At the architectural level, the worry is unnecessary because
architecting a system for information hiding doesn’t conflict with architecting it

789 “Code-Tuning Techniques.” for performance. If you keep both information hiding and performance in mind,

790 you can achieve both objectives.

791 The more common worry is at the coding level. The concern is that accessing

792 data items indirectly incurs run-time performance penalties for additional levels

793 of object instantiations, routine calls and so on. This concern is premature. Until

794 you can measure the system’s performance and pinpoint the bottlenecks, the best

795 way to prepare for code-level performance work is to create a highly modular

796 design. When you detect hot spots later, you can optimize individual classes and

797 routines without affecting the rest of the system.

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:42 PM

H:\books\CodeC2Ed\Reviews\Web\05-Design-HighLevel.doc

Code Complete

798
799| HARD DATA

5. Design in Construction Page 26

Value of Information Hiding

Information hiding is one of the few theoretical techniques that has indisputably

800 proven its value in practice, which has been true for a long time (Boehm 1987a).
801 Large programs that use information hiding were found years ago to be easier to
802 modify—by a factor of 4—than programs that don’t (Korson and Vaishnavi

803 1986). Moreover, information hiding is part of the foundation of both structured
804 design and object-oriented design.

805 Information hiding has unique heuristic power, a unique ability to inspire

806 effective design solutions. Traditional object-oriented design provides the

807 heuristic power of modeling the world in objects, but object thinking wouldn’t
808 help you avoid declaring the ID as an int instead of an 1dType. The object-

809 oriented designer would ask, “Should an ID be treated as an object?”” Depending
810 on the project’s coding standards, a “Yes” answer might mean that the

811 programmer has to create an interface for an Id class; write a constructor,

812 destructor, copy operator, and assignment operator; comment it all; and place it
813 under configuration control. Most programmers would decide, “No, it isn’t

814 worth creating a whole class just for an ID. I’ll just use ints.”

815 Note what just happened. A useful design alternative, that of simply hiding the
816 ID’s data type, was not even considered. If, instead, the designer had asked,

817 “What about the ID should be hidden?”” he might well have decided to hide its
818 type behind a simple type declaration that substitutes 1dType for int. The

819 difference between object-oriented design and information hiding in this

820 example is more subtle than a clash of explicit rules and regulations. Object-

821 oriented design would approve of this design decision as much as information
822 hiding would. Rather, the difference is one of heuristics—thinking about

823 information hiding inspires and promotes design decisions that thinking about
824 objects does not.

825 Information hiding can also be useful in designing a class’s public interface. The
826 gap between theory and practice in class design is wide, and among many class
827 designers the decision about what to put into a class’s public interface amounts
828 to deciding what interface would be the most convenient to use, which usually
829 results in exposing as much of the class as possible. From what I’ve seen, some
830 programmers would rather expose all of a class’s private data than write 10 extra
831 lines of code to keep the class’s secrets intact.

832 Asking, “What does this class need to hide?” cuts to the heart of the interface-
833 design issue. If you can put a function or data into the class’s public interface
834 without compromising its secrets, do. Otherwise, don’t.

835 Asking about what needs to be hidden supports good design decisions at all

836 levels. It promotes the use of named constants instead of literals at the

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:42 PM

H:\books\CodeC2Ed\Reviews\Web\05-Design-HighLevel.doc

Code Complete

837
838
839

840| KEY POINT

841

842

843 FURTHER READING The
844 approach described in this

845 section is adapted from

846

“Designing Software for Ease

of Extension and
847 Contraction” (Parnas 1979).

848
849
850
851
852

853
854
855

856
857
858
859
860

861

862

863 CROSS-REFERENCE One

g64 ©Of the most powerful

865 techniques for anticipating

866

change is to use table driven

methods. For details, see
867 Chapter 18, “Table-Driven
868 Methods.”

869
870
871
872

© 1993-2003 Steven C. McConnell. All Rights Reserved.

5. Design in Construction Page 27

construction level. It helps in creating good routine and parameter names inside
classes. It guides decisions about class and subsystem decompositions and
interconnections at the system level.

Get into the habit of asking, “What should I hide?” You’ll be surprised at how
many difficult design issues dissolve before your eyes.

Identify Areas Likely to Change

A study of great designers found that one attribute they had in common was their
ability to anticipate change (Glass 1995). Accommodating changes is one of the
most challenging aspects of good program design. The goal is to isolate unstable
areas so that the effect of a change will be limited to one class. Here are the steps
you should follow in preparing for such perturbations.

1. Identify items that seem likely to change. If the requirements have been done
well, they include a list of potential changes and the likelihood of each
change. In such a case, identifying the likely changes is easy. If the
requirements don’t cover potential changes, see the discussion that follows
of areas that are likely to change on any project.

2. Separate items that are likely to change. Compartmentalize each volatile
component identified in step 1 into its own class, or into a class with other
volatile components that are likely to change at the same time.

3. Isolate items that seem likely to change. Design the interclass interfaces to
be insensitive to the potential changes. Design the interfaces so that changes
are limited to the inside of the class and the outside remains unaffected. Any
other class using the changed class should be unaware that the change has
occurred. The class’s interface should protect its secrets.

Here are a few areas that are likely to change:

Business logic

Business rules tend to be the source of frequent software changes. Congress
changes the tax structure, a union renegotiates its contract, or an insurance
company changes its rate tables. If you follow the principle of information
hiding, logic based on these rules won’t be strewn throughout your program. The
logic will stay hidden in a single dark corner of the system until it needs to be
changed.

Hardware dependencies

Examples of hardware dependencies include interfaces to screens, printers,
keyboards, mice, disk drives, sound facilities, and communications devices.
Isolate hardware dependencies in their own subsystem or class. Isolating such

1/13/2004 2:42 PM

H:\books\CodeC2Ed\Reviews\Web\05-Design-HighLevel.doc

Code Complete 5. Design in Construction Page 28

873 dependencies helps when you move the program to a new hardware

874 environment. It also helps initially when you’re developing a program for

875 volatile hardware. You can write software that simulates interaction with specific
876 hardware, have the hardware-interface subsystem use the simulator as long as the
877 hardware is unstable or unavailable, and then unplug the hardware-interface

878 subsystem from the simulator and plug the subsystem into the hardware when
879 it’s ready to use.

880 Input and output

881 At a slightly higher level of design than raw hardware interfaces, input/output is
882 a volatile area. If your application creates its own data files, the file format will
883 probably change as your application becomes more sophisticated. User-level

884 input and output formats will also change—the positioning of fields on the page,
885 the number of fields on each page, the sequence of fields, and so on. In general,
886 it’s a good idea to examine all external interfaces for possible changes.

887 Nonstandard language features

888 Most language implementations contain handy, nonstandard extensions. Using
889 the extensions is a double-edged sword because they might not be available in a
890 different environment, whether the different environment is different hardware, a
891 different vendor’s implementation of the language, or a new version of the

892 language from the same vendor.

893 If you use nonstandard extensions to your programming language, hide those

894 extensions in a class of their own so that you can replace them with your own
895 code when you move to a different environment. Likewise, if you use library

896 routines that aren’t available in all environments, hide the actual library routines
897 behind an interface that works just as well in another environment.

898 Difficult design and construction areas

899 It’s a good idea to hide difficult design and construction areas because they

900 might be done poorly and you might need to do them again. Compartmentalize
901 them and minimize the impact their bad design or construction might have on the
902 rest of the system.

903 Status variables

904 Status variables indicate the state of a program and tend to be changed more

905 frequently than most other data. In a typical scenario, you might originally define
906 an error-status variable as a boolean variable and decide later that it would be

907 better implemented as an enumerated type with the values ErrorType_None,

908 ErrorType_Warning, and ErrorType_Fatal.

909 You can add at least two levels of flexibility and readability to your use of status
910 variables:

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:42 PM

H:\books\CodeC2Ed\Reviews\Web\05-Design-HighLevel.doc

Code Complete

911
912
913
914

915
916
917
918
919
920

921
922
923
924
925

926

927
928
929
930
931
932
933
934

935
936
937
938
939
940
941
942

943

944
945
946
947
948

© 1993-2003 Steven C. McConnell. All Rights Reserved.

CROSS-REFERENCE This
section’s approach to
anticipating change does not
involve designing ahead or
coding ahead. For a
discussion of those practices,
see “A program contains
code that seems like it might
be needed someday” in
Section 24.3.

FURTHER READING This
discussion draws on the
approach described in “On
the design and development
of program families” (Parnas
1976).

5. Design in Construction Page 29

e Don’t use a boolean variable as a status variable. Use an enumerated type
instead. It’s common to add a new state to a status variable, and adding a
new type to an enumerated type requires a mere recompilation rather than a
major revision of every line of code that checks the variable.

e Use access routines rather than checking the variable directly. By checking
the access routine rather than the variable, you allow for the possibility of
more sophisticated state detection. For example, if you wanted to check
combinations of an error-state variable and a current-function-state variable,
it would be easy to do if the test were hidden in a routine and hard to do if it
were a complicated test hard-coded throughout the program.

Data-size constraints

When you declare an array of size 15, you’re exposing information to the world
that the world doesn’t need to see. Defend your right to privacy! Information
hiding isn’t always as complicated as a whole class. Sometimes it’s as simple as
using a named constant such as MAX_EMPLOYEES to hide a 15.

Anticipating Different Degrees of Change

When thinking about potential changes to a system, design the system so that the
effect or scope of the change is proportional to the chance that the change will
occur. If a change is likely, make sure that the system can accommodate it easily.
Only extremely unlikely changes should be allowed to have drastic
consequences for more than one class in a system. Good designers also factor in
the cost of anticipating change. If a change is not terribly likely, but easy to plan
for, you should think harder about anticipating it than if it isn’t very likely and is
difficult to plan for.

A good technique for identifying areas likely to change is first to identify the
minimal subset of the program that might be of use to the user. The subset makes
up the core of the system and is unlikely to change. Next, define minimal
increments to the system. They can be so small that they seem trivial. These
areas of potential improvement constitute potential changes to the system; design
these areas using the principles of information hiding. By identifying the core
first, you can see which components are really add-ons and then extrapolate and
hide improvements from there.

Keep Coupling Loose

Coupling describes how tightly a class or routine is related to other classes or
routines. The goal is to create classes and routines with small, direct, visible, and
flexible relations to other classes and routines (loose coupling). The concept of
coupling applies equally to classes and routines, so for the rest of this discussion
I’11 use the word “module” to refer to both classes and routines.

1/13/2004 2:42 PM

H:\books\CodeC2Ed\Reviews\Web\05-Design-HighLevel.doc

Code Complete

5. Design in Construction Page 30

949 Good coupling between modules is loose enough that one module can easily be
950 used by other modules. Model railroad cars are coupled by opposing hooks that
951 latch when pushed together. Connecting two cars is easy—you just push the cars
952 together. Imagine how much more difficult it would be if you had to screw

953 things together, or connect a set of wires, or if you could connect only certain
954 kinds of cars to certain other kinds of cars. The coupling of model railroad cars
955 works because it’s as simple as possible. In software, make the connections

956 among modules as simple as possible.

957 Try to create modules that depend little on other modules. Make them detached,
958 as business associates are, rather than attached, as Siamese twins are. A routine
959 like sin() is loosely coupled because everything it needs to know is passed in to it
960 with one value representing an angle in degrees. A routine such as InitVars(var
961 1, var2, var3, ..., varN) is more tightly coupled because, with all the variables it
962 must pass, the calling module practically knows what is happening inside

963 InitVars(). Two classes that depend on each other’s use of the same global data
964 are even more tightly coupled.

965 Coupling Criteria

966 Here are several criteria to use in evaluating coupling between modules:

967 Size

968 Size refers to the number of connections between modules. With coupling, small
969 is beautiful because it’s less work to connect other modules to a module that has
970 a smaller interface. A routine that takes one parameter is more loosely coupled to
971 modules that call it than a routine that takes six parameters. A class with four
972 well-defined public methods is more loosely coupled to modules that use it than
973 a class that exposes 37 public methods.

974 Visibility

975 Visibility refers to the prominence of the connection between two modules.

976 Programming is not like being in the CIA; you don’t get credit for being sneaky.
977 It’s more like advertising; you get lots of credit for making your connections as
978 blatant as possible. Passing data in a parameter list is making an obvious

979 connection and is therefore good. Modifying global data so that another module
980 can use that data is a sneaky connection and is therefore bad. Documenting the
981 global-data connection makes it more obvious and is slightly better.

982 Flexibility

983 Flexibility refers to how easily you can change the connections between

984 modules. Ideally, you want something more like the USB connector on your

985 computer than like bare wire and a soldering gun. Flexibility is partly a product
986 of the other coupling characteristics, but it’s a little different too. Suppose you
987 have a routine that looks up an employee’s vacation benefit, given a hiring date
© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:42 PM

H:\books\CodeC2Ed\Reviews\Web\05-Design-HighLevel.doc

Code Complete 5. Design in Construction Page 31

988 and a job classification. Name the routine LookupVacationBenefit(). Suppose in
989 another module you have an employee object that contains the hiring date and
990 the job classification, among other things, and that module passes the object to
991 LookupVacationBenefit().

992 From the point of view of the other criteria, the two modules would look pretty

993 loosely coupled. The employee connection between the two modules is visible,

994 and there’s only one connection. Now suppose that you need to use the

995 LookupVacationBenefit() module from a third module that doesn’t have an

996 employee object but that does have a hiring date and a job classification.

997 Suddenly LookupVacationBenefit() looks less friendly, unwilling to associate

998 with the new module.

999 For the third module to use LookupVacationBenefit(), it has to know about the
1000 Employee class. It could dummy up an employee object with only two fields, but
1001 that would require internal knowledge of LookupVacationBenefit(), namely that
1002 those are the only fields it uses. Such a solution would be a kludge, and an ugly
1003 one. The second option would be to modify LookupVacationBenefit() so that it
1004 would take hiring date and job classification instead of employee. In either case,
1005 the original module turns out to be a lot less flexible than it seemed to be at first.
1006 The happy ending to the story is that an unfriendly module can make friends if
1007 it’s willing to be flexible—in this case, by changing to take hiring date and job
1008 classification specifically instead of employee.

1009 In short, the more easily other modules can call a module, the more loosely

1010 coupled it is, and that’s good because it’s more flexible and maintainable. In
1011 creating a system structure, break up the program along the lines of minimal
1012 interconnectedness. If a program were a piece of wood, you would try to split it
1013 with the grain.

1014 Kinds of Coupling

1015 Here are the most common kinds of coupling you’ll encounter.

1016 Simple-data-parameter coupling

1017 Two modules are simple-data-parameter coupled if all the data passed between
1018 them are of primitive data types and all the data is passed through parameter
1019 lists. This kind of coupling is normal and acceptable.

1020 Simple-object coupling

1021 A module is simple-object coupled to an object if it instantiates that object. This
1022 kind of coupling is fine.

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:42 PM

H:\books\CodeC2Ed\Reviews\Web\05-Design-HighLevel.doc

Code Complete

5. Design in Construction Page 32

1023 Object-parameter coupling

1024 Two modules are object-parameter coupled to each other if Objectl requires
1025 Object?2 to pass it an Object3. This kind of coupling is tighter than Objectl

1026 requiring Object? to pass it only primitive data types.

1027 Semantic coupling

1028 The most insidious kind of coupling occurs when one module makes use, not of
1029 some syntactic element of another module, but of some semantic knowledge of
1030 another module’s inner workings. Here are some examples:

1031 e Modulel passes a control flag to Module2 that tells Module2 what to do.
1032 This approach requires Modulel to make assumptions about the internal
1033 workings of Module2, namely, what Module2 is going to with the control
1034 flag. If Module2 defines a specific data type for the control flag (enumerated
1035 type or object), this usage is probably OK.

1036 e Module2 uses global data after the global data has been modified by

1037 Modulel. This approach requires Module2 to assume that Modulel has

1038 modified the data in the ways Module2 needs it to be modified, and that
1039 Modulel has been called at the right time.

1040 e Modulel’s interface states that its Modulel.Initialize() routine should be
1041 called before its Modulel.Routinel() is called. Module2 knows that

1042 Modulel.Routinel() calls Modulel.Initialize() anyway, so it just instantiates
1043 Modulel and calls Modulel.Routinel() without calling Modulel.Initialize()
1044 first.

1045 e Modulel passes Object to Module2. Because Modulel knows that Module2
1046 uses only three of Object’s seven methods, it only initializes Object only
1047 partially—with the specific data those three methods need.

1048 e Modulel passes BaseObject to Module2. Because Module2 knows that

1049 Module? is really passing it DerivedObject, it casts BaseObject to

1050 DerivedObject and calls methods that are specific to DerivedObject.

1051 e DerivedClass modifies BaseClass’s protected member data directly.

1052 Semantic coupling is dangerous because changing code in the used module can
1053 break code in the using module in ways that are completely undetectable by the
1054 compiler. When code like this breaks, it breaks in subtle ways that seem

1055 unrelated to the change made in the used module, which turns debugging into a
1056 Sisyphean task.

1057 The point of loose coupling is that an effective module provides an additional
1058 level of abstraction—once you write it, you can take it for granted. It reduces
1059 overall program complexity and allows you to focus on one thing at a time. If
1060 using a module requires you to focus on more than one thing at once—

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:42 PM

H:\books\CodeC2Ed\Reviews\Web\05-Design-HighLevel.doc

Code Complete

1061
1062
1063

1064| KEY POINT

1065

CC2E.COM/0585

5. Design in Construction Page 33

knowledge of its internal workings, modification to global data, uncertain
functionality—the abstractive power is lost and the module’s ability to help
manage complexity is reduced or eliminated.

Classes and routines are first and foremost intellectual tools for reducing
complexity. If they’re not making your job simpler, they’re not doing their jobs.

1066 Look for Common Design Patterns

1067 Design patterns provide the cores of ready-made solutions that can be used to

1068 solve many of software’s most common problems. Some software problems

1069 require solutions that are derived from first principles. But most problems are

1070 similar to past problems, and those can be solved using similar solutions, or

1071 patterns. Common patterns include Adapter, Bridge, Decorator, Facade, Factory

1072 Method, Observor, Singleton, Strategy, and Template Method.

1073 Patterns provide several benefits that fully-custom design doesn’t:

1074 Patterns reduce complexity by providing ready-made abstractions

1075 If you say, “Let’s use a Factory Method to create instances of derived classes,”

1076 other programmers on your project will understand that you are suggesting a

1077 fairly rich set of interrelationships and programming protocols, all of which are

1078 invoked when you refer to the design pattern of Factory Method.” You don’t

1079 have to spell out every line of code for other programmers to understand your

1080 proposal.

1081 Patterns reduce errors by institutionalizing details of common solutions

1082 Software design problems contain nuances that emerge fully only after the

1083 problem has been solved once or twice (or three times, or four times, or ...).

1084 Because patterns represent standardized ways of solving common problems, they

1085 embody the wisdom accumulated from years of attempting to solve those

1086 problems, and they also embody the corrections to the false attempts that people

1087 have made in solving those problems.

1088 Using a design pattern is thus conceptually similar to using library code instead

1089 of writing your own. Sure, everybody has written a custom Quicksort a few

1090 times, but what are the odds that your custom version will be fully correct on the
" The Factory Method is a pattern that allows you to instantiate any class derived
from a specific base class without needing to keep track of the individual derived
classes anywhere but the Factory Method. For a good discussion of the Factory
Method pattern, see “Replace Constructor with Factory Method” in Refactoring
(Fowler 1999).

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:42 PM

H:\books\CodeC2Ed\Reviews\Web\05-Design-HighLevel.doc

Code Complete

5. Design in Construction Page 34

1091 first try? Similarly, numerous design problems are similar enough to past

1092 problems that you’re better off using a prebuilt design solution than creating a
1093 novel solution.

1094 Patterns provide heuristic value by suggesting design alternatives

1095 A designer who’s familiar with common patterns can easily run through a list of
1096 patterns and ask, “Which of these patterns fits my design problem?”” Cycling
1097 through a set of familiar alternatives is immeasurably easier than creating a

1098 custom design solution out of whole cloth. And the code arising from a familiar
1099 pattern will also be easier for readers of the code to understand than fully custom
1100 code would be.

1101 Patterns streamline communication by moving the design dialog to a

1102 higher level

1103 In addition to their complexity-management benefit, design patterns can

1104 accelerate design discussions by allowing designers to think and discuss at a
1105 larger level of granularity. If you say, “I can’t decide whether I should use a
1106 Creator or a Factory Method in this situation,” you’ve communicated a great
1107 deal with just a few words—as long as you and your listener are both familiar
1108 with those patterns. Imagine how much longer it would take you to dive into the
1109 details of the code for a Creator pattern and the code for a Factory Method

1110 pattern, and then compare and contrast the two approaches.

1111 If you’re not already familiar with design patterns, Table 5-1 summarizes some
1112 of the most common patterns to stimulate your interest.

1113 Table 5-1. Popular Design Patterns

Pattern Description

Abstract Supports creation of sets of related objects by specifying the kind of

Factory set but not the kinds of each specific object.

Adapter Converts the interface of a class to a different interface

Bridge Builds an interface and an implementation in such a way that either
can vary without the other varying.

Composite Consists of an object that contains additional objects of its own type
so that client code can interact with the top-level object and not
concern itself with all the detailed objects.

Decorator Attaches responsibilities to an object dynamically, without creating
specific subclasses for each possible configuration of responsibilities.

Facade Provides a consistent interface to code that wouldn’t otherwise offer a
consistent interface.

Factory Instantiates classes derived from a specific base class without

Method needing to keep track of the individual derived classes anywhere but
the Factory Method.

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:42 PM

H:\books\CodeC2Ed\Reviews\Web\05-Design-HighLevel.doc

Code Complete 5. Design in Construction Page 35

Iterator A server object that provides access to each element in a set
sequentially.

Observor Keeps multiple objects in synch with each other by making a third
object responsible for notifying the set of objects about changes to
members of the set.

Singleton Provides global access to a class that has one and only one instance.
Strategy Defines a set of algorithms or behaviors that are dynamically
interchangeable with each other.
Template Defines the structure of an algorithm but leaves some of the detailed
Method implementation to subclasses.
1114 If you haven’t seen design patterns before, your reaction to the descriptions in
1115 Table 5-1 might be “Sure, I already know most of these ideas.” That reaction is a
1116 big part of why design patterns are valuable. Patterns are familiar to most
1117 experienced programmers, and assigning recognizable names to them supports
1118 efficient and effective communication about them.
1119 The only real potential trap with patterns is feature-itis: using a pattern because
1120 of a desire to try out a pattern rather than because the pattern is an appropriate
1121 design solution.
1122 Overall, design patterns are a powerful tool for managing complexity. You can
1123 read more detailed descriptions in any of the good books that are listed at the end
1124 of this chapter.
1125 Other Heuristics
1126 The preceding sections describe the major software design heuristics. There are a
1127 few other heuristics that might not be useful quite as often but are still worth
1128 mentioning.
1129 Aim for Strong Cohesion
1130 Cohesion arose from structured design and is usually discussed in the same
1131 context as coupling. Cohesion refers to how closely all the routines in a class or
1132 all the code in a routine support a central purpose. Classes that contain strongly
1133 related functionality are described as having strong cohesion, and the heuristic
1134 goal is to make cohesion as strong as possible. Cohesion is a useful tool for
1135 managing complexity because the more code in a class supports a central
1136 purpose, the more easily your brain can remember everything the code does.
1137 Thinking about cohesion at the routine level has been a useful heuristic for
1138 decades and is still useful today. At the class level, the heuristic of cohesion has
1139 largely been subsumed by the broader heuristic of well-defined abstractions,
1140 which was discussed earlier in this chapter and in Chapter 6, “Working Classes.”
© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:42 PM

H:\books\CodeC2Ed\Reviews\Web\05-Design-HighLevel.doc

Code Complete 5. Design in Construction Page 36

1141 (Abstractions are useful at the routine level, too, but on a more even footing with
1142 cohesion at that level of detail.

1143 Build Hierarchies

1144 A hierarchy is a tiered information structure in which the most general or

1145 abstract representation of concepts are contained at the top of the hierarchy, with
1146 increasingly detailed, specialized representations at the hierarchy’s lower levels.
1147 In software, hierarchies are found most commonly in class hierarchies, but as
1148 Level 4 in Figure 5-2 illustrated, programmers work with routine calling

1149 hierarchies as well.

1150 Hierarchies have been an important tool for managing complex sets of

1151 information for at least 2000 years. Aristotle used a hierarchy to organize the
1152 animal kingdom. Humans frequently use outlines to organize complex

1153 information (like this book). Researchers have found that people generally find
1154 hierarchies to be a natural way to organize complex information. When they
1155 draw a complex object such as a house, they draw it hierarchically. First they
1156 draw the outline of the house, then the windows and doors, and then more details
1157 They don’t draw the house brick by brick, shingle by shingle, or nail by nail
1158 (Simon 1996).

1159 Hierarchies are a useful tool for achieving Software’s Primary Technical

1160 Imperative because they allow you to focus on only the level of detail you’re
1161 currently concerned with. The details don’t go away completely; they’re simply
1162 pushed to another level so that you can think about them when you want to

1163 rather than thinking about all the details all of the time.

1164 Formalize Class Contracts

1165 At a more detailed level, thinking of each class’s interface as a contract with the
1166 rest of the program can yield good insights. Typically, the contract is something
1167 like “If you promise to provide data x, y, and z and you promise they’ll have
1168 characteristics a, b, and ¢, I promise to perform operations 1, 2, and 3 within
1169 constraints 8, 9, and 10.” The promises the clients of the class make to the class
1170 are typically called “preconditions,” and the promises the object makes to its
1171 clients are called the “postconditions.”

1172 Contracts are useful for managing complexity because, at least in theory, the
1173 object can safely ignore any non-contractual behavior. In practice, this issue is
1174 much more difficult. For more on contracts, see “Use assertions to document
1175 preconditions and postconditions” in Section 8.2.

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:42 PM

H:\books\CodeC2Ed\Reviews\Web\05-Design-HighLevel.doc

Code Complete

1176

1177
1178
1179
1180

1181

1182
1183
1184
1185
1186
1187

1188

1189
1190
1191
1192
1193
1194
1195
1196

1197
1198
1199

1200

1201
1202
1203

CROSS-REFERENCE For
more on binding time, see
Section 10.6, “Binding
Time.”

5. Design in Construction Page 37

Assign Responsibilities

Another heuristic is to think through how responsibilities should be assigned to
objects. Asking what each object should be responsible for is similar to asking
what information it should hide, but I think it can produce broader answers,
which gives the heuristic unique value.

Design for Test

A thought process that can yield interesting design insights is to ask what the
system will look like if you design it to facilitate testing. Do you need to separate
the user interface from the rest of the code so that you can exercise it
independently? Do you need to organize each subsystem so it minimizes
dependencies on other subsystems? Designing for test tends to result in more
formalized class interfaces, which is generally beneficial.

Avoid Failure

Civil engineering professor Henry Petroski wrote an interesting book called
Design Paradigms: Case Histories of Error and Judgment in Engineering
(Petroski 1994) that chronicles the history of failures in bridge design. Petroski
argues that many spectacular bridge failures have occurred because of focusing
on previous successes and not adequately considering possible failure modes. He
concludes that failures like the Tacoma Narrows bridge could have been avoided
if the designers had carefully considered the ways the bridge might fail and not
just copied the attributes of other successful designs.

The high-profile security lapses of various well-known systems the past few
years make it hard to disagree that we should find ways to apply Petroski’s
design-failure insights to software.

Choose Binding Time Consciously

Binding time refers to the time a specific value is bound to a variable. Code that
binds early tends to be simpler, but it also tends to be less flexible. Sometimes
you can get a good design insight from asking, What if I bound these values

1204 earlier? or What if I bound these values later? What if I initialized this table right
1205 here in the code, or what if I read the value of this variable from the user at run

1206 time?

1207 Make Central Points of Control

1208 P.J. Plauger says his major concern is “The Principle of One Right Place—there

1209 should be One Right Place to look for any nontrivial piece of code, and One

1210 Right Place to make a likely maintenance change” (Plauger 1993). Control can

1211 be centralized in classes, routines, preprocessor macros, #include files—even a

1212 named constant is an example of a central point of control.

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:42 PM

H:\books\CodeC2Ed\Reviews\Web\05-Design-HighLevel.doc

Code Complete

1213
1214

1215 When in doubt, use brute
1216 force.

1217 —Butler Lampson

1218

5. Design in Construction Page 38

The reduced-complexity benefit is that the fewer places you have to look for
something, the easier and safer it will be to change.

Consider Using Brute Force

One powerful heuristic tool is brute force. Don’t underestimate it. A brute-force
solution that works is better than an elegant solution that doesn’t work. It can
take a long time to get an elegant solution to work. In describing the history of

1219 searching algorithms, for example, Donald Knuth pointed out that even though
1220 the first description of a binary search algorithm was published in 1946, it took
1221 another 16 years for someone to publish an algorithm that correctly searched lists
1222 of all sizes (Knuth 1998).

1223 Draw a Diagram

1224 Diagrams are another powerful heuristic tool. A picture is worth 1000 words—
1225 kind of. You actually want to leave out most of the 1000 words because one
1226 point of using a picture is that a picture can represent the problem at a higher
1227 level of abstraction. Sometimes you want to deal with the problem in detail, but
1228 other times you want to be able to work with more generally.

1229 Keep Your Design Modular

1230 Modularity’s goal is to make each routine or class like a “black box”: You know
1231 what goes in, and you know what comes out, but you don’t know what happens
1232 inside. A black box has such a simple interface and such well-defined

1233 functionality that for any specific input you can accurately predict the

1234 corresponding output. If your routines are like black boxes, they’re perfectly
1235 modular, perform well-defined functions, and have simple interfaces.

1236 The concept of modularity is related to information hiding, encapsulation, and
1237 other design heuristics. But sometimes thinking about how to assemble a system
1238 from a set of black boxes