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Praise for Domain-Driven Design
"This book belongs on the shelf of every thoughtful software
developer."

�Kent Beck

"Eric Evans has written a fantastic book on how you can make
the design of your software match your mental model of the
problem domain you are addressing.

"His book is very compatible with XP. It is not about drawing
pictures of a domain; it is about how you think of it, the
language you use to talk about it, and how you organize your
software to reflect your improving understanding of it. Eric
thinks that learning about your problem domain is as likely to
happen at the end of your project as at the beginning, and so
refactoring is a big part of his technique.

"The book is a fun read. Eric has lots of interesting stories,
and he has a way with words. I see this book as essential
reading for software developers�it is a future classic."

�Ralph Johnson, author of Design Patterns

"If you don't think you are getting value from your investment
in object-oriented programming, this book will tell you what
you've forgotten to do."

�Ward Cunningham

"What Eric has managed to capture is a part of the design
process that experienced object designers have always used,
but that we have been singularly unsuccessful as a group in
conveying to the rest of the industry. We've given away bits



and pieces of this knowledge . . . but we've never organized
and systematized the principles of building domain logic. This
book is important."

�Kyle Brown, author of Enterprise Java Programming with
IBM WebSphere

"Eric Evans convincingly argues for the importance of domain
modeling as the central focus of development and provides a
solid framework and set of techniques for accomplishing it.
This is timeless wisdom, and will hold up long after the
methodologies dujour have gone out of fashion."

�Dave Collins, author of Designing Object-Oriented User
Interfaces

"Eric weaves real-world experience modeling�and
building�business applications into a practical, useful book.
Written from the perspective of a trusted practitioner, Eric's
descriptions of ubiquitous language, the benefits of sharing
models with users, object life-cycle management, logical and
physical application structuring, and the process and results of
deep refactoring are major contributions to our field."

�Luke Hohmann, author of Beyond Software Architecture



Foreword
There are many things that make software development complex.
But the heart of this complexity is the essential intricacy of the
problem domain itself. If you're trying to add automation to
complicated human enterprise, then your software cannot dodge this
complexity�all it can do is control it.

The key to controlling complexity is a good domain model, a model
that goes beyond a surface vision of a domain by introducing an
underlying structure, which gives the software developers the
leverage they need. A good domain model can be incredibly
valuable, but it's not something that's easy to make. Few people can
do it well, and it's very hard to teach.

Eric Evans is one of those few who can create domain models well. I
discovered this by working with him�one of those wonderful times
when you find a client who's more skilled than you are. Our
collaboration was short but enormous fun. Since then we've stayed
in touch, and I've watched this book gestate slowly.

It's been well worth the wait.

This book has evolved into one that satisfies a huge ambition: To
describe and build a vocabulary about the very art of domain
modeling. To provide a frame of reference through which we can
explain this activity as well as teach this hard-to-learn skill. It's a
book that's given me many new ideas as it has taken shape, and I'd
be astonished if even old hands at conceptual modeling don't get a
raft of new ideas from reading this book.

Eric also cements many of the things that we've learned over the
years. First, in domain modeling, you shouldn't separate the
concepts from the implementation. An effective domain modeler can
not only use a whiteboard with an accountant, but also write Java
with a programmer. Partly this is true because you cannot build a



useful conceptual model without considering implementation issues.
But the primary reason why concepts and implementation belong
together is this: The greatest value of a domain model is that it
provides a ubiquitous language that ties domain experts and
technologists together.

Another lesson you'll learn from this book is that domain models
aren't first modeled and then implemented. Like many people, I've
come to reject the phased thinking of "design, then build." But the
lesson of Eric's experience is that the really powerful domain models
evolve over time, and even the most experienced modelers find that
they gain their best ideas after the initial releases of a system.

I think, and hope, that this will be an enormously influential book.
One that will add structure and cohesion to a very slippery field while
it teaches a lot of people how to use a valuable tool. Domain models
can have big consequences in controlling software development�in
whatever language or environment they are implemented.

One final yet important thought. One of things I most respect about
this book is that Eric is not afraid to talk about the times when he
hasn't been successful. Most authors like to maintain an air of
disinterested omnipotence. Eric makes it clear that like most of us,
he's tasted both success and disappointment. The important thing is
that he can learn from both�and more important for us is that he can
pass on his lessons.

Martin Fowler
 April 2003



Preface
Leading software designers have recognized domain modeling and
design as critical topics for at least 20 years, yet surprisingly little has
been written about what needs to be done or how to do it. Although it
has never been formulated clearly, a philosophy has emerged as an
undercurrent in the object community, a philosophy I call domain-
driven design.

I have spent the past decade developing complex systems in several
business and technical domains. In my work, I have tried best
practices in design and development process as they have emerged
from the leaders in object-oriented development. Some of my
projects were very successful; a few failed. A feature common to the
successes was a rich domain model that evolved through iterations
of design and became part of the fabric of the project.

This book provides a framework for making design decisions and a
technical vocabulary for discussing domain design. It is a synthesis
of widely accepted best practices along with my own insights and
experiences. Software development teams facing complex domains
can use this framework to approach domain-driven design
systematically.



Contrasting Three Projects

Three projects stand out in my memory as vivid examples of how
dramatically domain design practice can affect development results.
Although all three projects delivered useful software, only one
achieved its ambitious objectives and produced complex software
that continued to evolve to meet the ongoing needs of the
organization.

I watched one project get out of the gate fast, by delivering a useful,
simple Web-based trading system. Developers were flying by the
seat of their pants, but this didn't hinder them because simple
software can be written with little attention to design. As a result of
this initial success, expectations for future development were sky-
high. That is when I was asked to work on the second version. When
I took a close look, I saw that they lacked a domain model, or even a
common language on the project, and were saddled with an
unstructured design. The project leaders did not agree with my
assessment, and I declined the job. A year later, the team found
itself bogged down and unable to deliver a second version. Although
their use of technology was not exemplary, it was the business logic
that over-came them. Their first release had ossified prematurely into
a high-maintenance legacy.

Lifting this ceiling on complexity calls for a more serious approach to
the design of domain logic. Early in my career, I was fortunate to end
up on a project that did emphasize domain design. This project, in a
domain at least as complex as the first one, also started with a
modest initial success, delivering a simple application for institutional
traders. But in this case, the initial delivery was followed up with
successive accelerations of development. Each iteration opened
exciting new options for integrating and elaborating the functionality
of the previous release. The team was able to respond to the needs
of the traders with flexibility and expanding capability. This upward
trajectory was directly attributable to an incisive domain model,



repeatedly refined and expressed in code. As the team gained new
insight into the domain, the model deepened. The quality of
communication improved not only among developers but also
between developers and domain experts, and the design�far from
imposing an ever-heavier maintenance burden�became easier to
modify and extend.

Unfortunately, projects don't arrive at such a virtuous cycle just by
taking models seriously. One project from my past started with lofty
aspirations to build a global enterprise system based on a domain
model, but after years of disappointment, it lowered its sights and
settled into conventionality. The team had good tools and a good
understanding of the business, and it gave careful attention to
modeling. But a poorly chosen separation of developer roles
disconnected modeling from implementation, so that the design did
not reflect the deep analysis that was going on. In any case, the
design of detailed business objects was not rigorous enough to
support combining them in elaborate applications. Repeated iteration
produced no improvement in the code, due to uneven skill levels
among developers, who had no awareness of the informal body of
style and technique for creating model-based objects that also
function as practical, running software. As months rolled by,
development work became mired in complexity and the team lost its
cohesive vision of the system. After years of effort, the project did
produce modest, useful software, but the team had given up its early
ambitions along with the model focus.



The Challenge of Complexity

Many things can put a project off course: bureaucracy, unclear
objectives, and lack of resources, to name a few. But it is the
approach to design that largely determines how complex software
can become. When complexity gets out of hand, developers can no
longer understand the software well enough to change or extend it
easily and safely. On the other hand, a good design can create
opportunities to exploit those complex features.

Some design factors are technological. A great deal of effort has
gone into the design of networks, databases, and other technical
dimensions of software. Many books have been written about how to
solve these problems. Legions of developers have cultivated their
skills and followed each technical advancement.

Yet the most significant complexity of many applications is not
technical. It is in the domain itself, the activity or business of the
user. When this domain complexity is not handled in the design, it
won't matter that the infrastructural technology is well conceived. A
successful design must systematically deal with this central aspect of
the software.

The premise of this book is twofold:

1. For most software projects, the primary focus should be on
the domain and domain logic.

Complex domain designs should be based on a model.

Domain-driven design is both a way of thinking and a set of priorities,
aimed at accelerating software projects that have to deal with
complicated domains. To accomplish that goal, this book presents an
extensive set of design practices, techniques, and principles.





Design Versus Development Process

Design books. Process books. They seldom even reference each
other. Each topic is complex in its own right. This is a design book,
but I believe that design and process are inextricable. Design
concepts must be implemented successfully or else they will dry up
into academic discussion.

When people learn design techniques, they feel excited by the
possibilities. Then the messy realities of a real project descend on
them. They can't fit the new design ideas with the technology they
must use. Or they don't know when to let go of a particular design
aspect in the interest of time and when to dig in their heels and find a
clean solution. Developers can and do talk with each other abstractly
about the application of design principles, but it is more natural to
talk about how real things get done. So, although this is a design
book, I'm going to barge right across that artificial boundary into
process when I need to. This will help put design principles in
context.

This book is not tied to a particular methodology, but it is oriented
toward the new family of "Agile development processes."
Specifically, it assumes that a couple of practices are in place on the
project. These two practices are prerequisites for applying the
approach in this book.

1. Development is iterative. Iterative development has been
advocated and practiced for decades, and it is a
cornerstone of Agile development methods. There are
many good discussions in the literature of Agile
development and Extreme Programming (or XP), among
them, Surviving Object-Oriented Projects (Cockburn 1998)
and Extreme Programming Explained (Beck 1999).



Developers and domain experts have a close relationship. Domain-
driven design crunches a huge amount of knowledge into a model
that reflects deep insight into the domain and a focus on the key
concepts. This is a collaboration between those who know the
domain and those who know how to build software. Because
development is iterative, this collaboration must continue throughout
the project's life.

Extreme Programming, conceived by Kent Beck, Ward Cunningham,
and others (see Extreme Programming Explained [Beck 2000]), is
the most prominent of the Agile processes and the one I have
worked with most. Throughout this book, to make explanations
concrete, I will use XP as the basis for discussion of the interaction
of design and process. The principles illustrated are easily adapted
to other Agile processes.

In recent years there has been a rebellion against elaborate
development methodologies that burden projects with useless, static
documents and obsessive upfront planning and design. Instead, the
Agile processes, such as XP, emphasize the ability to cope with
change and uncertainty.

Extreme Programming recognizes the importance of design
decisions, but it strongly resists upfront design. Instead, it puts an
admirable effort into communication and improving the project's
ability to change course rapidly. With that ability to react, developers
can use the "simplest thing that could work" at any stage of a project
and then continuously refactor, making many small design
improvements, ultimately arriving at a design that fits the customer's
true needs.

This minimalism has been a muchneeded antidote to some of the
excesses of design enthusiasts. Projects have been bogged down
by cumbersome documents that provided little value. They have
suffered from "analysis paralysis," with team members so afraid of
an imperfect design that they made no progress at all. Something
had to change.



Unfortunately, some of these process ideas can be misinter-preted.
Each person has a different definition of "simplest." Continuous
refactoring is a series of small redesigns; developers without solid
design principles will produce a code base that is hard to understand
or change�the opposite of agility. And although fear of unanticipated
requirements often leads to overengineering, the attempt to avoid
overengineering can develop into another fear: a fear of doing any
deep design thinking at all.

In fact, XP works best for developers with a sharp design sense. The
XP process assumes that you can improve a design by refactoring,
and that you will do this often and rapidly. But past design choices
make refactoring itself either easier or harder. The XP process
attempts to increase team communication, but model and design
choices clarify or confuse communication.

This book intertwines design and development practice and
illustrates how domain-driven design and Agile development
reinforce each other. A sophisticated approach to domain modeling
within the context of an Agile development process will accelerate
development. The interrelationship of process with domain
development makes this approach more practical than any treatment
of "pure" design in a vacuum.



The Structure of This Book

The book is divided into four major sections:

Part I: Putting the Domain Model to Work presents the basic
goals of domain-driven development; these goals motivate the
practices in later sections. Because there are so many
approaches to software development, Part I defines terms and
gives an overview of the implications of using the domain
model to drive communication and design.

Part II: The Building Blocks of a Model-Driven Design
condenses a core of best practices in object-oriented domain
modeling into a set of basic building blocks. This section
focuses on bridging the gap between models and practical,
running software. Sharing these standard patterns brings
order to the design. Team members more easily understand
each other's work. Using standard patterns also contributes
terminology to a common language, which all team members
can use to discuss model and design decisions.

But the main point of this section is to focus on the kinds of
decisions that keep the model and implementation aligned
with each other, each reinforcing the other's effectiveness.
This alignment requires attention to the detail of individual
elements. Careful crafting at this small scale gives developers
a steady foundation from which to apply the modeling
approaches of Parts III and IV.

Part III: Refactoring Toward Deeper Insight goes beyond the
building blocks to the challenge of assembling them into
practical models that provide the payoff. Rather than jumping
directly into esoteric design principles, this section
emphasizes the discovery process. Valuable models do not
emerge immediately; they require a deep understanding of the



domain. That understanding comes from diving in,
implementing an initial design based on a probably naive
model, and then transforming it again and again. Each time
the team gains insight, the model is transformed to reveal that
richer knowledge, and the code is refactored to reflect the
deeper model and make its potential available to the
application. Then, once in a while, this onion peeling leads to
an opportunity to break through to a much deeper model,
attended by a rush of profound design changes.

Exploration is inherently openended, but it does not have to be
random. Part III delves into modeling principles that can guide
choices along the way, and techniques that help direct the
search.

Part IV: Strategic Design deals with situations that arise in
complex systems, larger organizations, and interactions with
external systems and legacy systems. This section explores a
triad of principles that apply to the system as a whole: context,
distillation, and large-scale structure. Strategic design
decisions are made by teams, or even among teams.
Strategic design enables the goals of Part I to be realized on a
larger scale, for a big system or an application that fits into a
sprawling, enterprise-wide network.

Throughout the book, discussions are illustrated not with over-
simplified, "toy" problems, but with realistic examples adapted from
actual projects.

Much of the book is written as a set of "patterns." Readers should be
able to understand the material without concern about this device,
but those who are interested in the style and format of the patterns
may want to read the appendix.

Supplemental materials can be found at
http://domaindrivendesign.org, including additional example code
and community discussion.

http://domaindrivendesign.org/default.htm




Who Should Read This Book

This book is written primarily for developers of object-oriented
software. Most members of a software project team can benefit from
some parts of the book. It will make the most sense to people who
are currently involved with a project, trying to do some of these
things as they go through, and to people who already have deep
experience with such projects.

Some knowledge of object-oriented modeling is necessary to benefit
from this book. The examples include UML diagrams and Java code,
so the ability to read those languages at a basic level is important,
but it is unnecessary to have mastered the details of either.
Knowledge of Extreme Programming will add perspective to the
discussions of development process, but the material should be
understandable to those without background knowledge.

For intermediate software developers�readers who already know
something of object-oriented design and may have read one or two
software design books�this book will fill in gaps and provide
perspective on how object modeling fits into real life on a software
project. The book will help intermediate developers learn to apply
sophisticated modeling and design skills to practical problems.

Advanced or expert software developers will be interested in the
book's comprehensive framework for dealing with the domain. This
systematic approach to design will help technical leaders guide their
teams down this path. Also, the coherent terminology used through-
out the book will help advanced developers communicate with their
peers.

This book is a narrative, and it can be read from beginning to end, or
from the beginning of any chapter. Readers of various backgrounds
may wish to take different paths through the book, but I do
recommend that all readers start with the introduction to Part I, as
well as Chapter 1. Beyond that, the core is probably Chapters 2, 3,



9, and 14. A skimmer who already has some grasp of a topic should
be able to pick up the main points by reading headings and bold text.
A very advanced reader may want to skim Parts I and II and will
probably be most interested in Parts III and IV.

In addition to this core readership, analysts and relatively technical
project managers will also benefit from reading the book. Analysts
can draw on the connection between model and design to make
more effective contributions in the context of an Agile project.
Analysts may also use some of the principles of strategic design to
better focus and organize their work.

Project managers should be interested in the emphasis on making a
team more effective and more focused on designing software
meaningful to business experts and users. And because strategic
design decisions are interrelated with team organization and work
styles, these design decisions necessarily involve the leadership of
the project and have a major impact on the project's trajectory.



A Domain-Driven Team

Although an individual developer who understands domain-driven
design will gain valuable design techniques and perspective, the
biggest gains come when a team joins together to apply a domain-
driven design approach and to move the domain model to the
project's center of discourse. By doing so, the team members will
share a language that enriches their communication and keeps it
connected to the software. They will produce a lucid implementation
in step with a model, giving leverage to application development.
They will share a map of how the design work of different teams
relates, and they will systematically focus attention on the features
that are most distinctive and valuable to the organization.

Domain-driven design is a difficult technical challenge that can pay
off big, opening opportunities just when most software projects begin
to ossify into legacy.
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Part I: Putting the Domain Model to
Work

This eighteenth-century Chinese map represents the whole
world. In the center and taking up most of the space is China,
surrounded by perfunctory representations of other countries.
This was a model of the world appropriate to that society,
which had intentionally turned inward. The worldview that the
map represents must not have been helpful in dealing with
foreigners. Certainly it would not serve modern China at all.
Maps are models, and every model represents some aspect of
reality or an idea that is of interest. A model is a simplification.
It is an interpretation of reality that abstracts the aspects
relevant to solving the problem at hand and ignores
extraneous detail.



Every software program relates to some activity or interest of
its user. That subject area to which the user applies the
program is the domain of the software. Some domains involve
the physical world: The domain of an airline-booking program
involves real people getting on real aircraft. Some domains
are intangible: The domain of an accounting program is
money and finance. Software domains usually have little to do
with computers, though there are exceptions: The domain of a
source-code control system is software development itself.

To create software that is valuably involved in users' activities,
a development team must bring to bear a body of knowledge
related to those activities. The breadth of knowledge required
can be daunting. The volume and complexity of information
can be overwhelming. Models are tools for grappling with this
overload. A model is a selectively simplified and consciously
structured form of knowledge. An appropriate model makes
sense of information and focuses it on a problem.

A domain model is not a particular diagram; it is the idea that
the diagram is intended to convey. It is not just the knowledge
in a domain expert's head; it is a rigorously organized and
selective abstraction of that knowledge. A diagram can
represent and communicate a model, as can carefully written
code, as can an English sentence.

Domain modeling is not a matter of making as "realistic" a
model as possible. Even in a domain of tangible real-world
things, our model is an artificial creation. Nor is it just the
construction of a software mechanism that gives the
necessary results. It is more like moviemaking, loosely
representing reality to a particular purpose. Even a
documentary film does not show unedited real life. Just as a
moviemaker selects aspects of experience and presents them
in an idiosyncratic way to tell a story or make a point, a
domain modeler chooses a particular model for its utility.



The Utility of a Model in Domain-Driven
Design

In domain-driven design, three basic uses determine the
choice of a model.

1. The model and the heart of the design shape each
other. It is the intimate link between the model and
the implementation that makes the model relevant
and ensures that the analysis that went into it applies
to the final product, a running program. This binding
of model and implementation also helps during
maintenance and continuing development, because
the code can be interpreted based on understanding
the model. (See Chapter 3.)

The model is the backbone of a language used by all team
members. Because of the binding of model and
implementation, developers can talk about the program in this
language. They can communicate with domain experts without
translation. And because the language is based on the model,
our natural linguistic abilities can be turned to refining the
model itself. (See Chapter 2.)

The model is distilled knowledge. The model is the team's
agreed-upon way of structuring domain knowledge and
distinguishing the elements of most interest. A model captures
how we choose to think about the domain as we select terms,
break down concepts, and relate them. The shared language
allows developers and domain experts to collaborate
effectively as they wrestle information into this form. The
binding of model and implementation makes experience with



early versions of the software applicable as feed-back into the
modeling process. (See Chapter 1.)

The next three chapters set out to examine the meaning and
value of each of these contributions in turn, and the ways they
are intertwined. Using a model in these ways can support the
development of software with rich functionality that would
otherwise take a massive investment of ad hoc development.

The Heart of Software

The heart of software is its ability to solve domain-related
problems for its user. All other features, vital though they may
be, support this basic purpose. When the domain is complex,
this is a difficult task, calling for the concentrated effort of
talented and skilled people. Developers have to steep
themselves in the domain to build up knowledge of the
business. They must hone their modeling skills and master
domain design.

Yet these are not the priorities on most software projects. Most
talented developers do not have much interest in learning
about the specific domain in which they are working, much
less making a major commitment to expand their domain-
modeling skills. Technical people enjoy quantifiable problems
that exercise their technical skills. Domain work is messy and
demands a lot of complicated new knowledge that doesn't
seem to add to a computer scientist's capabilities.

Instead, the technical talent goes to work on elaborate frame-
works, trying to solve domain problems with technology.
Learning about and modeling the domain is left to others.
Complexity in the heart of software has to be tackled head-on.
To do otherwise is to risk irrelevance.



In a TV talk show interview, comedian John Cleese told a
story of an event during the filming of Monty Python and the
Holy Grail. They had been shooting a particular scene over
and over, but somehow it wasn't funny. Finally, he took a break
and consulted with fellow comedian Michael Palin (the other
actor in the scene), and they came up with a slight variation.
They shot one more take, and it turned out funny, so they
called it a day.

The next morning, Cleese was looking at the rough cut the film
editor had put together of the previous day's work. Coming to
the scene they had struggled with, Cleese found that it wasn't
funny; one of the earlier takes had been used.

He asked the film editor why he hadn't used the last take, as
directed. "Couldn't use it. Someone walked in-shot," the editor
replied. Cleese watched the scene again, and then again. Still
he could see nothing wrong. Finally, the editor stopped the film
and pointed out a coat sleeve that was visible for a moment at
the edge of the picture.

The film editor was focused on the precise execution of his
own specialty. He was concerned that other film editors who
saw the movie would judge his work based on its technical
perfection. In the process, the heart of the scene had been
lost ("The Late Late Show with Craig Kilborn," CBS,
September 2001).

Fortunately, the funny scene was restored by a director who
understood comedy. In just the same way, leaders within a
team who understand the centrality of the domain can put their
software project back on course when development of a
model that reflects deep understanding gets lost in the shuffle.

This book will show that domain development holds
opportunities to cultivate very sophisticated design skills. The
messiness of most software domains is actually an interesting
technical challenge. In fact, in many scientific disciplines,



"complexity" is one of the most exciting current topics, as
researchers attempt to tackle the messiness of the real world.
A software developer has that same prospect when facing a
complicated domain that has never been formalized. Creating
a lucid model that cuts through that complexity is exciting.

There are systematic ways of thinking that developers can
employ to search for insight and produce effective models.
There are design techniques that can bring order to a
sprawling software application. Cultivation of these skills
makes a developer much more valuable, even in an initially
unfamiliar domain.



Chapter One. Crunching Knowledge
A few years ago, I set out to design a specialized software tool for
printed-circuit board (PCB) design. One catch: I didn't know anything
about electronic hardware. I had access to some PCB designers, of
course, but they typically got my head spinning in three minutes.
How was I going to understand enough to write this software? I
certainly wasn't going to become an electrical engineer before the
delivery deadline!

We tried having the PCB designers tell me exactly what the software
should do. Bad idea. They were great circuit designers, but their
software ideas usually involved reading in an ASCII file, sorting it,
writing it back out with some annotation, and producing a report. This
was clearly not going to lead to the leap forward in productivity that
they were looking for.

The first few meetings were discouraging, but there was a glimmer of
hope in the reports they asked for. They always involved "nets" and
various details about them. A net, in this domain, is essentially a wire
conductor that can connect any number of components on a PCB
and carry an electrical signal to everything it is connected to. We had
the first element of the domain model.

 

Figure 1.1.

 



I started drawing diagrams for them as we discussed the things they
wanted the software to do. I used an informal variant of object
interaction diagrams to walk through scenarios.

 

Figure 1.2.

 
PCB Expert 1: The components wouldn't have to be chips.

Developer (Me): So I should just call them "components"?

Expert 1: We call them "component instances." There could be
many of the same component.

Expert 2: The "net" box looks just like a component instance.

Expert 1: He's not using our notation. Everything is a box for them, I
guess.

Developer: Sorry to say, yes. I guess I'd better explain this notation
a little more.

They constantly corrected me, and as they did I started to learn. We
ironed out collisions and ambiguities in their terminology and



differences between their technical opinions, and they learned. They
began to explain things more precisely and consistently, and we
started to develop a model together.

Expert 1: It isn't enough to say a signal arrives at a ref-des, we have
to know the pin.

Developer: Ref-des?

Expert 2: Same thing as a component instance. Ref-des is what it's
called in a particular tool we use.

Expert 1: Anyhow, a net connects a particular pin of one instance to
a particular pin of another.

Developer: Are you saying that a pin belongs to only one
component instance and connects to only one net?

Expert 1: Yes, that's right.

Expert 2: Also, every net has a topology, an arrangement that
determines the way the elements of the net connect.

Developer: OK, how about this?

 

Figure 1.3.



 
To focus our exploration, we limited ourselves, for a while, to
studying one particular feature. A "probe simulation" would trace the
propagation of a signal to detect likely sites of certain kinds of
problems in the design.

Developer: I understand how the signal gets carried by the Net to all
the Pins attached, but how does it go any further than that? Does
the Topology have something to do with it?

Expert 2: No. The component pushes the signal through.

Developer: We certainly can't model the internal behavior of a chip.
That's way too complicated.

Expert 2: We don't have to. We can use a simplification. Just a list of
pushes through the component from certain Pins to certain others.

Developer: Something like this?

[With considerable trial-and-error, together we sketched out a
scenario.]

 

Figure 1.4.



 
Developer: But what exactly do you need to know from this
computation?

Expert 2: We'd be looking for long signal delays�say, any signal
path that was more than two or three hops. It's a rule of thumb. If the
path is too long, the signal may not arrive during the clock cycle.

Developer: More than three hops.... So we need to calculate the
path lengths. And what counts as a hop?

Expert 2: Each time the signal goes over a Net, that's one hop.

Developer: So we could pass the number of hops along, and a Net
could increment it, like this.

 

Figure 1.5.

 
Developer: The only part that isn't clear to me is where the "pushes"
come from. Do we store that data for every Component Instance?

Expert 2: The pushes would be the same for all the instances of a
component.



Developer: So the type of component determines the pushes.
They'll be the same for every instance?

 

Figure 1.6.

 
Expert 2: I'm not sure exactly what some of this means, but I would
imagine storing push-throughs for each component would look
something like that.

Developer: Sorry, I got a little too detailed there. I was just thinking it
through. . . . So, now, where does the Topology come into it?

Expert 1: That's not used for the probe simulation.

Developer: Then I'm going to drop it out for now, OK? We can bring
it back when we get to those features.

And so it went (with much more stumbling than is shown here).
Brainstorming and refining; questioning and explaining. The model
developed along with my understanding of the domain and their



understanding of how the model would play into the solution. A class
diagram representing that early model looks something like this.

 

Figure 1.7.

 
After a couple more part-time days of this, I felt I understood enough
to attempt some code. I wrote a very simple prototype, driven by an
automated test framework. I avoided all infrastructure. There was no
persistence, and no user interface (UI). This allowed me to
concentrate on the behavior. I was able to demonstrate a simple
probe simulation in just a few more days. Although it used dummy
data and wrote raw text to the console, it was nonetheless doing the
actual computation of path lengths using Java objects. Those Java
objects reflected a model shared by the domain experts and myself.

The concreteness of this prototype made clearer to the domain
experts what the model meant and how it related to the functioning
software. From that point, our model discussions became more
interactive, as they could see how I incorporated my newly acquired
knowledge into the model and then into the software. And they had
concrete feedback from the prototype to evaluate their own thoughts.



Embedded in that model, which naturally became much more
complicated than the one shown here, was knowledge about the
domain of PCB relevant to the problems we were solving. It
consolidated many synonyms and slight variations in descriptions. It
excluded hundreds of facts that the engineers understood but that
were not directly relevant, such as the actual digital features of the
components. A software specialist like me could look at the diagrams
and in minutes start to get a grip on what the software was about. He
or she would have a framework to organize new information and
learn faster, to make better guesses about what was important and
what was not, and to communicate better with the PCB engineers.

As the engineers described new features they needed, I made them
walk me through scenarios of how the objects interacted. When the
model objects couldn't carry us through an important scenario, we
brainstormed new ones or changed old ones, crunching their
knowledge. We refined the model; the code coevolved. A few
months later the PCB engineers had a rich tool that exceeded their
expectations.



Ingredients of Effective Modeling

Certain things we did led to the success I just described.

1. Binding the model and the implementation. That crude
prototype forged the essential link early, and it was
maintained through all subsequent iterations.

Cultivating a language based on the model. At first, the engineers
had to explain elementary PCB issues to me, and I had to explain
what a class diagram meant. But as the project proceeded, any of us
could take terms straight out of the model, organize them into
sentences consistent with the structure of the model, and be un-
ambiguously understood without translation.

Developing a knowledge-rich model. The objects had behavior and
enforced rules. The model wasn't just a data schema; it was integral
to solving a complex problem. It captured knowledge of various
kinds.

Distilling the model. Important concepts were added to the model as
it became more complete, but equally important, concepts were
dropped when they didn't prove useful or central. When an
unneeded concept was tied to one that was needed, a new model
was found that distinguished the essential concept so that the other
could be dropped.



Brainstorming and experimenting. The language, combined with
sketches and a brainstorming attitude, turned our discussions into
laboratories of the model, in which hundreds of experimental
variations could be exercised, tried, and judged. As the team went
through scenarios, the spoken expressions themselves provided a
quick viability test of a proposed model, as the ear could quickly
detect either the clarity and ease or the awkwardness of expression.

It is the creativity of brainstorming and massive experimentation,
leveraged through a model-based language and disciplined by the
feedback loop through implementation, that makes it possible to find
a knowledge-rich model and distill it. This kind of knowledge
crunching turns the knowledge of the team into valuable models.



Knowledge Crunching

Financial analysts crunch numbers. They sift through reams of
detailed figures, combining and recombining them looking for the
underlying meaning, searching for a simple presentation that brings
out what is really important�an understanding that can be the basis
of a financial decision.

Effective domain modelers are knowledge crunchers. They take a
torrent of information and probe for the relevant trickle. They try one
organizing idea after another, searching for the simple view that
makes sense of the mass. Many models are tried and rejected or
transformed. Success comes in an emerging set of abstract
concepts that makes sense of all the detail. This distillation is a
rigorous expression of the particular knowledge that has been found
most relevant.

Knowledge crunching is not a solitary activity. A team of developers
and domain experts collaborate, typically led by developers.
Together they draw in information and crunch it into a useful form.
The raw material comes from the minds of domain experts, from
users of existing systems, from the prior experience of the technical
team with a related legacy system or another project in the same
domain. It comes in the form of documents written for the project or
used in the business, and lots and lots of talk. Early versions or
prototypes feed experience back into the team and change
interpretations.

In the old waterfall method, the business experts talk to the analysts,
and analysts digest and abstract and pass the result along to the
programmers, who code the software. This approach fails because it
completely lacks feedback. The analysts have full responsibility for
creating the model, based only on input from the business experts.
They have no opportunity to learn from the programmers or gain
experience with early versions of software. Knowledge trickles in one
direction, but does not accumulate.



Other projects use an iterative process, but they fail to build up
knowledge because they don't abstract. Developers get the experts
to describe a desired feature and then they go build it. They show
the experts the result and ask what to do next. If the programmers
practice refactoring, they can keep the software clean enough to
continue extending it, but if programmers are not interested in the
domain, they learn only what the application should do, not the
principles behind it. Useful software can be built that way, but the
project will never arrive at a point where powerful new features
unfold as corollaries to older features.

Good programmers will naturally start to abstract and develop a
model that can do more work. But when this happens only in a
technical setting, without collaboration with domain experts, the
concepts are naive. That shallowness of knowledge produces
software that does a basic job but lacks a deep connection to the
domain expert's way of thinking.

The interaction between team members changes as all members
crunch the model together. The constant refinement of the domain
model forces the developers to learn the important principles of the
business they are assisting, rather than to produce functions
mechanically. The domain experts often refine their own
understanding by being forced to distill what they know to essentials,
and they come to understand the conceptual rigor that software
projects require.

All this makes the team members more competent knowledge
crunchers. They winnow out the extraneous. They recast the model
into an ever more useful form. Because analysts and programmers
are feeding into it, it is cleanly organized and abstracted, so it can
provide leverage for the implementation. Because the domain
experts are feeding into it, the model reflects deep knowledge of the
business. The abstractions are true business principles.

As the model improves, it becomes a tool for organizing the
information that continues to flow through the project. The model
focuses requirements analysis. It intimately interacts with



programming and design. And in a virtuous cycle, it deepens team
members' in-sight into the domain, letting them see more clearly and
leading to further refinement of the model. These models are never
perfect; they evolve. They must be practical and useful in making
sense of the domain. They must be rigorous enough to make the
application simple to implement and understand.



Continuous Learning

When we set out to write software, we never know enough.
Knowledge on the project is fragmented, scattered among many
people and documents, and it's mixed with other information so that
we don't even know which bits of knowledge we really need.
Domains that seem less technically daunting can be deceiving: we
don't realize how much we don't know. This ignorance leads us to
make false assumptions.

Meanwhile, all projects leak knowledge. People who have learned
something move on. Reorganization scatters the team, and the
knowledge is fragmented again. Crucial subsystems are out-sourced
in such a way that code is delivered but knowledge isn't. And with
typical design approaches, the code and documents don't express
this hard-earned knowledge in a usable form, so when the oral
tradition is interrupted for any reason, the knowledge is lost.

Highly productive teams grow their knowledge consciously,
practicing continuous learning (Kerievsky 2003). For developers, this
means improving technical knowledge, along with general domain-
modeling skills (such as those in this book). But it also includes
serious learning about the specific domain they are working in.

These self-educated team members form a stable core of people to
focus on the development tasks that involve the most critical areas.
(For more on this, see Chapter 15.) The accumulated knowledge in
the minds of this core team makes them more effective knowledge
crunchers.

At this point, stop and ask yourself a question. Did you learn
something about the PCB design process? Although this example
has been a superficial treatment of that domain, there should be
some learning when a domain model is discussed. I learned an
enormous amount. I did not learn how to be a PCB engineer. That
was not the goal. I learned to talk to PCB experts, understand the



major concepts relevant to the application, and sanity-check what we
were building.

In fact, our team eventually discovered that the probe simulation was
a low priority for development, and the feature was eventually
dropped altogether. With it went the parts of the model that captured
understanding of pushing signals through components and counting
hops. The core of the application turned out to lie else-where, and
the model changed to bring those aspects onto center stage. The
domain experts had learned more and had clarified the goal of the
application. (Chapter 15 discusses these issues in depth.)

Even so, the early work was essential. Key model elements were
retained, but more important, that work set in motion the process of
knowledge crunching that made all subsequent work effective: the
knowledge gained by team members, developers, and domain
experts alike; the beginnings of a shared language; and the closing
of a feedback loop through implementation. A voyage of discovery
has to start somewhere.



Knowledge-Rich Design

The kind of knowledge captured in a model such as the PCB
example goes beyond "find the nouns." Business activities and rules
are as central to a domain as are the entities involved; any domain
will have various categories of concepts. Knowledge crunching
yields models that reflect this kind of insight. In parallel with model
changes, developers refactor the implementation to express the
model, giving the application use of that knowledge.

It is with this move beyond entities and values that knowledge
crunching can get intense, because there may be actual
inconsistency among business rules. Domain experts are usually not
aware of how complex their mental processes are as, in the course
of their work, they navigate all these rules, reconcile contradictions,
and fill in gaps with common sense. Software can't do this. It is
through knowledge crunching in close collaboration with software
experts that the rules are clarified, fleshed out, reconciled, or placed
out of scope.

Example
 Extracting a Hidden Concept

Let's start with a very simple domain model that could be the basis of
an application for booking cargos onto a voyage of a ship.

 

Figure 1.8.



 
We can state that the booking application's responsibility is to
associate each Cargo with a Voyage, recording and tracking that
relationship. So far so good. Somewhere in the application code
there could be a method like this:

public int makeBooking(Cargo cargo, Voyage voyage) 
{ 
   int confirmation = 
orderConfirmationSequence.next(); 
   voyage.addCargo(cargo, confirmation); 
   return confirmation; 
} 

Because there are always last-minute cancellations, standard
practice in the shipping industry is to accept more cargo than a
particular vessel can carry on a voyage. This is called "overbooking."
Sometimes a simple percentage of capacity is used, such as
booking 110 percent of capacity. In other cases complex rules are
applied, favoring major customers or certain kinds of cargo.

This is a basic strategy in the shipping domain that would be known
to any businessperson in the shipping industry, but it might not be
understood by all technical people on a software team.

The requirements document contains this line:

Allow 10% overbooking.

The class diagram and code now look like this:

 



Figure 1.9.

 
public int makeBooking(Cargo cargo, Voyage voyage) 
{ 
   double maxBooking = voyage.capacity() * 1.1; 
if ((voyage.bookedCargoSize() + cargo.size()) > 
maxBooking) 
return �1; 
   int confirmation = 
orderConfirmationSequence.next(); 
   voyage.addCargo(cargo, confirmation); 
   return confirmation; 
} 

Now an important business rule is hidden as a guard clause in an
application method. Later, in Chapter 4, we'll look at the principle of
LAYERED ARCHITECTURE, which would guide us to move the over-
booking rule into a domain object, but for now let's concentrate on
how we could make this knowledge more explicit and accessible to
everyone on the project. This will bring us to a similar solution.

1. As written, it is unlikely that any business expert could read
this code to verify the rule, even with the guidance of a
developer.

It would be difficult for a technical, non-businessperson to connect
the requirement text with the code.



If the rule were more complex, that much more would be at stake.

We can change the design to better capture this knowledge. The
overbooking rule is a policy. Policy is another name for the design
pattern known as STRATEGY (Gamma et al. 1995). It is usually
motivated by the need to substitute different rules, which is not
needed here, as far as we know. But the concept we are trying to
capture does fit the meaning of a policy, which is an equally
important motivation in domain-driven design. (See Chapter 12,
"Relating Design Patterns to the Model.")

 

Figure 1.10.

 
The code is now:

public int makeBooking(Cargo cargo, Voyage voyage) 
{ 
   if (!overbookingPolicy.isAllowed(cargo, 
voyage)) return �1; 
   int confirmation = 



orderConfirmationSequence.next(); 
   voyage.addCargo(cargo, confirmation); 
   return confirmation; 
} 

The new Overbooking Policy class contains this method:

public boolean isAllowed(Cargo cargo, Voyage 
voyage) { 
   return (cargo.size() + 
voyage.bookedCargoSize()) <= 
         (voyage.capacity() * 1.1); 
} 

It will be clear to all that overbooking is a distinct policy, and the
implementation of that rule is explicit and separate.

Now, I am not recommending that such an elaborate design be
applied to every detail of the domain. Chapter 15, "Distillation," goes
into depth on how to focus on the important and minimize or
separate everything else. This example is meant to show that a
domain model and corresponding design can be used to secure and
share knowledge. The more explicit design has these advantages:

1. In order to bring the design to this stage, the programmers
and everyone else involved will have come to understand
the nature of overbooking as a distinct and important
business rule, not just an obscure calculation.

Programmers can show business experts technical artifacts, even
code, that should be intelligible to domain experts (with guidance),
thereby closing the feedback loop.



Deep Models

Useful models seldom lie on the surface. As we come to understand
the domain and the needs of the application, we usually discard
superficial model elements that seemed important in the beginning,
or we shift their perspective. Subtle abstractions emerge that would
not have occurred to us at the outset but that pierce to the heart of
the matter.

The preceding example is loosely based on one of the projects that
I'll be drawing on for several examples throughout the book: a
container shipping system. The examples in this book will be kept
accessible to non-shipping experts. But on a real project, where
continuous learning prepares the team members, models of utility
and clarity often call for sophistication both in the domain and in
modeling technique.

On that project, because a shipment begins with the act of booking
cargo, we developed a model that allowed us to describe the cargo,
its itinerary, and so on. This was all necessary and useful, yet the
domain experts felt dissatisfied. There was a way they looked at their
business that we were missing.

Eventually, after months of knowledge crunching, we realized that
the handling of cargo, the physical loading and unloading, the
movements from place to place, was largely carried out by
subcontractors or by operational people in the company. In the view
of our shipping experts, there was a series of transfers of
responsibility between parties. A process governed that transfer of
legal and practical responsibility, from the shipper to some local
carrier, from one carrier to another, and finally to the consignee.
Often, the cargo would sit in a warehouse while important steps were
being taken. At other times, the cargo would move through complex
physical steps that were not relevant to the shipping company's
business decisions. Rather than the logistics of the itinerary, what



came to the fore were legal documents such as the bill of lading, and
processes leading to the release of payments.

This deeper view of the shipping business did not lead to the
removal of the Itinerary object, but the model changed profoundly.
Our view of shipping changed from moving containers from place to
place, to transferring responsibility for cargo from entity to entity.
Features for handling these transfers of responsibility were no longer
awkwardly attached to loading operations, but were supported by a
model that came out of an understanding of the significant
relationship between those operations and those responsibilities.

Knowledge crunching is an exploration, and you can't know where
you will end up.



Chapter Two. Communication and the
Use of Language
A domain model can be the core of a common language for a
software project. The model is a set of concepts built up in the heads
of people on the project, with terms and relationships that reflect
domain insight. These terms and interrelationships provide the
semantics of a language that is tailored to the domain while being
precise enough for technical development. This is a crucial cord that
weaves the model into development activity and binds it with the
code.

This model-based communication is not limited to diagrams in
Unified Modeling Language (UML). To make most effective use of a
model, it needs to pervade every medium of communication. It
increases the utility of written text documents, as well as the informal
diagrams and casual conversation reemphasized in Agile processes.
It improves communication through the code itself and through the
tests for that code.

The use of language on a project is subtle but all-important.



Ubiquitous Language

For first you write a sentence,
 And then you chop it small;

 Then mix the bits, and sort them out
 Just as they chance to fall:

 The order of the phrases makes
 No difference at all.

�Lewis Carroll, "Poeta Fit, Non Nascitur"

To create a supple, knowledge-rich design calls for a versatile,
shared team language, and a lively experimentation with language
that seldom happens on software projects.

  

Domain experts have limited understanding of the technical jargon of
software development, but they use the jargon of their field�probably
in various flavors. Developers, on the other hand, may understand
and discuss the system in descriptive, functional terms, devoid of the
meaning carried by the experts' language. Or developers may create
abstractions that support their design but are not understood by the
domain experts. Developers working on different parts of the
problem work out their own design concepts and ways of describing
the domain.

Across this linguistic divide, the domain experts vaguely describe
what they want. Developers, struggling to understand a domain new
to them, vaguely understand. A few members of the team manage to
become bilingual, but they become bottlenecks of information flow,
and their translations are inexact.

On a project without a common language, developers have to
translate for domain experts. Domain experts translate between
developers and still other domain experts. Developers even translate



for each other. Translation muddles model concepts, which leads to
destructive refactoring of code. The indirectness of communication
conceals the formation of schisms�different team members use
terms differently but don't realize it. This leads to unreliable software
that doesn't fit together (see Chapter 14). The effort of translation
prevents the interplay of knowledge and ideas that lead to deep
model insights.

A project faces serious problems when its language is
fractured. Domain experts use their jargon while technical team
members have their own language tuned for discussing the
domain in terms of design.

The terminology of day-to-day discussions is disconnected
from the terminology embedded in the code (ultimately the most
important product of a software project). And even the same
person uses different language in speech and in writing, so that
the most incisive expressions of the domain often emerge in a
transient form that is never captured in the code or even in
writing.

Translation blunts communication and makes knowledge
crunching anemic.

Yet none of these dialects can be a common language because
none serves all needs.

The overhead cost of all the translation, plus the risk of
misunderstanding, is just too high. A project needs a common
language that is more robust than the lowest common denominator.
With a conscious effort by the team, the domain model can provide
the backbone for that common language, while connecting team
communication to the software implementation. That language can
be ubiquitous in the team's work.

The vocabulary of that UBIQUITOUS LANGUAGE includes the names of
classes and prominent operations. The LANGUAGE includes terms to
discuss rules that have been made explicit in the model. It is



supplemented with terms from high-level organizing principles
imposed on the model (such as CONTEXT MAPS and large-scale
structures, which will be discussed in Chapters 14 and 16). Finally,
this language is enriched with the names of patterns the team
commonly applies to the domain model.

The model relationships become the combinatory rules all languages
have. The meanings of words and phrases echo the semantics of
the model.

The model-based language should be used among developers to
describe not only artifacts in the system, but tasks and functionality.
This same model should supply the language for the developers and
domain experts to communicate with each other, and for the domain
experts to communicate among themselves about requirements,
development planning, and features. The more pervasively the
language is used, the more smoothly understanding will flow.

At least, this is where we need to go. But initially the model may
simply not be good enough to fill these roles. It may lack the
semantic richness of the specialized jargons of the field. But those
jargons can't be used unadulterated because they contain
ambiguities and contradictions. It may lack the more subtle and
active features the developers have created in the code, either
because they do not think of those as part of a model, or because
the coding style is procedural and only implicitly carries those
concepts of the domain.

But although the sequence seems circular, the knowledge crunching
process that can produce a more useful kind of model depends on
the team's commitment to model-based language. Persistent use of
the UBIQUITOUS LANGUAGE will force the model's weaknesses into the
open. The team will experiment and find alternatives to awkward
terms or combinations. As gaps are found in the language, new
words will enter the discussion. These changes to the language will
be recognized as changes in the domain model and will lead the
team to update class diagrams and rename classes and methods in



the code, or even change behavior, when the meaning of a term
changes.

Committed to using this language in the context of implementation,
the developers will point out imprecision or contradictions, engaging
the domain experts in discovering workable alternatives.

Of course, domain experts will speak outside the scope of the
UBIQUITOUS LANGUAGE, to explain and give broader context. But within
the scope the model addresses, they should use LANGUAGE and raise
concerns when they find it awkward or incomplete�or wrong. By
using the model-based language pervasively and not being satisfied
until it flows, we approach a model that is complete and
comprehensible, made up of simple elements that combine to
express complex ideas.

Therefore:

Use the model as the backbone of a language. Commit the team
to exercising that language relentlessly in all communication
within the team and in the code. Use the same language in
diagrams, writing, and especially speech.

Iron out difficulties by experimenting with alternative
expressions, which reflect alternative models. Then refactor the
code, renaming classes, methods, and modules to conform to
the new model. Resolve confusion over terms in conversation,
in just the way we come to agree on the meaning of ordinary
words.

Recognize that a change in the UBIQUITOUS LANGUAGE is a change
to the model.

Domain experts should object to terms or structures that are
awkward or inadequate to convey domain understanding;
developers should watch for ambiguity or inconsistency that
will trip up design.



With a UBIQUITOUS LANGUAGE, the model is not just a design artifact. It
becomes integral to everything the developers and domain experts
do together. The LANGUAGE carries knowledge in a dynamic form.
Discussion in the LANGUAGE brings to life the meaning behind the
diagrams and code.

  

This discussion of UBIQUITOUS LANGUAGE assumes that there is just
one model in play. Chapter 14, "Maintaining Model Integrity," deals
with the coexistence of different models (and LANGUAGES) and how to
keep a model from splintering.

The UBIQUITOUS LANGUAGE is the primary carrier of the aspects of
design that don't appear in code�large-scale structures that organize
the whole system (see Chapter 16), BOUNDED CONTEXTS that define
the relationships of different systems and models (see Chapter 14),
and other patterns applied to the model and design.

Example
 Working Out a Cargo Router

The following two dialogs have subtle, but important, differences. In
each scenario, watch for how much the speakers talk about what the
software means to the business versus how it works technically. Are
the user and developer speaking the same language? Is that
language rich enough to carry the discussion of what the application
must do?

Scenario 1: Minimal Abstraction of the Domain

 



Figure 2.1.

 
User: So when we change the customs clearance point, we need to
redo the whole routing plan.

Developer: Right. We'll delete all the rows in the shipment table with
that cargo id, then we'll pass the origin, destination, and the new
customs clearance point into the Routing Service, and it will re-
populate the table. We'll have to have a Boolean in the Cargo so
we'll know there is data in the shipment table.

User: Delete the rows? OK, whatever. Anyway, if we didn't have a
customs clearance point at all before, we'll have to do the same
thing.

Developer: Sure, anytime you change the origin, destination, or
customs clearance point (or enter one for the first time), we'll check
to see if we have shipment data and then we'll delete it and then let
the Routing Service regenerate it.

User: Of course, if the old customs clearance just happened to be
the right one, we wouldn't want to do that.



Developer: Oh, no problem. It's easier to just make the Routing
Service redo the loads and unloads every time.

User: Yes, but it's extra work for us to make all the supporting plans
for a new itinerary, so we don't want to reroute unless the change
necessitates it.

Developer: Ugh. Well, then, if you are entering a customs clearance
point for the first time, we'll have to query the table to find the old
derived customs clearance point, and then compare it to the new
one. Then we'll know if we need to redo it.

User: You won't have to worry about this on origin or destination,
since the itinerary would always change then.

Developer: Good. We won't.

Scenario 2: Domain Model Enriched to Support
Discussion

 

Figure 2.2.



 
User: So when we change the customs clearance point, we need to
redo the whole routing plan.

Developer: Right. When you change any of the attributes in the
Route Specification, we'll delete the old Itinerary and ask the
Routing Service to generate a new one based on the new Route
Specification.

User: If we hadn't specified a customs clearance point at all before,
we'll have to do that at the same time.

Developer: Sure, anytime you change anything in the Route Spec,
we'll regenerate the Itinerary. That includes entering something for
the first time.

User: Of course, if the old customs clearance just happened to be
the right one, we wouldn't want to do that.

Developer: Oh, no problem. It's easier to just make the Routing
Service redo the Itinerary every time.

User: Yes, but it's extra work for us to make all the supporting plans
for a new Itinerary, so we don't want to reroute unless the change
necessitates it.

Developer: Oh. Then we'll have to add some functionality to the
Route Specification. Then, whenever you change anything in the
Spec, we'll see if the Itinerary still satisfies the Specification. If it
doesn't, we'll have the Routing Service regenerate the Itinerary.

User: You won't have to worry about this on origin or destination,
since the Itinerary would always change then.

Developer: Fine, but it will be simpler for us to just do the
comparison every time. The Itinerary will only be generated when
the Route Specification is no longer satisfied.



The second dialog conveys more of the intent of the domain expert.
The user employed the word "itinerary" in both dialogs, but in the
second it was an object the two could discuss precisely, concretely.
They discussed the "route specification" explicitly, instead of
describing it each time in terms of attributes and procedures.

These two dialogs were deliberately constructed to closely parallel
each other. Realistically, the first would have been more verbose,
bloated with explanations of application features and
miscommunications. The domain-model-based terminology of the
second design makes the second dialog more concise.



Modeling Out Loud

The detachment of speech from other forms of communication is a
particularly great loss because we humans have a genius for spoken
language. Unfortunately, when people speak, they usually don't use
the language of the domain model.

That statement may not ring true for you initially, and indeed there
are exceptions. But the next time you attend a requirements or
design discussion, really listen. You'll hear descriptions of features in
business jargon or layman's versions of the jargon. You'll hear talk
about technical artifacts and concrete functionality. Sure, you'll hear
terms from the domain model; obvious nouns in the common
language from the business jargon will typically be coded as objects,
and so those terms will tend to be mentioned. But do you hear
phrases that could even remotely be described in terms of
relationships and interactions in your current domain model?

One of the best ways to refine a model is to explore with speech,
trying out loud various constructs from possible model variations.
Rough edges are easy to hear.

"If we give the Routing Service an origin, destination, and
arrival time, it can look up the stops the cargo will have to
make and, well . . . stick them in the database." (vague and
technical)

"The origin, destination, and so on . . . it all feeds into the
Routing Service, and we get back an Itinerary that has
everything we need in it." (more complete, but verbose)

"A Routing Service finds an Itinerary that satisfies a Route
Specification." (concise)



It is vital that we play around with words and phrases, harnessing
our linguistic abilities to the modeling effort, just as it is vital to
engage our visual/spatial reasoning by sketching diagrams. Just as
we employ our analytical abilities with methodical analysis and
design, and that mysterious "feel" of the code. These ways of
thinking complement each other, and it takes all of them to find
useful models and designs. Of all of these, experimenting with
language is most often overlooked. (Part III of this book will delve
into this discovery process and show this interplay in several
dialogs.)

In fact, our brains seem to be somewhat specialized for dealing with
complexity in spoken language (one good treatment for laymen, like
myself, is The Language Instinct, by Steven Pinker [Pinker 1994]).
For example, when people of different language backgrounds come
together for commerce, if they don't have a common language they
invent one, called a pidgin. The pidgin is not as comprehensive as
the speakers' original languages, but it is suited to the task at hand.
When people are talking, they naturally discover differences in
interpretation and the meaning of their words, and they naturally
resolve those differences. They find rough spots in the language and
smooth them out.

Once I took an intensive Spanish class in college. The rule in the
classroom was that not a word of English could be spoken. At first, it
was frustrating. It felt very unnatural, and required a lot of self-
discipline. But eventually my classmates and I broke through to a
level of fluency that we could never have reached through exercises
on paper.

As we use the UBIQUITOUS LANGUAGE of the domain model in
discussions�especially discussions in which developers and domain
experts hash out scenarios and requirements�we become more
fluent in the language and teach each other its nuances. We
naturally come to share the language that we speak in a way that
never happens with diagrams and documents.



Bringing about a UBIQUITOUS LANGUAGE on a software project is easier
said than done, and we have to fully employ our natural talents to
pull it off. Just as humans' visual and spatial capabilities let us
convey and process information rapidly in graphical overviews, we
can exploit our innate talent for grammatical, meaningful language to
drive model development.

Therefore, as an addendum to the UBIQUITOUS LANGUAGE pattern:

Play with the model as you talk about the system. Describe
scenarios out loud using the elements and interactions of the
model, combining concepts in ways allowed by the model. Find
easier ways to say what you need to say, and then take those
new ideas back down to the diagrams and code.



One Team, One Language

Technical people often feel the need to "shield" the business experts
from the domain model. They say:

"Too abstract for them."

"They don't understand objects."

"We have to collect requirements in their terminology."

These are just a few of the reasons I've heard for having two
languages on the team. Forget them.

Of course there are technical components of the design that may not
concern the domain experts, but the core of the model had better
interest them. Too abstract? Then how do you know the abstractions
are sound? Do you understand the domain as deeply as they do?
Sometimes specific requirements are collected from lower-level
users, and a subset of the more concrete terminology may be
needed for them, but a domain expert is assumed to be capable of
thinking somewhat deeply about his or her field. If sophisticated
domain experts don't understand the model, there is something
wrong with the model.

Now at the beginning, when the users are discussing future
capabilities of the system that haven't been modeled yet, there is no
model for them to use. But as soon as they begin to work through
these new ideas with the developers, the process of groping toward
a shared model begins. It may start out awkward and incomplete, but
it will gradually get refined. As the new language evolves, the
domain experts must make the extra effort to adopt it, and to retrofit
any old documents that are still important.



When domain experts use this LANGUAGE in discussions with
developers or among themselves, they quickly discover areas where
the model is inadequate for their needs or seems wrong to them.
The domain experts (with the help of the developers) will also find
areas where the precision of the model-based language exposes
contradictions or vagueness in their thinking.

The developers and domain experts can informally test the model by
walking through scenarios, using the model objects step-by-step.
Almost every discussion is an opportunity for the developers and
user experts to play with the model together, deepening each other's
understanding and refining concepts as they go.

The domain experts can use the language of the model in writing
use cases, and can work even more directly with the model by
specifying acceptance tests.

Objections are sometimes raised to the idea of using the language of
the model to collect requirements. After all, shouldn't requirements
be independent of the design that fulfills them? This overlooks the
reality that all language is based on some model. The meanings of
words are slippery things. The domain model will typically derive
from the domain experts' own jargon but will have been "cleaned
up," to have sharper, narrower definitions. Of course, the domain
experts should object if these definitions diverge from the meanings
accepted in the field. In an Agile process, requirements evolve as a
project goes along because hardly ever does the knowledge exist up
front to specify an application adequately. Part of this evolution
should be the reframing of the requirements in the refined UBIQUITOUS

LANGUAGE.

Multiplicity of languages is often necessary, but the linguistic division
should never be between the domain experts and the developers.
(Chapter 12, "Maintaining Model Integrity," deals with the
coexistence of models on the same project.)

Of course, developers do use technical terminology that a domain
expert wouldn't understand. Developers have an extensive jargon



that they need to discuss the technical aspects of a system. Almost
certainly, the users will also have specialized jargon that goes well
beyond the narrow scope of the application and the understanding of
the developers. But these are extensions to the language. These
dialects should not contain alternative vocabularies for the same
domain that reflect distinct models.

Figure 2.3. UBIQUITOUS LANGUAGE is cultivated in the
intersection of jargons.

With a UBIQUITOUS LANGUAGE, conversations among developers,
discussions among domain experts, and expressions in the code
itself are all based on the same language, derived from a shared
domain model.



Documents and Diagrams

Whenever I'm in a meeting discussing a software design, I can
hardly function without drawing on a whiteboard or sketchpad. A
good part of what I draw is UML diagrams, mostly class diagrams or
object-interactions.

Some people are naturally visual, and diagrams help people grasp
certain kinds of information. UML diagrams are pretty good at
communicating relationships between objects, and they are fair at
showing interactions. But they do not convey the conceptual
definitions of those objects. In a meeting, I would flesh out those
meanings in speech as I sketched the diagram, or they would
emerge in a dialog with other participants.

Simple, informal UML diagrams can anchor a discussion. Sketch a
diagram of three to five objects central to the issue at hand, and
everyone can stay focused. Everyone will share a view of the
relationships between the objects and, significantly, the objects'
names. The spoken discussion can be more effective with this aid. A
diagram can be changed as people try different thought experiments,
and the sketch will take on some of the fluidity of spoken words, a
true part of the discussion. After all, UML stands for Unified Modeling
Language.

The trouble comes when people feel compelled to convey the whole
model or design through UML. A lot of object model diagrams are
too complete and, simultaneously, leave too much out. They are too
complete because people feel they have to put all the objects that
they are going to code into a modeling tool. With all that detail, no
one can see the forest for the trees.

Yet in spite of all that detail, the attributes and relationships are only
half the story of an object model. The behavior of those objects and
the constraints on them are not so easily illustrated. Object
interaction diagrams can illustrate some tricky hotspots in the design,



but the bulk of the interactions can't be shown that way. It is just too
much work, both to create the diagrams and to read them. And an
interaction diagram can still only imply the purpose behind the
model. To include constraints and assertions, UML falls back on text,
placed in little brackets, inserted into the diagram.

The behavioral responsibilities of an object can be hinted at through
operation names, and they can be implicitly demonstrated with
object interaction (or sequence) diagrams, but they cannot be stated.
So, this task falls to supplemental text or conversation. In other
words, a UML diagram cannot convey two of the most important
aspects of a model: the meaning of the concepts it represents, and
what the objects are meant to do. This needn't trouble us, though,
because careful use of English (or Spanish, or whatever) can fill this
role pretty well.

Nor is UML a very satisfying programming language. Every attempt
I've seen to use the code-generation capabilities of the modeling
tools has been counterproductive. If you are constrained by the
capabilities of UML, you will often have to leave out the most crucial
part of the model because it is some rule that doesn't fit into a box-
and-line diagram. And, of course, a code generator cannot make use
of those textual annotations. If you do use some technology that
allows executable programs to be written in a UML-like diagramming
language, then the UML diagram is reduced to merely another way
to view the program itself, and the very meaning of "model" is lost. If
you use UML as your implementation language, you will still need
other means of communicating the uncluttered model.

Diagrams are a means of communication and explanation, and they
facilitate brainstorming. They serve these ends best if they are
minimal. Comprehensive diagrams of the entire object model fail to
communicate or explain; they overwhelm the reader with detail and
they lack meaning. This leads us away from the all-encompassing
object model diagram, or even the all-encompassing database
repository of UML. It leads us toward simplified diagrams of
conceptually important parts of the object model that are essential to



understanding the design. The diagrams in this book are typical of
those I use on projects. They simplify, they explain, and they even
incorporate a bit of nonstandard notation when it clarifies their point.
They show design constraints, but they are not design specifications
in every detail. They represent the skeletons of ideas.

The vital detail about the design is captured in the code. A well-
written implementation should be transparent, revealing the model
underlying it. (Making sure that this happens is the subject of the
next chapter and much of the rest of this book.) Supplemental
diagrams and documents can guide people's attention to the central
points. Natural language discussion can fill in the nuances of
meaning. This is why I prefer to turn things inside out from the way a
typical UML diagram handles them. Rather than a diagram
annotated with text, I write a text document illustrated with selective
and simplified diagrams.

Always remember that the model is not the diagram. The diagram's
purpose is to help communicate and explain the model. The code
can serve as a repository of the details of the design. Well-written
Java is as expressive as UML in its way. Carefully selected and
constructed diagrams can serve to focus attention and aid navigation
if they are not obscured by a compulsion to represent the model or
design completely.

Written Design Documents

Spoken communication supplements the code's rigor and detail with
meaning. But although talking is critical to connecting everyone to
the model, a group of any size will probably need the stability and
share-ability of some written documents. But making written
documents that actually help the team produce good software is a
challenge.

Once a document takes on a persistent form, it often loses its
connection with the flow of the project. It is left behind by the



evolution of the code, or by the evolution of the language of the
project.

Many approaches can work. A few specific documents will be
suggested much later, in Part IV of this book, which address
particular needs, but I make no attempt to prescribe a set of
documents a project should use. Instead, I will offer two general
guidelines for evaluating a document.

Documents Should Complement Code and Speech

Each Agile process has its own philosophy about documents.
Extreme Programming advocates using no extra design documents
at all and letting the code speak for itself. Running code doesn't lie,
as any other document might. The behavior of running code is
unambiguous.

Extreme Programming concentrates exclusively on the active
elements of a program and executable tests. Even comments added
to the code do not affect program behavior, so they always fall out of
sync with the active code and its driving model. External documents
and diagrams do not affect the behavior of the program, so they fall
out of sync. On the other hand, spoken communication and
ephemeral diagrams on whiteboards do not linger to create
confusion. This dependence on the code as communication medium
motivates developers to keep the code clean and transparent.

But code as a design document does have its limits. It can over-
whelm the reader with detail. Although its behavior is unambiguous,
that doesn't mean it is obvious. And the meaning behind a behavior
can be hard to convey. In other words, documenting exclusively
through code has some of the same basic problems as using
comprehensive UML diagrams. Of course, massive spoken
communication within the team gives context and guidance around
the code, but it is ephemeral and localized. And developers are not
the only people who need to understand the model.



A document shouldn't try to do what the code already does well. The
code already supplies the detail. It is an exact specification of
program behavior.

Other documents need to illuminate meaning, to give insight into
large-scale structures, and to focus attention on core elements.
Documents can clarify design intent when the programming
language does not support a straightforward implementation of a
concept. Written documents should complement the code and the
talking.

Documents Should Work for a Living and Stay Current

When I document a model in writing, I diagram small, carefully
selected subsets of the model and surround them with text. I define
the classes and their responsibilities in words and frame them in a
context of meaning as only a natural language can. But the diagram
shows some of the choices that have been made in formalizing and
paring down the concepts into an object model. These diagrams can
be somewhat casual�even hand-drawn. In addition to saving labor,
hand-drawn diagrams have the advantage of feeling casual and
temporary. These are good things to communicate because they are
generally true of our model ideas.

The greatest value of a design document is to explain the concepts
of the model, help in navigating the detail of the code, and perhaps
give some insight into the model's intended style of use. Depending
on the philosophy of the team, the whole design document could be
as simple as a set of sketches posted on the walls, or it could be
substantial.

A document must be involved in project activities. The easiest way to
judge this is to observe the document's interaction with the
UBIQUITOUS LANGUAGE. Is the document written in the language people
speak on the project (now)? Is it written in the language embedded
in the code?



Listen to the UBIQUITOUS LANGUAGE and how it is changing. If the terms
explained in a design document don't start showing up in
conversations and code, the document is not fulfilling its purpose.
Maybe the document is too big or complicated. Maybe it is not
focused on a sufficiently important topic. People are either not
reading it or not finding it compelling. If it is having no impact on the
UBIQUITOUS LANGUAGE, something is wrong.

Conversely, you may hear the UBIQUITOUS LANGUAGE changing
naturally while a document is being left behind. Evidently the
document does not seem relevant to people or does not seem
important enough to update. It could safely be archived as history,
but left active it could create confusion and hurt the project. And if a
document isn't playing an important role, keeping it up to date
through sheer will and discipline wastes effort.

The UBIQUITOUS LANGUAGE allows other documents, such as
requirements specifications, to be more concise and less
ambiguous. As the domain model comes to reflect the most relevant
knowledge of the business, application requirements become
scenarios within that model, and the UBIQUITOUS LANGUAGE can be
used to describe such a scenario in terms that directly connect to the
MODEL-DRIVEN DESIGN (see Chapter 3). As a result, specifications can
be written more simply, because they do not have to convey the
business knowledge that lies behind the model.

By keeping documents minimal and focusing them on
complementing code and conversation, documents can stay
connected to the project. Let the UBIQUITOUS LANGUAGE and its
evolution be your guide to choosing documents that live and get
woven into the project's activity.

Executable Bedrock

Now let's examine the choice of the XP community and some others,
to rely almost exclusively on the executable code and its tests. Much



of this book discusses ways to make the code convey meaning
through a MODEL-DRIVEN DESIGN (see Chapter 3). Well-written code
can be very communicative, but the message it communicates is not
guaranteed to be accurate. Oh, the reality of the behavior caused by
a section of code is inescapable. But a method name can be
ambiguous, misleading, or out of date compared to the internals of
the method. The assertions in a test are rigorous, but the story told
by variable names and the organization of the code is not. Good
programming style keeps this connection as direct as possible, but it
is still an exercise in self-discipline. It takes fastidiousness to write
code that doesn't just do the right thing but also says the right thing.

Elimination of those discrepancies is a major selling point of
approaches such as declarative design (discussed in Chapter 10), in
which a statement of the purpose of a program element determines
its actual behavior in the program. The drive to generate programs
from UML is partly motivated by this, though it generally hasn't
worked out well so far.

Still, while even code can mislead, it is closer to the ground than
other documents. Aligning the behavior, intent, and message of code
using current standard technology requires discipline and a certain
way of thinking about design (discussed at length in Part III). To
communicate effectively, the code must be based on the same
language used to write the requirements�the same language that
the developers speak with each other and with domain experts.



Explanatory Models

The thrust of this book is that one model should underlie
implementation, design, and team communication. Having separate
models for these separate purposes poses a hazard.

Models can also be valuable as education aids to teach about the
domain. The model that drives the design is one view of the domain,
but it may aid learning to have other views, used only as educational
tools, to communicate general knowledge of the domain. For this
purpose, people can use pictures or words that convey other kinds of
models unrelated to software design.

One particular reason that other models are needed is scope. The
technical model that drives the software development process must
be strictly pared down to the necessary minimum to fulfill its
functions. An explanatory model can include aspects of the domain
that provide context that clarifies the more narrowly scoped model.

Explanatory models offer the freedom to create much more
communicative styles tailored to a particular topic. Visual metaphors
used by the domain experts in a field often present clearer
explanations, educating developers and harmonizing experts.
Explanatory models also present the domain in a way that is simply
different, and multiple, diverse explanations help people learn.

There is no need for explanatory models to be object models, and it
is generally best if they are not. It is actually helpful to avoid UML in
these models, to avoid any false impression of correspondence with
the software design. Even though the explanatory model and the
model that drives design do often correspond, the similarities will
seldom be exact. To avoid confusion, everyone must be conscious of
the distinction.



Example
 Shipping Operations and Routes

Consider an application that tracks cargos for a shipping company.
The model includes a detailed view of how port operations and
vessel voyages are assembled into an operational plan for a cargo
(a "route"). But to the uninitiated, a class diagram may not be very
illuminating.

Figure 2.4. A class diagram for a shipping route

In such a case, an explanatory model can help team members
understand what the class diagram actually means. Here is another
way of looking at the same concepts:



Each line in Figure 2.5 represents either a port operation (loading or
unloading the cargo), or cargo sitting in storage on the ground, or
cargo sitting on a ship en route. This does not correspond in detail
with the class diagram, but it reinforces key points from the domain.

Figure 2.5. An explanatory model for a shipping route

This sort of diagram, along with natural language explanations of the
model it represents, can help developers and domain experts alike
understand the more rigorous software model diagrams. Together
they are easier to understand than either view alone.



Chapter Three. Binding Model and
Implementation
The first thing I saw as I walked through the door was a complete
class diagram printed on large sheets of paper that covered a large
wall. It was my first day on a project in which smart people had spent
months carefully researching and developing a detailed model of the
domain. The typical object in the model had intricate associations
with three or four other objects, and this web of associations had few
natural borders. In this respect, the analysts had been true to the
nature of the domain.

As overwhelming as the wall-size diagram was, the model did
capture some knowledge. After a moderate amount of study, I
learned quite a bit (though that learning was hard to direct�much like
randomly browsing the Web). I was more troubled to find that my
study gave no insight into the application's code and design.

When the developers had begun implementing the application, they
had quickly discovered that the tangle of associations, although
navigable by a human analyst, didn't translate into storable,
retrievable units that could be manipulated with transactional
integrity. Mind you, this project was using an object database, so the
developers didn't even have to face the challenges of mapping
objects into relational tables. At a fundamental level, the model did
not provide a guide to implementation.

Because the model was "correct," the result of extensive
collaboration between technical analysts and business experts, the
developers reached the conclusion that conceptually based objects
could not be the foundation of their design. So they proceeded to
develop an ad hoc design. Their design did use a few of the same
class names and attributes for data storage, but it was not based on
the existing, or any, model.



The project had a domain model, but what good is a model on paper
unless it directly aids the development of running software?

A few years later, I saw the same end result come from a completely
different process. This project was to replace an existing C++
application with a new design implemented in Java. The old
application had been hacked together without any regard for object
modeling. The design of the old application, if there was one, had
accreted as one capability after another had been laid on top of the
existing code, without any noticeable generalization or abstraction.

The eerie thing was that the end products of the two processes were
very similar! Both had functionality, but were bloated, very hard to
understand, and eventually unmaintainable. Though the
implementations had, in places, a kind of directness, you couldn't
gain much insight about the purpose of the system by reading the
code. Neither process took any advantage of the object paradigm
available in their development environment, except as fancy data
structures.

Models come in many varieties and serve many roles, even those
restricted to the context of a software development project. Domain-
driven design calls for a model that doesn't just aid early analysis but
is the very foundation of the design. This approach has some
important implications for the code. What is less obvious is that
domain-driven design requires a different approach to modeling. . . .



Model-Driven Design

The astrolabe, used to compute star positions, is a mechanical
implementation of a model of the sky.

Tightly relating the code to an underlying model gives the code
meaning and makes the model relevant.



A Medieval Sky Computer

Ancient Greek astronomers devised the astrolabe, which was perfected by medieval
Islamic scientists. A rotating web (called a rete) represented the positions of the fixed
stars on the celestial sphere. Interchangeable plates engraved with a local spherical
coordinate system represented the views from different latitudes. Rotating the rete
against the plate enabled a calculation of celestial positions for any time and day of
the year. Conversely, given a stellar or solar position, the time could be calculated.
The astrolabe was a mechanical implementation of an object-oriented model of the
sky.

  

Projects that have no domain model at all, but just write code to fulfill
one function after another, gain few of the advantages of knowledge
crunching and communication discussed in the previous two
chapters. A complex domain will swamp them.

On the other hand, many complex projects do attempt some sort of
domain model, but they don't maintain a tight connection between
the model and the code. The model they develop, possibly useful as
an exploratory tool at the outset, becomes increasingly irrelevant and
even misleading. All the care lavished on the model provides little
reassurance that the design is correct, because the two are different.

This connection can break down in many ways, but the detachment
is often a conscious choice. Many design methodologies advocate
an analysis model, quite distinct from the design and usually
developed by different people. It is called an analysis model because
it is the product of analyzing the business domain to organize its
concepts without any consideration of the part it will play in a
software system. An analysis model is meant as a tool for
understanding only; mixing in implementation concerns is thought to
muddy the waters. Later, a design is created that may have only a
loose correspondence to the analysis model. The analysis model is
not created with design issues in mind, and therefore it is likely to be
quite impractical for those needs.



Some knowledge crunching happens during such an analysis, but
most of it is lost when coding begins, when the developers are
forced to come up with new abstractions for the design. Then there
is no guarantee that the insights gained by the analysts and
embedded in the model will be retained or rediscovered. At this
point, maintaining any mapping between the design and the loosely
connected model is not cost-effective.

The pure analysis model even falls short of its primary goal of
understanding the domain, because crucial discoveries always
emerge during the design/implementation effort. Very specific,
unanticipated problems always arise. An up-front model will go into
depth about some irrelevant subjects, while it overlooks some
important subjects. Other subjects will be represented in ways that
are not useful to the application. The result is that pure analysis
models get abandoned soon after coding starts, and most of the
ground has to be covered again. But the second time around, if the
developers perceive analysis to be a separate process, modeling
happens in a less disciplined way. If the managers perceive analysis
to be a separate process, the development team may not be given
adequate access to domain experts.

Whatever the cause, software that lacks a concept at the foundation
of its design is, at best, a mechanism that does useful things without
explaining its actions.

If the design, or some central part of it, does not map to the
domain model, that model is of little value, and the correctness
of the software is suspect. At the same time, complex mappings
between models and design functions are difficult to
understand and, in practice, impossible to maintain as the
design changes. A deadly divide opens between analysis and
design so that insight gained in each of those activities does
not feed into the other.

An analysis must capture fundamental concepts from the domain in
a comprehensible, expressive way. The design has to specify a set
of components that can be constructed with the programming tools



in use on the project that will perform efficiently in the target
deployment environment and will correctly solve the problems posed
for the application.

MODEL-DRIVEN DESIGN discards the dichotomy of analysis model and
design to search out a single model that serves both purposes.
Setting aside purely technical issues, each object in the design plays
a conceptual role described in the model. This requires us to be
more demanding of the chosen model, since it must fulfill two quite
different objectives.

There are always many ways of abstracting a domain, and there are
always many designs that can solve an application problem. This is
what makes it practical to bind the model and design. This binding
mustn't come at the cost of a weakened analysis, fatally
compromised by technical considerations. Nor can we accept clumsy
designs, reflecting domain ideas but eschewing software design
principles. This approach demands a model that works well as both
analysis and design. When a model doesn't seem to be practical for
implementation, we must search for a new one. When a model
doesn't faithfully express the key concepts of the domain, we must
search for a new one. The modeling and design process then
becomes a single iterative loop.

The imperative to relate the domain model closely to the design adds
one more criterion for choosing the more useful models out of the
universe of possible models. It calls for hard thinking and usually
takes multiple iterations and a lot of refactoring, but it makes the
model relevant.

Therefore:

Design a portion of the software system to reflect the domain
model in a very literal way, so that mapping is obvious. Revisit
the model and modify it to be implemented more naturally in
software, even as you seek to make it reflect deeper insight into
the domain. Demand a single model that serves both purposes
well, in addition to supporting a robust UBIQUITOUS LANGUAGE.



Draw from the model the terminology used in the design and
the basic assignment of responsibilities. The code becomes an
expression of the model, so a change to the code may be a
change to the model. Its effect must ripple through the rest of
the project's activities accordingly.

To tie the implementation slavishly to a model usually requires
software development tools and languages that support a
modeling paradigm, such as object-oriented programming.

Sometimes there will be different models for different subsystems
(see Chapter 14), but only one model should apply to a particular
part of the system, throughout all aspects of the development effort,
from the code to requirements analysis.

The single model reduces the chances of error, because the design
is now a direct outgrowth of the carefully considered model. The
design, and even the code itself, has the communicativeness of a
model.

  

Developing a single model that captures the problem and provides a
practical design is easier said than done. You can't just take any
model and turn it into a workable design. The model has to be
carefully crafted to make for a practical implementation. Design and
implementation techniques have to be employed that allow code to
express a model effectively (see Part II). Knowledge crunchers
explore model options and refine them into practical software
elements. Development becomes an iterative process of refining the
model, the design, and the code as a single activity (see Part III).



Modeling Paradigms and Tool Support

To make a MODEL-DRIVEN DESIGN pay off, the correspondence must be
literal, exact within bounds of human error. To make such a close
correspondence of model and design possible, it is almost essential
to work within a modeling paradigm supported by software tools that
allow you to create direct analogs to the concepts in the model.

 

Figure 3.1.

 
Object-oriented programming is powerful because it is based on a
modeling paradigm, and it provides implementations of the model
constructs. As far as the programmer is concerned, objects really
exist in memory, they have associations with other objects, they are
organized into classes, and they provide behavior available by
messaging. Although many developers benefit from just applying the
technical capabilities of objects to organize program code, the real
breakthrough of object design comes when the code expresses the



concepts of a model. Java and many other tools allow the creation of
objects and relationships directly analogous to conceptual object
models.

Although it has never reached the mass usage that object-oriented
languages have, the Prolog language is a natural fit for MODEL-DRIVEN

DESIGN. In this case, the paradigm is logic, and the model is a set of
logical rules and facts they operate on.

MODEL-DRIVEN DESIGN has limited applicability using languages such
as C, because there is no modeling paradigm that corresponds to a
purely procedural language. Those languages are procedural in the
sense that the programmer tells the computer a series of steps to
follow. Although the programmer may be thinking about the concepts
of the domain, the program itself is a series of technical
manipulations of data. The result may be useful, but the program
doesn't capture much of the meaning. Procedural languages often
support complex data types that begin to correspond to more natural
conceptions of the domain, but these complex types are only
organized data, and they don't capture the active aspects of the
domain. The result is that software written in procedural languages
has complicated functions linked together based on anticipated
paths of execution, rather than by conceptual connections in the
domain model.

Before I ever heard of object-oriented programming, I wrote fortran
programs to solve mathematical models, which is just the sort of
domain in which fortran excels. Mathematical functions are the main
conceptual component of such a model and can be cleanly
expressed in fortran. Even so, there is no way to capture higher level
meaning beyond the functions. Most non-mathematical domains
don't lend themselves to MODEL-DRIVEN DESIGN in procedural
languages because the domains are not conceptualized as math
functions or as steps in a procedure.

Object-oriented design, the paradigm that currently dominates the
majority of ambitious projects, is the approach used primarily in this
book.



Example
 From Procedural to MODEL-DRIVEN

As discussed in Chapter 1, a printed circuit board (PCB) can be
viewed as a collection of electrical conductors (called nets)
connecting the pins of various components. There are often tens of
thousands of nets. Special software, called a PCB layout tool, finds a
physical arrangement for all the nets so that they don't cross or
interfere with each other. It does this by optimizing their paths while
satisfying an enormous number of constraints placed by the human
designers that restrict the way they can be laid out. Although PCB
layout tools are very sophisticated, they still have some
shortcomings.

One problem is that each of these thousands of nets has its own set
of layout rules. PCB engineers see many nets as belonging to
natural groupings that should share the same rules. For example,
some nets form buses.

Figure 3.2. An explanatory diagram of buses and nets



By lumping nets into a bus, perhaps 8 or 16 or 256 at a time, the
engineer cuts the job down to a more manageable size, improving
productivity and reducing errors. The trouble is, the layout tool has
no such concept as a bus. Rules have to be assigned to tens of
thousands of nets, one net at a time.

A Mechanistic Design

Desperate engineers worked around this limitation in the layout tool
by writing scripts that parse the layout tool's data files and insert
rules directly into the file, applying them to an entire bus at a time.

The layout tool stores each circuit connection in a net list file, which
looks something like this:

Net Name    Component.Pin 
--------    ------------- 
Xyz0        A.0, B.0 
Xyz1        A.1, B.1 
Xyz2        A.2, B.2 
. . . 

It stores the layout rules in a file format something like this:

Net Name    Rule Type        Parameters 
--------    ---------        ---------- 
Xyz1        min_linewidth    5 
Xyz1        max_delay        15 
Xyz2        min_linewidth    5 
Xyz2        max_delay        15 
. . . 

The engineers carefully use a naming convention for the nets so that
an alphabetical sort of the data file will place the nets of a bus
together in a sorted file. Then their script can parse the file and
modify each net based on its bus. Actual code to parse, manipulate,



and write the files is just too verbose and opaque to serve this
example, so I'll just list the steps in the procedure.

1. Sort net list file by net name. 
2. Read each line in file, seeking first one that 
starts with bus name pattern. 
3. For each line with matching name, parse line to 
get net name. 
4. Append net name with rule text to rules file. 
5. Repeat from 3 until left of line no longer 
matches bus name. 

So the input of a bus rule such as this:

Bus Name    Rule Type        Parameters 
--------    ---------        ---------- 
Xyz         max_vias         3 

would result in adding net rules to the file like these:

Net Name    Rule Type        Parameters 
--------    ---------        ---------- 
. . . 
Xyz0        max_vias         3 
Xyz1        max_vias         3 
Xyz2        max_vias         3 
. . . 

I imagine that the person who first wrote such a script had only this
simple need, and if this were the only requirement, a script like this
would make a lot of sense. But in practice, there are now dozens of
scripts. They could, of course, be refactored to share sorting and
string matching functions, and if the language supported function
calls to encapsulate the details, the scripts could begin to read
almost like the summary steps above. But still, they are just file
manipulations. A different file format (and there are several) would
require starting from scratch, even though the concept of grouping



buses and applying rules to them is the same. If you wanted richer
functionality or interactivity, you would have to pay for every inch.

What the script writers were trying to do was to supplement the tool's
domain model with the concept of "bus." Their implementation infers
the bus's existence through sorts and string matches, but it does not
explicitly deal with the concept.

A Model-Driven Design

The preceding discussion has already described the concepts the
domain experts use to think about their problems. Now we need to
organize those concepts explicitly into a model we can base
software on.

Figure 3.3. A class diagram oriented toward efficient
assignment of layout rules

With these objects implemented in an object-oriented language, the
core functionality becomes almost trivial.



The assignRule() method can be implemented on Abstract Net.
The assignedRules() method on Net takes its own rules and its
Bus's rules.

abstract class AbstractNet { 
    private Set rules; 
 
    void assignRule(LayoutRule rule) { 
        rules.add(rule); 
    } 
 
    Set assignedRules() { 
        return rules; 
    } 
} 
 
class Net extends AbstractNet { 
    private Bus bus; 
 
    Set assignedRules() { 
        Set result = new HashSet(); 
        result.addAll(super.assignedRules()); 
        result.addAll(bus.assignedRules()); 
        return result; 
    } 
} 

Of course, there would be a great deal of supporting code, but this
covers the basic functionality of the script.

The application requires import/export logic, which we'll encapsulate
into some simple services.

Service Responsibility

Net List import Reads Net List file, creates instance of Net for each entry



Service Responsibility

Net Rule export Given a collection of Nets, writes all attached rules into the Rules File

We'll also need a few utilities:

Class Responsibility

Net Repository Provides access to Nets by name

Inferred Bus
Factory

Given a collection of Nets, uses naming conventions to infer Buses, creates
instances

Bus Repository Provides access to Buses by name

Now, starting the application is a matter of initializing the repositories
with imported data:

Collection nets = 
NetListImportService.read(aFile); 
NetRepository.addAll(nets); 
Collection buses = 
InferredBusFactory.groupIntoBuses(nets); 
BusRepository.addAll(buses); 

Each of the services and repositories can be unit-tested. Even more
important, the core domain logic can be tested. Here is a unit test of
the most central behavior (using the JUnit test framework):

public void testBusRuleAssignment() { 
    Net a0 = new Net("a0"); 
    Net a1 = new Net("a1"); 
    Bus a = new Bus("a"); //Bus is not 
conceptually dependent 
    a.addNet(a0);         //on name-based 



recognition, and so 
    a.addNet(a1);         //its tests should not 
be either. 
 
    NetRule minWidth4 = NetRule.create(MIN_WIDTH, 
4); 
    a.assignRule(minWidth4); 
 
    
assertTrue(a0.assignedRules().contains(minWidth4))
; 
    assertEquals(minWidth4, 
a0.getRule(MIN_WIDTH)); 
    assertEquals(minWidth4, 
a1.getRule(MIN_WIDTH)); 
} 

An interactive user interface could present a list of buses, allowing
the user to assign rules to each, or it could read from a file of rules
for backward compatibility. A façade makes access simple for either
interface. Its implementation echoes the test:

public void assignBusRule(String busName, String 
ruleType, 
      double parameter){ 
   Bus bus = BusRepository.getByName(busName); 
   bus.assignRule(NetRule.create(ruleType, 
parameter)); 
} 

Finishing:

NetRuleExport.write(aFileName, 
NetRepository.allNets()); 

(The service asks each Net for assignedRules(), and then writes
them fully expanded.)



Of course, if there were only one operation (as in the example), the
script-based approach might be just as practical. But in reality, there
were 20 or more. The MODEL-DRIVEN DESIGN scales easily and can
include constraints on combining rules and other enhancements.

The second design also accommodates testing. Its components
have well-defined interfaces that can be unit-tested. The only way to
test the script is to do an end-to-end file-in/file-out comparison.

Keep in mind that such a design does not emerge in a single step. It
would take several iterations of refactoring and knowledge crunching
to distill the important concepts of the domain into a simple, incisive
model.



Letting the Bones Show: Why Models Matter
to Users

In theory, perhaps, you could present a user with any view of a
system, regardless of what lies beneath. But in practice, a mismatch
causes confusion at best�bugs at worst. Consider a very simple
example of how users are misled by superimposed models of
bookmarks for Web sites in current releases of Microsoft Internet
Explorer.[1]

[1] Brian Marick mentioned this example to me.

A user of Internet Explorer thinks of "Favorites" as a list of names of
Web sites that persist from session to session. But the
implementation treats a Favorite as a file containing a URL, and
whose filename is put in the Favorites list. That's a problem if the
Web page title contains characters that are illegal in Windows
filenames. Suppose a user tries to store a Favorite and types the
following name for it: "Laziness: The Secret to Happiness". An error
message will say: "A filename cannot contain any of the following
characters: \/ : * ? " < > |". What filename? On the other hand, if the
Web page title already contains an illegal character, Internet Explorer
will just quietly strip it out. The loss of data may be benign in this
case, but not what the user would have expected. Quietly changing
data is completely unacceptable in most applications.

MODEL-DRIVEN DESIGN calls for working with only one model (within
any single context, as will be discussed in Chapter 14). Most of the
advice and examples go to the problems of having separate analysis
models and design models, but here we have a problem arising from
a different pair of models: the user model and the
design/implementation model.

Of course, an unadorned view of the domain model would definitely
not be convenient for the user in most cases. But trying to create in



the UI an illusion of a model other than the domain model will cause
confusion unless the illusion is perfect. If Web Favorites are actually
just a collection of shortcut files, then expose this fact to the user and
eliminate the confusing alternative model. Not only will the feature be
less confusing, but the user can then leverage what he knows about
the file system to deal with Web Favorites. He can reorganize them
with the File Explorer, for example, rather than use awkward tools
built into the Web browser. Informed users would be more able to
exploit the flexibility of storing Web shortcuts anywhere in the file
system. Just by removing the misleading extra model, the power of
the application would increase and become clearer. Why make the
user learn a new model when the programmers felt the old model
was good enough?

Alternatively, store the Favorites in a different way, say in a data file,
so that they can be subject to their own rules. Those rules would
presumably be the naming rules that apply to Web pages. That
would again provide a single model. This one tells the user that
everything he knows about naming Web sites applies to Favorites.

When a design is based on a model that reflects the basic concerns
of the users and domain experts, the bones of the design can be
revealed to the user to a greater extent than with other design
approaches. Revealing the model gives the user more access to the
potential of the software and yields consistent, predictable behavior.



Hands-On Modelers

Manufacturing is a popular metaphor for software development. One
inference from this metaphor: highly skilled engineers design; less
skilled laborers assemble the products. This metaphor has messed
up a lot of projects for one simple reason�software development is
all design. All teams have specialized roles for members, but
overseparation of responsibility for analysis, modeling, design, and
programming interferes with MODEL-DRIVEN DESIGN.

On one project, my job was to coordinate different application teams
and help develop the domain model that would drive the design. But
the management thought that modelers should be modeling, and
that coding was a waste of those skills, so I was in effect forbidden to
program or work on details with programmers.

Things seemed to be OK for a while. Working with domain experts
and the development leads of the different teams, we crunched
knowledge and refined a nice core model. But that model was never
put to work, for two reasons.

First, some of the model's intent was lost in the handoff. The overall
effect of a model can be very sensitive to details (as will be
discussed in Parts II and III), and those details don't always come
across in a UML diagram or a general discussion. If I could have
rolled up my sleeves and worked with the other developers directly,
providing some code to follow as examples, and providing some
close support, the team could have taken up the abstractions of the
model and run with them.

The other problem was the indirectness of feedback from the
interaction of the model with the implementation and the technology.
For example, certain aspects of the model turned out to be wildly in-
efficient on our technology platform, but the full implications didn't
trickle back to me for months. Relatively minor changes could have
fixed the problem, but by then it didn't matter. The developers were



well on their way to writing software that did work�without the model,
which had been reduced to a mere data structure, wherever it was
still used at all. The developers had thrown the baby out with the
bathwater, but what choice did they have? They could no longer risk
being saddled with the dictates of the architect in the ivory tower.

The initial circumstances of this project were about as favorable to a
hands-off modeler as they ever are. I already had extensive hands-
on experience with most of the technology used on the project. I had
even led a small development team on the same project before my
role changed, so I was familiar with the project's development
process and programming environment. Even those factors were not
enough to make me effective, given the separation of modeler from
implementation.

If the people who write the code do not feel responsible for the
model, or don't understand how to make the model work for an
application, then the model has nothing to do with the software.
If developers don't realize that changing code changes the
model, then their refactoring will weaken the model rather than
strengthen it. Meanwhile, when a modeler is separated from the
implementation process, he or she never acquires, or quickly
loses, a feel for the constraints of implementation. The basic
constraint of MODEL-DRIVEN DESIGN�that the model supports an
effective implementation and abstracts key domain
knowledge�is half-gone, and the resulting models will be
impractical. Finally, the knowledge and skills of experienced
designers won't be transferred to other developers if the
division of labor prevents the kind of collaboration that conveys
the subtleties of coding a MODEL-DRIVEN DESIGN.

The need for HANDS-ON MODELERS does not mean that team members
cannot have specialized roles. Every Agile process, including
Extreme Programming, defines roles for team members, and other
informal specializations tend to emerge naturally. The problem arises
from separating two tasks that are coupled in a MODEL-DRIVEN DESIGN,
modeling and implementation.



The effectiveness of an overall design is very sensitive to the quality
and consistency of fine-grained design and implementation
decisions. With a MODEL-DRIVEN DESIGN, a portion of the code is an
expression of the model; changing that code changes the model.
Programmers are modelers, whether anyone likes it or not. So it is
better to set up the project so that the programmers do good
modeling work.

Therefore:

Any technical person contributing to the model must spend
some time touching the code, whatever primary role he or she
plays on the project. Anyone responsible for changing code
must learn to express a model through the code. Every
developer must be involved in some level of discussion about
the model and have contact with domain experts. Those who
contribute in different ways must consciously engage those
who touch the code in a dynamic exchange of model ideas
through the UBIQUITOUS LANGUAGE.

  

The sharp separation of modeling and programming doesn't work,
yet large projects still need technical leaders who coordinate high-
level design and modeling and help work out the most difficult or
most critical decisions. Part IV, "Strategic Design," deals with such
decisions and should stimulate ideas for more productive ways to
define the roles and responsibilities of high-level technical people.

Domain-driven design puts a model to work to solve problems for an
application. Through knowledge crunching, a team distills a torrent of
chaotic information into a practical model. A MODEL-DRIVEN DESIGN

intimately connects the model and the implementation. The
UBIQUITOUS LANGUAGE is the channel for all that information to flow
between developers, domain experts, and the software.

The result is software that provides rich functionality based on a
fundamental understanding of the core domain.



As mentioned, success with MODEL-DRIVEN DESIGN is sensitive to
detailed design decisions, which is the subject of the next several
chapters.



Part II: The Building Blocks of a
Model-Driven Design

To keep a software implementation crisp and in lockstep with a
model, in spite of messy realities, you must apply the best
practices of modeling and design. This book is not an
introduction to object-oriented design, nor does it propose
radical design fundamentals. Domain-driven design shifts the
emphasis of certain conventional ideas.

Certain kinds of decisions keep the model and implementation
aligned with each other, each reinforcing the other's
effectiveness. This alignment requires attention to the details
of individual elements. Careful crafting at this small scale
gives developers a steady platform from which to apply the
modeling approaches of Parts III and IV.

The design style in this book largely follows the principle of
"responsibility-driven design," put forward in Wirfs-Brock et al.
1990 and updated in Wirfs-Brock 2003. It also draws heavily
(especially in Part III) on the ideas of "design by contract"
described in Meyer 1988. It is consistent with the general
background of other widely held best practices of object-
oriented design, which are described in such books as Larman
1998.

As a project hits bumps, large or small, developers may find
themselves in situations that make those principles seem
inapplicable. To make the domain-driven design process
resilient, developers need to understand how the well-known
fundamentals support MODEL-DRIVEN DESIGN, so they can
compromise without derailing.

The material in the following three chapters is organized as a
"pattern language" (see Appendix A), which will show how



subtle model distinctions and design decisions affect the
domain-driven design process.

The diagram on the top of the next page is a navigation map.
It shows the patterns that will be presented in this section and
a few of the ways they relate to each other.

Sharing these standard patterns brings order to the design
and makes it easier for team members to understand each
other's work. Using standard patterns also adds to the
UBIQUITOUS LANGUAGE, which all team members can use to
discuss model and design decisions.

Developing a good domain model is an art. But the practical
design and implementation of a model's individual elements
can be relatively systematic. Isolating the domain design from
the mass of other concerns in the software system will greatly
clarify the design's connection to the model. Defining model
elements according to certain distinctions sharpens their
meanings. Following proven patterns for individual elements
helps produce a model that is practical to implement.

A navigation map of the language of MODEL-DRIVEN DESIGN



Elaborate models can cut through complexity only if care is
taken with the fundamentals, resulting in detailed elements
that the team can confidently combine.



Chapter Four. Isolating the Domain
The part of the software that specifically solves problems from the
domain usually constitutes only a small portion of the entire software
system, although its importance is disproportionate to its size. To
apply our best thinking, we need to be able to look at the elements of
our model and see them as a system. We must not be forced to pick
them out of a much larger mix of objects, like trying to identify
constellations in the night sky. We need to decouple the domain
objects from other functions of the system, so we can avoid
confusing the domain concepts with other concepts related only to
software technology or losing sight of the domain altogether in the
mass of the system.

Sophisticated techniques for this isolation have emerged. This is
well-trodden ground, but it is so critical to the successful application
of domain-modeling principles that it must be reviewed briefly, from a
domain-driven point of view. . . .



Layered Architecture

For a shipping application to support the simple user act of selecting
a cargo's destination from a list of cities, there must be program code
that (1) draws a widget on the screen, (2) queries the database for
all the possible cities, (3) interprets the user's input and validates it,
(4) associates the selected city with the cargo, and (5) commits the
change to the database. All of this code is part of the same program,
but only a little of it is related to the business of shipping.

Software programs involve design and code to carry out many
different kinds of tasks. They accept user input, carry out business
logic, access databases, communicate over networks, display
information to users, and so on. So the code involved in each
program function can be substantial.

In an object-oriented program, UI, database, and other support
code often gets written directly into the business objects.



Additional business logic is embedded in the behavior of UI
widgets and data-base scripts. This happens because it is the
easiest way to make things work, in the short run.

When the domain-related code is diffused through such a large
amount of other code, it becomes extremely difficult to see and
to reason about. Superficial changes to the UI can actually
change business logic. To change a business rule may require
meticulous tracing of UI code, database code, or other program
elements. Implementing coherent, model-driven objects
becomes impractical. Automated testing is awkward. With all
the technologies and logic involved in each activity, a program
must be kept very simple or it becomes impossible to
understand.

Creating programs that can handle very complex tasks calls for
separation of concerns, allowing concentration on different parts of
the design in isolation. At the same time, the intricate interactions
within the system must be maintained in spite of the separation.

There are all sorts of ways a software system might be divided, but
through experience and convention, the industry has converged on
LAYERED ARCHITECTURES, and specifically a few fairly standard layers.
The metaphor of layering is so widely used that it feels intuitive to
most developers. Many good discussions of layering are available in
the literature, sometimes in the format of a pattern (as in Buschmann
et al. 1996, pp. 31�51). The essential principle is that any element of
a layer depends only on other elements in the same layer or on
elements of the layers "beneath" it. Communication upward must
pass through some indirect mechanism, which I'll discuss a little
later.

The value of layers is that each specializes in a particular aspect of a
computer program. This specialization allows more cohesive designs
of each aspect, and it makes these designs much easier to interpret.
Of course, it is vital to choose layers that isolate the most important
cohesive design aspects. Again, experience and convention have
led to some convergence. Although there are many variations, most



successful architectures use some version of these four conceptual
layers:

User
Interface (or
Presentation
Layer)

Responsible for showing information to the user and interpreting the user's
commands. The external actor might sometimes be another computer system
rather than a human user.

Application
Layer

Defines the jobs the software is supposed to do and directs the expressive
domain objects to work out problems. The tasks this layer is responsible for are
meaningful to the business or necessary for interaction with the application layers
of other systems.

This layer is kept thin. It does not contain business rules or knowledge, but only
coordinates tasks and delegates work to collaborations of domain objects in the
next layer down. It does not have state reflecting the business situation, but it can
have state that reflects the progress of a task for the user or the program.

Domain
Layer (or
Model Layer)

Responsible for representing concepts of the business, information about the
business situation, and business rules. State that reflects the business situation is
controlled and used here, even though the technical details of storing it are
delegated to the infrastructure. This layer is the heart of business software.

Infrastructure
Layer

Provides generic technical capabilities that support the higher layers: message
sending for the application, persistence for the domain, drawing widgets for the UI,
and so on. The infrastructure layer may also support the pattern of interactions
between the four layers through an architectural framework.

Some projects don't make a sharp distinction between the user
interface and application layers. Others have multiple infrastructure
layers. But it is the crucial separation of the domain layer that
enables MODEL-DRIVEN DESIGN.

Therefore:

Partition a complex program into layers. Develop a design
within each layer that is cohesive and that depends only on the
layers below. Follow standard architectural patterns to provide
loose coupling to the layers above. Concentrate all the code
related to the domain model in one layer and isolate it from the
user interface, application, and infrastructure code. The domain



objects, free of the responsibility of displaying themselves,
storing themselves, managing application tasks, and so forth,
can be focused on expressing the domain model. This allows a
model to evolve to be rich enough and clear enough to capture
essential business knowledge and put it to work.

Separating the domain layer from the infrastructure and user
interface layers allows a much cleaner design of each layer. Isolated
layers are much less expensive to maintain, because they tend to
evolve at different rates and respond to different needs. The
separation also helps with deployment in a distributed system, by
allowing different layers to be placed flexibly in different servers or
clients, in order to minimize communication overhead and improve
performance (Fowler 1996).

Example
 Partitioning Online Banking Functionality

into Layers

An application provides various capabilities for maintaining bank
accounts. One feature is funds transfer, in which the user enters or
chooses two account numbers and an amount of money and then
initiates a transfer.

To make this example manageable, I've omitted major technical
features, most notably security. The domain design is also
oversimplified. (Realistic complexity would only increase the need for
layered architecture.) Furthermore, the particular infrastructure
implied here is meant to be simple and obvious to make the example
clear�it is not a suggested design. The responsibilities of the
remaining functionality would be layered as shown in Figure 4.1.

Figure 4.1. Objects carry out responsibilities consistent
with their layer and are more coupled to other objects in



their layer.

Note that the domain layer, not the application layer, is responsible
for fundamental business rules�in this case, the rule is "Every credit
has a matching debit."

The application also makes no assumptions about the source of the
transfer request. The program presumably includes a UI with entry
fields for account numbers and amounts and with buttons for
commands. But that user interface could be replaced by a wire
request in XML without affecting the application layer or any of the
lower layers. This decoupling is important not because projects
frequently need to replace user interfaces with wire requests but
because a clean separation of concerns keeps the design of each
layer easy to understand and maintain.

In fact, Figure 4.1 itself mildly illustrates the problem of not isolating
the domain. Because everything from the request to transaction
control had to be included, the domain layer had to be dumbed down
to keep the overall interaction simple enough to follow. If we were



focused on the design of the isolated domain layer, we would have
space on the page and in our heads for a model that better
represented the domain's rules, perhaps including ledgers, credit
and debit objects, or monetary transaction objects.

Relating the Layers

So far the discussion has focused on the separation of layers and
the way in which that partitioning improves the design of each aspect
of the program, particularly the domain layer. But of course, the
layers have to be connected. To do this without losing the benefit of
the separation is the motivation behind a number of patterns.

Layers are meant to be loosely coupled, with design dependencies
in only one direction. Upper layers can use or manipulate elements
of lower ones straightforwardly by calling their public interfaces,
holding references to them (at least temporarily), and generally using
conventional means of interaction. But when an object of a lower
level needs to communicate upward (beyond answering a direct
query), we need another mechanism, drawing on architectural
patterns for relating layers such as callbacks or OBSERVERS (Gamma
et al. 1995).

The grandfather of patterns for connecting the UI to the application
and domain layers is MODEL-VIEW-CONTROLLER (MVC). It was
pioneered in the Smalltalk world back in the 1970s and has inspired
many of the UI architectures that followed. Fowler (2002) discusses
this pattern and several useful variations on the theme. Larman
(1998) explores these concerns in the MODEL-VIEW SEPARATION

PATTERN, and his APPLICATION COORDINATOR is one approach to
connecting the application layer.

There are other styles of connecting the UI and the application. For
our purposes, all approaches are fine as long as they maintain the
isolation of the domain layer, allowing domain objects to be designed



without simultaneously thinking about the user interface that might
interact with them.

The infrastructure layer usually does not initiate action in the domain
layer. Being "below" the domain layer, it should have no specific
knowledge of the domain it is serving. Indeed, such technical
capabilities are most often offered as SERVICES. For example, if an
application needs to send an e-mail, some message-sending
interface can be located in the infrastructure layer and the
application layer elements can request the transmission of the
message. This decoupling gives some extra versatility. The
message-sending interface might be connected to an e-mail sender,
a fax sender, or whatever else is available. But the main benefit is
simplifying the application layer, keeping it narrowly focused on its
job: knowing when to send a message, but not burdened with how.

The application and domain layers call on the SERVICES provided by
the infrastructure layer. When the scope of a SERVICE has been well
chosen and its interface well designed, the caller can remain loosely
coupled and uncomplicated by the elaborate behavior the SERVICE

interface encapsulates.

But not all infrastructure comes in the form of SERVICES callable from
the higher layers. Some technical components are designed to
directly support the basic functions of other layers (such as providing
an abstract base class for all domain objects) and provide the
mechanisms for them to relate (such as implementations of MVC
and the like). Such an "architectural framework" has much more
impact on the design of the other parts of the program.

Architectural Frameworks

When infrastructure is provided in the form of SERVICES called on
through interfaces, it is fairly intuitive how the layering works and
how to keep the layers loosely coupled. But some technical
problems call for more intrusive forms of infrastructure. Frameworks



that integrate many infrastructure needs often require the other
layers to be implemented in very particular ways, for example as a
subclass of a framework class or with structured method signatures.
(It may seem counterintuitive for a subclass to be in a layer higher
than that of the parent class, but keep in mind which class reflects
more knowledge of the other.) The best architectural frameworks
solve complex technical problems while allowing the domain
developer to concentrate on expressing a model. But frameworks
can easily get in the way, either by making too many assumptions
that constrain domain design choices or by making the
implementation so heavyweight that development slows down.

Some form of architectural framework usually is needed (though
sometimes teams choose frameworks that don't serve them well).
When applying a framework, the team needs to focus on its goal:
building an implementation that expresses a domain model and uses
it to solve important problems. The team must seek ways of
employing the framework to those ends, even if it means not using
all of the framework's features. For example, early J2EE applications
often implemented all domain objects as "entity beans." This
approach bogged down both performance and the pace of
development. Instead, current best practice is to use the J2EE
framework for larger grain objects, implementing most business logic
with generic Java objects. A lot of the downside of frameworks can
be avoided by applying them selectively to solve difficult problems
without looking for a one-size-fits-all solution. Judiciously applying
only the most valuable of framework features reduces the coupling of
the implementation and the framework, allowing more flexibility in
later design decisions. More important, given how very complicated
many of the current frameworks are to use, this minimalism helps
keep the business objects readable and expressive.

Architectural frameworks and other tools will continue to evolve.
Newer frameworks will automate or prefabricate more and more of
the technical aspects of an application. If this is done right,
application developers will increasingly concentrate their time on
modeling the core business problems, greatly improving productivity



and quality. But as we move in this direction, we must guard against
our enthusiasm for technical solutions; elaborate frameworks can
also straitjacket application developers.



The Domain Layer Is Where the Model Lives

LAYERED ARCHITECTURE is used in most systems today, under various
layering schemes. Many styles of development can also benefit from
layering. However, domain-driven design requires only one particular
layer to exist.

The domain model is a set of concepts. The "domain layer" is the
manifestation of that model and all directly related design elements.
The design and implementation of business logic constitute the
domain layer. In a MODEL-DRIVEN DESIGN, the software constructs of
the domain layer mirror the model concepts.

It is not practical to achieve that correspondence when the domain
logic is mixed with other concerns of the program. Isolating the
domain implementation is a prerequisite for domain-driven design.



The Smart UI "Anti-Pattern"

. . . That sums up the widely accepted LAYERED ARCHITECTURE pattern
for object applications. But this separation of UI, application, and
domain is so often attempted and so seldom accomplished that its
negation deserves a discussion in its own right.

Many software projects do take and should continue to take a much
less sophisticated design approach that I call the SMART UI. But
SMART UI is an alternate, mutually exclusive fork in the road,
incompatible with the approach of domain-driven design. If that road
is taken, most of what is in this book is not applicable. My interest is
in the situations where the SMART UI does not apply, which is why I
call it, with tongue in cheek, an "anti-pattern." Discussing it here
provides a useful contrast and will help clarify the circumstances that
justify the more difficult path taken in the rest of the book.

  

A project needs to deliver simple functionality, dominated by data
entry and display, with few business rules. Staff is not composed of
advanced object modelers.

If an unsophisticated team with a simple project decides to try a
MODEL-DRIVEN DESIGN with LAYERED ARCHITECTURE, it will face a
difficult learning curve. Team members will have to master
complex new technologies and stumble through the process of
learning object modeling (which is challenging, even with the
help of this book!). The overhead of managing infrastructure
and layers makes very simple tasks take longer. Simple projects
come with short time lines and modest expectations. Long
before the team completes the assigned task, much less
demonstrates the exciting possibilities of its approach, the
project will have been canceled.



Even if the team is given more time, the team members are
likely to fail to master the techniques without expert help. And
in the end, if they do surmount these challenges, they will have
produced a simple system. Rich capabilities were never
requested.

A more experienced team would not face the same trade-offs.
Seasoned developers could flatten the learning curve and compress
the time needed to manage the layers. Domain-driven design pays
off best for ambitious projects, and it does require strong skills. Not
all projects are ambitious. Not all project teams can muster those
skills.

Therefore, when circumstances warrant:

Put all the business logic into the user interface. Chop the
application into small functions and implement them as
separate user interfaces, embedding the business rules into
them. Use a relational database as a shared repository of the
data. Use the most automated UI building and visual
programming tools available.

Heresy! The gospel (as advocated everywhere, including else-where
in this book) is that domain and UI should be separate. In fact, it is
difficult to apply any of the methods discussed later in this book
without that separation, and so this SMART UI can be considered an
"anti-pattern" in the context of domain-driven design. Yet it is a
legitimate pattern in some other contexts. In truth, there are
advantages to the SMART UI, and there are situations where it works
best�which partially accounts for why it is so common. Considering it
here helps us understand why we need to separate application from
domain and, importantly, when we might not want to.

Advantages



Productivity is high and immediate for simple applications.

Less capable developers can work this way with little training.

Even deficiencies in requirements analysis can be overcome by
releasing a prototype to users and then quickly changing the
product to fit their requests.

Applications are decoupled from each other, so that delivery
schedules of small modules can be planned relatively
accurately. Expanding the system with additional, simple
behavior can be easy.

Relational databases work well and provide integration at the
data level.

4GL tools work well.

When applications are handed off, maintenance programmers
will be able to quickly redo portions they can't figure out,
because the effects of the changes should be localized to each
particular UI.

Disadvantages

Integration of applications is difficult except through the
database.

There is no reuse of behavior and no abstraction of the business
problem. Business rules have to be duplicated in each operation
to which they apply.



Rapid prototyping and iteration reach a natural limit because the
lack of abstraction limits refactoring options.

Complexity buries you quickly, so the growth path is strictly
toward additional simple applications. There is no graceful path
to richer behavior.

If this pattern is applied consciously, a team can avoid taking on a
great deal of overhead required by other approaches. It is a common
mistake to undertake a sophisticated design approach that the team
isn't committed to carrying all the way through. Another common,
costly mistake is to build a complex infrastructure and use industrial-
strength tools for a project that doesn't need them.

Most flexible languages (such as Java) are overkill for these
applications and will cost dearly. A 4GL-style tool is the way to go.

Remember, one of the consequences of this pattern is that you can't
migrate to another design approach except by replacing entire
applications. Just using a general-purpose language such as Java
won't really put you in a position to later abandon the SMART UI, so if
you've chosen that path, you should choose development tools
geared to it. Don't bother hedging your bet. Just using a flexible
language doesn't create a flexible system, but it may well produce an
expensive one.

By the same token, a team committed to a MODEL-DRIVEN DESIGN

needs to design that way from the outset. Of course, even
experienced project teams with big ambitions have to start with
simple functionality and work their way up through successive
iterations. But those first tentative steps will be MODEL-DRIVEN with an
isolated domain layer, or the project will most likely be stuck with a
SMART UI. The SMART UI is discussed only to clarify why and when a
pattern such as LAYERED ARCHITECTURE is needed in order to isolate a
domain layer.

  



There are other solutions in between SMART UI and LAYERED

ARCHITECTURE. For example, Fowler (2002) describes the
TRANSACTION SCRIPT, which separates UI from application but does not
provide for an object model. The bottom line is this: If the
architecture isolates the domain-related code in a way that allows a
cohesive domain design loosely coupled to the rest of the system,
then that architecture can probably support domain-driven design.

Other development styles have their place, but you must accept
varying limits on complexity and flexibility. Failing to decouple the
domain design can really be disastrous in certain settings. If you
have a complex application and are committing to MODEL-DRIVEN

DESIGN, bite the bullet, get the necessary experts, and avoid the
SMART UI.



Other Kinds of Isolation

Unfortunately, there are influences other than infrastructure and user
interfaces that can corrupt your delicate domain model. You must
deal with other domain components that are not fully integrated into
your model. You have to cope with other development teams who
use different models of the same domain. These and other factors
can blur your model and rob it of its utility. Chapter 14, "Maintaining
Model Integrity," deals with this topic, introducing such patterns as
BOUNDED CONTEXT and ANTICORRUPTION LAYER. A really complicated
domain model can become unwieldy all by itself. Chapter 15,
"Distillation," discusses how to make distinctions within the domain
layer that can unencumber the essential concepts of the domain
from peripheral detail.

But all that comes later. Next, we'll look at the nuts and bolts of co-
evolving an effective domain model and an expressive
implementation. After all, the best part of isolating the domain is
getting all that other stuff out of the way so that we can really focus
on the domain design.



Chapter Five. A Model Expressed in
Software
To compromise in implementation without losing the punch of a
MODEL-DRIVEN DESIGN requires a reframing of the basics. Connecting
model and implementation has to be done at the detail level. This
chapter focuses on those individual model elements, getting them in
shape to support the activities in later chapters.

This discussion will start with the issues of designing and
streamlining associations. Associations between objects are simple
to conceive and to draw, but implementing them is a potential
quagmire. Associations illustrate how crucial detailed implementation
decisions are to the viability of a MODEL-DRIVEN DESIGN.

Turning to the objects themselves, but continuing to scrutinize the
relationship between detailed model choices and implementation
concerns, we'll focus on making distinctions among the three
patterns of model elements that express the model: ENTITIES, VALUE

OBJECTS, and SERVICES.

Defining objects that capture concepts of the domain seems very
intuitive on the surface, but serious challenges are lurking in the
shades of meaning. Certain distinctions have emerged that clarify
the meaning of model elements and tie into a body of design
practices for carving out specific kinds of objects.

Does an object represent something with continuity and
identity�something that is tracked through different states or even
across different implementations? Or is it an attribute that describes
the state of something else? This is the basic distinction between an
ENTITY and a VALUE OBJECT. Defining objects that clearly follow one
pattern or the other makes the objects less ambiguous and lays out
the path toward specific choices for robust design.



Then there are those aspects of the domain that are more clearly
expressed as actions or operations, rather than as objects. Although
it is a slight departure from object-oriented modeling tradition, it is
often best to express these as SERVICES, rather than forcing
responsibility for an operation onto some ENTITY or VALUE OBJECT. A
SERVICE is something that is done for a client on request. In the
technical layers of the software, there are many SERVICES. They
emerge in the domain also, when some activity is modeled that
corresponds to something the software must do, but does not
correspond with state.

There are inevitable situations in which the purity of the object model
must be compromised, such as for storage in a relational database.
This chapter will lay out some guidelines for staying on course when
you are forced to deal with these messy realities.

Finally, a discussion of MODULES will drive home the point that every
design decision should be motivated by some insight into the
domain. The ideas of high cohesion and low coupling, often thought
of as technical metrics, can be applied to the concepts themselves.
In a MODEL-DRIVEN DESIGN, MODULES are part of the model, and they
should reflect concepts in the domain.

This chapter brings together all of these building blocks, which
embody the model in software. These ideas are conventional, and
the modeling and design biases that follow from them have been
written about before. But framing them in this context will help
developers create detailed components that will serve the priorities
of domaindriven design when tackling the larger model and design
issues. Also, a sense of the basic principles will help developers stay
on course through the inevitable compromises.



Associations

The interaction between modeling and implementation is particularly
tricky with the associations between objects.

For every traversable association in the model, there is a mechanism
in the software with the same properties.

A model that shows an association between a customer and a sales
representative corresponds to two things. On one hand, it abstracts
a relationship developers deemed relevant between two real people.
On the other hand, it corresponds to an object pointer between two
Java objects, or an encapsulation of a database lookup, or some
comparable implementation.

For example, a one-to-many association might be implemented as a
collection in an instance variable. But the design is not necessarily
so direct. There may be no collection; an accessor method may
query a database to find the appropriate records and instantiate
objects based on them. Both of these designs would reflect the same
model. The design has to specify a particular traversal mechanism
whose behavior is consistent with the association in the model.

In real life, there are lots of many-to-many associations, and a great
number are naturally bidirectional. The same tends to be true of
early forms of a model as we brainstorm and explore the domain.
But these general associations complicate implementation and
maintenance. Furthermore, they communicate very little about the
nature of the relationship.

There are at least three ways of making associations more tractable.

1. Imposing a traversal direction



Adding a qualifier, effectively reducing multiplicity

Eliminating nonessential associations

It is important to constrain relationships as much as possible. A
bidirectional association means that both objects can be understood
only together. When application requirements do not call for traversal
in both directions, adding a traversal direction reduces
interdependence and simplifies the design. Understanding the
domain may reveal a natural directional bias.

The United States has had many presidents, as have many other
countries. This is a bidirectional, one-to-many relationship. Yet we
seldom would start out with the name "George Washington" and ask,
"Of which country was he president?" Pragmatically, we can reduce
the relationship to a unidirectional association, traversable from
country to president. This refinement actually reflects insight into the
domain, as well as making a more practical design. It captures the
understanding that one direction of the association is much more
meaningful and important than the other. It keeps the "Person" class
independent of the far less fundamental concept of "President."

Figure 5.1. Some traversal directions reflect a natural
bias in the domain.



Very often, deeper understanding leads to a "qualified" relationship.
Looking deeper into presidents, we realize that (except in a civil war,
perhaps) a country has only one president at a time. This qualifier
reduces the multiplicity to one-to-one, and explicitly embeds an
important rule into the model. Who was president of the United
States in 1790? George Washington.

Figure 5.2. Constrained associations communicate more
knowledge and are more practical designs.

Constraining the traversal direction of a many-to-many association
effectively reduces its implementation to one-to-many�a much easier
design.



Consistently constraining associations in ways that reflect the bias of
the domain not only makes those associations more communicative
and simpler to implement, it also gives significance to the remaining
bidirectional associations. When the bidirectionality of a relationship
is a semantic characteristic of the domain, when it's needed for
application functionality, the retention of both traversal directions
conveys that.

Of course, the ultimate simplification is to eliminate an association
altogether, if it is not essential to the job at hand or the fundamental
meaning of the model objects.

Example
 Associations in a Brokerage Account

 

Figure 5.3.

 



One Java implementation of Brokerage Account in this model
would be

public class BrokerageAccount { 
    String accountNumber; 
    Customer customer; 
    Set investments; 
  // Constructors, etc. omitted 
 
  public Customer getCustomer() { 
    return customer; 
  } 
  public Set getInvestments() { 
    return investments; 
  } 
} 

But if we need to fetch the data from a relational database, another
implementation, equally consistent with the model, would be the
following:

Table: BROKERAGE_ACCOUNT

ACCOUNT_NUMBER CUSTOMER_SS_NUMBER

  
  

Table: CUSTOMER

SS_NUMBER NAME

  
  

Table: INVESTMENT



Table: INVESTMENT

ACCOUNT_NUMBER STOCK_SYMBOL AMOUNT

   
   

public class BrokerageAccount { 
  String accountNumber; 
  String customerSocialSecurityNumber; 
 
  // Omit constructors, etc. 
 
  public Customer getCustomer() { 
    String sqlQuery = 
      "SELECT * FROM CUSTOMER WHERE" + 
      
"SS_NUMBER='"+customerSocialSecurityNumber+"'"; 
    return 
QueryService.findSingleCustomerFor(sqlQuery); 
  } 
  public Set getInvestments() { 
    String sqlQuery = 
      "SELECT * FROM INVESTMENT WHERE" + 
      "BROKERAGE_ACCOUNT='"+accountNumber+"'"; 
    return 
QueryService.findInvestmentsFor(sqlQuery); 
  } 
} 

(Note: The QueryService, a utility for fetching rows from the
database and creating objects, is simple for explaining examples, but
it's not necessarily a good design for a real project.)

Let's refine the model by qualifying the association between
Brokerage Account and Investment, reducing its multiplicity. This
says there can be only one investment per stock.



 

Figure 5.4.

 
This wouldn't be true of all business situations (for example, if the
lots need to be tracked), but whatever the particular rules, as
constraints on associations are discovered they should be included
in the model and implementation. They make the model more
precise and the implementation easier to maintain.

The Java implementation could become:

public class BrokerageAccount { 
  String accountNumber; 
  Customer customer; 
  Map investments; 
 
  // Omitting constructors, etc. 
 
  public Customer getCustomer() { 



    return customer; 
  } 
  public Investment getInvestment(String 
stockSymbol) { 
    return 
(Investment)investments.get(stockSymbol); 
  } 
} 

And an SQL-based implementation would be:

public class BrokerageAccount { 
  String accountNumber; 
  String customerSocialSecurityNumber; 
 
  //Omitting constructors, etc. 
  public Customer getCustomer() { 
    String sqlQuery = "SELECT * FROM CUSTOMER 
WHERE SS_NUMBER='" 
      + customerSocialSecurityNumber + "'"; 
    return 
QueryService.findSingleCustomerFor(sqlQuery); 
  } 
  public Investment getInvestment(String 
stockSymbol) { 
    String sqlQuery = "SELECT * FROM INVESTMENT " 
      + "WHERE BROKERAGE_ACCOUNT='" + 
accountNumber + "'" 
      + "AND STOCK_SYMBOL='" + stockSymbol +"'"; 
    return 
QueryService.findInvestmentFor(sqlQuery); 
 
  } 
} 

Carefully distilling and constraining the model's associations will take
you a long way toward a MODEL-DRIVEN DESIGN. Now let's turn to the



objects themselves. Certain distinctions clarify the model while
making for a more practical implementation. . . .



Entities (a.k.a. Reference Objects)

Many objects are not fundamentally defined by their attributes, but
rather by a thread of continuity and identity.

  

A landlady sued me, claiming major damages to her property. The
papers I was served described an apartment with holes in the walls,
stains on the carpet, and a noxious liquid in the sink that gave off
caustic fumes that had made the kitchen wallpaper peel. The court
documents named me as the tenant responsible for the damages,
identifying me by name and by my then-current address. This was
confusing to me, because I had never even visited that ruined place.

After a moment, I realized that it must be a case of mistaken identity.
I called the plaintiff and told her this, but she didn't believe me. The
former tenant had been eluding her for months. How could I prove
that I was not the same person who had cost her so much money? I
was the only Eric Evans in the phone book.

Well, the phone book turned out to be my salvation. Because I had
been living in the same apartment for two years, I asked her if she
still had the previous year's book. After she found it and verified that



my listing was the same (right next to my namesake's listing), she
realized that I was not the person she wanted to sue, apologized,
and promised to drop the case.

Computers are not that resourceful. A case of mistaken identity in a
software system leads to data corruption and program errors.

There are special technical challenges here, which I'll discuss in a
bit, but first let's look at the fundamental issue: Many things are
defined by their identity, and not by any attribute. In our typical
conception, a person (to continue with the nontechnical example)
has an identity that stretches from birth to death and even beyond.
That person's physical attributes transform and ultimately disappear.
The name may change. Financial relationships come and go. There
is not a single attribute of a person that cannot change; yet the
identity persists. Am I the same person I was at age five? This kind
of metaphysical question is important in the search for effective
domain models. Slightly rephrased: Does the user of the application
care if I am the same person I was at age five?

In a software system for tracking accounts due, that modest
"customer" object may have a more colorful side. It accumulates
status by prompt payment or is turned over to a bill-collection agency
for failure to pay. It may lead a double life in another system
altogether when the sales force extracts customer data into its
contact management software. In any case, it is unceremoniously
squashed flat to be stored in a database table. When new business
stops flowing from that source, the customer object will be retired to
an archive, a shadow of its former self.

Each of these forms of the customer is a different implementation
based on a different programming language and technology. But
when a phone call comes in with an order, it is important to know: Is
this the customer who has the delinquent account? Is this the
customer that Jack (a particular sales representative) has been
working with for weeks? Is this a completely new customer?



A conceptual identity has to be matched between multiple
implementations of the objects, its stored forms, and real-world
actors such as the phone caller. Attributes may not match. A sales
representative may have entered an address update into the contact
software, which is just being propagated to accounts due. Two
customer contacts may have the same name. In distributed software,
multiple users could be entering data from different sources, causing
update transactions to propagate through the system to be
reconciled in different databases asynchronously.

Object modeling tends to lead us to focus on the attributes of an
object, but the fundamental concept of an ENTITY is an abstract
continuity threading through a life cycle and even passing through
multiple forms.

Some objects are not defined primarily by their attributes. They
represent a thread of identity that runs through time and often
across distinct representations. Sometimes such an object
must be matched with another object even though attributes
differ. An object must be distinguished from other objects even
though they might have the same attributes. Mistaken identity
can lead to data corruption.

An object defined primarily by its identity is called an ENTITY.[1]

ENTITIES have special modeling and design considerations. They
have life cycles that can radically change their form and content, but
a thread of continuity must be maintained. Their identities must be
defined so that they can be effectively tracked. Their class
definitions, responsibilities, attributes, and associations should
revolve around who they are, rather than the particular attributes
they carry. Even for ENTITIES that don't transform so radically or have
such complicated life cycles, placing them in the semantic category
leads to more lucid models and more robust implementations.

[1] A model ENTITY is not the same thing as a Java "entity bean." Entity beans were
meant as a framework for implementing ENTITIES, more or less, but it hasn't worked
out that way. Most ENTITIES are implemented as ordinary objects. Regardless of



how they are implemented, ENTITIES are a fundamental distinction in a domain
model.

Of course, most "ENTITIES" in a software system are not people or
entities in the usual sense of the word. An ENTITY is anything that has
continuity through a life cycle and distinctions independent of
attributes that are important to the application's user. It could be a
person, a city, a car, a lottery ticket, or a bank transaction.

On the other hand, not all objects in the model are ENTITIES, with
meaningful identities. This issue is confused by the fact that object-
oriented languages build "identity" operations into every object (for
example, the "==" operator in Java). These operations determine if
two references point to the same object by comparing their location
in memory or by some other mechanism. In this sense, every object
instance has identity. In the domain of, say, creating a Java runtime
environment or a technical framework for caching remote objects
locally, every object instance may indeed be an ENTITY. But this
identity mechanism means very little in other application domains.
Identity is a subtle and meaningful attribute of ENTITIES, which can't
be turned over to the automatic features of the language.

Consider transactions in a banking application. Two deposits of the
same amount to the same account on the same day are still distinct
transactions, so they have identity and are ENTITIES. On the other
hand, the amount attributes of those two transactions are probably
instances of some money object. These values have no identity,
since there is no usefulness in distinguishing them. In fact, two
objects can have the same identity without having the same
attributes or even, necessarily, being of the same class. When the
bank customer is reconciling the transactions of the bank statement
with the transactions of the check registry, the task is, specifically, to
match transactions that have the same identity, even though they
were recorded by different people on different dates (the bank
clearing date being later than the date on the check). The purpose of
the check number is to serve as a unique identifier for this purpose,
whether the problem is being handled by a computer program or by
hand. Deposits and cash withdrawals, which don't have an



identifying number, can be trickier, but the same principle applies:
each transaction is an ENTITY, which appears in at least two forms.

It is common for identity to be significant outside a particular
software system, as is the case with the banking transactions and
the apartment tenants. But sometimes the identity is important only
in the context of the system, such as the identity of a computer
process.

Therefore:

When an object is distinguished by its identity, rather than its
attributes, make this primary to its definition in the model. Keep
the class definition simple and focused on life cycle continuity
and identity. Define a means of distinguishing each object
regardless of its form or history. Be alert to requirements that
call for matching objects by attributes. Define an operation that
is guaranteed to produce a unique result for each object,
possibly by attaching a symbol that is guaranteed unique. This
means of identification may come from the outside, or it may be
an arbitrary identifier created by and for the system, but it must
correspond to the identity distinctions in the model. The model
must define what it means to be the same thing.

Identity is not intrinsic to a thing in the world; it is a meaning
superimposed because it is useful. In fact, the same real-world thing
might or might not be represented as an ENTITY in a domain model.

An application for booking seats in a stadium might treat seats and
attendees as ENTITIES. In the case of assigned seating, in which each
ticket has a seat number on it, the seat is an ENTITY. Its identifier is
the seat number, which is unique within the stadium. The seat may
have many other attributes, such as its location, whether the view is
obstructed, and the price, but only the seat number, or a unique row
and position, is used to identify and distinguish seats.

On the other hand, if the event is "general admission," meaning that
ticket holders sit wherever they find an empty seat, there is no need



to distinguish individual seats. Only the total number of seats is
important. Although the seat numbers are still engraved on the
physical seats, there is no need for the software to track them. In
fact, it would be erroneous for the model to associate specific seat
numbers with tickets, because there is no such constraint at a
general admission event. In such a case, seats are not ENTITIES, and
no identifier is needed.

  

Modeling ENTITIES

It is natural to think about the attributes when modeling an object,
and it is quite important to think about its behavior. But the most
basic responsibility of ENTITIES is to establish continuity so that
behavior can be clear and predictable. They do this best if they are
kept spare. Rather than focusing on the attributes or even the
behavior, strip the ENTITY object's definition down to the most intrinsic
characteristics, particularly those that identify it or are commonly
used to find or match it. Add only behavior that is essential to the
concept and attributes that are required by that behavior. Beyond
that, look to remove behavior and attributes into other objects
associated with the core ENTITY. Some of these will be other ENTITIES.
Some will be VALUE OBJECTS, which is the next pattern in this chapter.
Beyond identity issues, ENTITIES tend to fulfill their responsibilities by
coordinating the operations of objects they own.

The customerID is the one and only identifier of the Customer ENTITY

in Figure 5.5, but the phone number and address would often be
used to find or match a Customer. The name does not define a
person's identity, but it is often used as part of the means of
determining it. In this example, the phone and address attributes
moved into Customer, but on a real project, that choice would
depend on how the domain's customers are typically matched or
distinguished. For example, if a Customer has many contact phone



numbers for different purposes, then the phone number is not
associated with identity and should stay with the Sales Contact.

Figure 5.5. Attributes associated with identity stay with
the ENTITY.

Designing the Identity Operation

Each ENTITY must have an operational way of establishing its identity
with another object�distinguishable even from another object with
the same descriptive attributes. An identifying attribute must be
guaranteed to be unique within the system however that system is
defined�even if distributed, even when objects are archived.

As mentioned earlier, object-oriented languages have "identity"
operations that determine if two references point to the same object
by comparing the objects' locations in memory. This kind of identity
tracking is too fragile for our purposes. In most technologies for
persistent storage of objects, every time an object is retrieved from a
database, a new instance is created, and so the initial identity is lost.
Every time an object is transmitted across a network, a new instance
is created on the destination, and once again the identity is lost. The
problem can be even worse when multiple versions of the same



object exist in the system, such as when updates propagate through
a distributed database.

Even with frameworks that simplify these technical problems, the
fundamental issue exists: How do you know that two objects
represent the same conceptual ENTITY? The definition of identity
emerges from the model. Defining identity demands understanding
of the domain.

Sometimes certain data attributes, or combinations of attributes, can
be guaranteed or simply constrained to be unique within the system.
This approach provides a unique key for the ENTITY. Daily
newspapers, for example, might be identified by the name of the
newspaper, the city, and the date of publication. (But watch out for
extra editions and name changes!)

When there is no true unique key made up of the attributes of an
object, another common solution is to attach to each instance a
symbol (such as a number or a string) that is unique within the class.
Once this ID symbol is created and stored as an attribute of the
ENTITY, it is designated immutable. It must never change, even if the
development system is unable to directly enforce this rule. For
example, the ID attribute is preserved as the object gets flattened
into a database and reconstructed. Sometimes a technical
framework helps with this process, but otherwise it just takes
engineering discipline.

Often the ID is generated automatically by the system. The
generation algorithm must guarantee uniqueness within the system,
which can be a challenge with concurrent processing and in
distributed systems. Generating such an ID may require techniques
that are beyond the scope of this book. The goal here is to point out
when the considerations arise, so that developers are aware they
have a problem to solve and know how to narrow down their
concerns to the critical areas. The key is to recognize that identity
concerns hinge on specific aspects of the model. Often, the means
of identification demand a careful study of the domain, as well.



When the ID is automatically generated, the user may never need to
see it. The ID may be needed only internally, such as in a contact
management application that lets the user find records by a person's
name. The program needs to be able to distinguish two contacts with
exactly the same name in a simple, unambiguous way. The unique,
internal IDs let the system do just that. After retrieving the two
distinct items, the system will show two separate contacts to the
user, but the IDs may not be shown. The user will distinguish them
on the basis of their company, their location, and so on.

Finally, there are cases in which a generated ID is of interest to the
user. When I ship a package through a parcel delivery service, I'm
given a tracking number, generated by the shipping company's
software, which I can use to identify and follow up on my package.
When I book airline tickets or reserve a hotel, I'm given confirmation
numbers that are unique identifiers for the transaction.

In some cases, the uniqueness of the ID must apply beyond the
computer system's boundaries. For example, if medical records are
being exchanged between two hospitals that have separate
computer systems, ideally each system will use the same patient ID,
but this is difficult if they generate their own symbol. Such systems
often use an identifier issued by some other institution, typically a
government agency. In the United States, the Social Security number
is often used by hospitals as an identifier for a person. Such
methods are not foolproof. Not everyone has a Social Security
number (children and nonresidents of the United States, especially),
and many people object to its use, for privacy reasons.

In less formal situations (say, video rental), telephone numbers are
used as identifiers. But a telephone can be shared. The number can
change. An old number can even be reassigned to a different
person.

For these reasons, specially assigned identifiers are often used
(such as frequent flier numbers), and other attributes, such as phone
numbers and Social Security numbers, are used to match and verify.
In any case, when the application requires an external ID, the users



of the system become responsible for supplying IDs that are unique,
and the system must give them adequate tools to handle exceptions
that arise.

Given all these technical problems, it is easy to lose sight of the
underlying conceptual problem: What does it mean for two objects to
be the same thing? It is easy enough to stamp each object with an
ID, or to write an operation that compares two instances, but if these
IDs or operations don't correspond to some meaningful distinction in
the domain, they just confuse matters more. This is why identity-
assigning operations often involve human input. Checkbook
reconciliation software, for instance, may offer likely matches, but the
user is expected to make the final determination.



Value Objects

Many objects have no conceptual identity. These objects describe
some characteristic of a thing.

  

When a child is drawing, he cares about the color of the marker he
chooses, and he may care about the sharpness of the tip. But if
there are two markers of the same color and shape, he probably
won't care which one he uses. If a marker is lost and replaced by
another of the same color from a new pack, he can resume his work
unconcerned about the switch.

Ask the child about the various drawings on the refrigerator, and he
will quickly distinguish those he made from those his sister made. He
and his sister have useful identities, as do their completed drawings.
But imagine how complicated it would be if he had to track which
lines in a drawing were made by each marker. Drawing would no
longer be child's play.



Because the most conspicuous objects in a model are usually
ENTITIES, and because it is so important to track each ENTITY's identity,
it is natural to consider assigning an identity to all domain objects.
Indeed, some frameworks assign a unique ID to every object.

The system has to cope with all that tracking, and many possible
performance optimizations are ruled out. Analytical effort is required
to define meaningful identities and work out foolproof ways to track
objects across distributed systems or in database storage. Equally
important, taking on artificial identities is misleading. It muddles the
model, forcing all objects into the same mold.

Tracking the identity of ENTITIES is essential, but attaching
identity to other objects can hurt system performance, add
analytical work, and muddle the model by making all objects
look the same.

Software design is a constant battle with complexity. We must
make distinctions so that special handling is applied only where
necessary.

However, if we think of this category of object as just the
absence of identity, we haven't added much to our toolbox or
vocabulary. In fact, these objects have characteristics of their
own and their own significance to the model. These are the
objects that describe things.

An object that represents a descriptive aspect of the domain with no
conceptual identity is called a VALUE OBJECT. VALUE OBJECTS are
instantiated to represent elements of the design that we care about
only for what they are, not who or which they are.



Is "Address" a VALUE OBJECT? Who's Asking?

In software for a mail-order company, an address is needed to confirm the credit card,
and to address the parcel. But if a roommate also orders from the same company, it is
not important to realize they are in the same location. Address is a VALUE OBJECT.

In software for the postal service, intended to organize delivery routes, the country
could be formed into a hierarchy of regions, cities, postal zones, and blocks,
terminating in individual addresses. These address objects would derive their zip code
from their parent in the hierarchy, and if the postal service decided to reassign postal
zones, all the addresses within would go along for the ride. Here, Address is an
ENTITY.

In software for an electric utility company, an address corresponds to a destination for
the company's lines and service. If roommates each called to order electrical service,
the company would need to realize it. Address is an ENTITY. Alternatively, the model
could associate utility service with a "dwelling," an ENTITY with an attribute of address.
Then Address would be a VALUE OBJECT.

Colors are an example of VALUE OBJECTS that are provided in the base
libraries of many modern development systems; so are strings and
numbers. (You don't care which "4" you have or which "Q".) These
basic examples are simple, but VALUE OBJECTS are not necessarily
simple. For example, a color-mixing program might have a rich
model in which enhanced color objects could be combined to
produce other colors. These colors could have complex algorithms
for collaborating to derive the new resulting VALUE OBJECT.

A VALUE OBJECT can be an assemblage of other objects. In software
for designing house plans, an object could be created for each
window style. This "window style" could be incorporated into a
"window" object, along with height and width, as well as rules
governing how these attributes can be changed and combined.
These windows are intricate VALUE OBJECTS made up of other VALUE

OBJECTS. They in turn would be incorporated into larger elements of a
plan, such as "wall" objects.

VALUE OBJECTS can even reference ENTITIES. For example, if I ask an
online map service for a scenic driving route from San Francisco to



Los Angeles, it might derive a Route object linking L.A. and San
Francisco via the Pacific Coast Highway. That Route object would be
a VALUE, even though the three objects it references (two cities and a
highway) are all ENTITIES.

VALUE OBJECTS are often passed as parameters in messages
between objects. They are frequently transient, created for an
operation and then discarded. VALUE OBJECTS are used as attributes
of ENTITIES (and other VALUES). A person may be modeled as an
ENTITY with an identity, but that person's name is a VALUE.

When you care only about the attributes of an element of the
model, classify it as a VALUE OBJECT. Make it express the meaning
of the attributes it conveys and give it related functionality.
Treat the VALUE OBJECT as immutable. Don't give it any identity
and avoid the design complexities necessary to maintain
ENTITIES.

The attributes that make up a VALUE OBJECT should form a conceptual
whole.[2] For example, street, city, and postal code shouldn't be
separate attributes of a Person object. They are part of a single,
whole address, which makes a simpler Person, and a more coherent
VALUE OBJECT.

[2] The WHOLE VALUE pattern, by Ward Cunningham.

Figure 5.6. A VALUE OBJECT can give information about
an ENTITY. It should be conceptually whole.



  

Designing VALUE OBJECTS

We don't care which instance we have of a VALUE OBJECT. This lack of
constraints gives us design freedom we can use to simplify the
design or optimize performance. This involves making choices about
copying, sharing, and immutability.

If two people have the same name, that does not make them the
same person, or make them interchangeable. But the object
representing the name is interchangeable, because only the spelling
of the name matters. A Name object can be copied from the first
Person object to the second.

In fact, the two Person objects might not need their own name
instances. The same Name object could be shared between the two
Person objects (each with a pointer to the same name instance) with
no change in their behavior or identity. That is, their behavior will be
correct until some change is made to the name of one person. Then
the other person's name would change also! To protect against this,
in order for an object to be shared safely, it must be immutable: it
cannot be changed except by full replacement.



The same issues arise when an object passes one of its attributes to
another object as an argument or return value. Anything could
happen to the wandering object while it is out of control of its owner.
The VALUE could be changed in a way that corrupts the owner, by
violating the owner's invariants. This problem is avoided either by
making the passed object immutable, or by passing a copy.

Creating extra options for performance tuning can be important
because VALUE OBJECTS tend to be numerous. The example of the
house design software hints at this. If each electrical outlet is a
separate VALUE OBJECT, there might be a hundred of them in a single
version of a single house plan. But if all outlets are considered
interchangeable, we could share just one instance of an outlet and
point to it a hundred times (an example of FLYWEIGHT [Gamma et al.
1995]). In large systems, this kind of effect can be multiplied by
thousands, and such an optimization can make the difference
between a usable system and one that slows to a crawl, choked on
millions of redundant objects. This is just one example of an
optimization trick that is not available for ENTITIES.

The economy of copying versus sharing depends on the
implementation environment. Although copies may clog the system
with huge numbers of objects, sharing can slow down a distributed
system. When a copy is passed between two machines, a single
message is sent and the copy lives independently on the receiving
machine. But if a single instance is being shared, only a reference is
passed, requiring a message back to the object for each interaction.

Sharing is best restricted to those cases in which it is most valuable
and least troublesome:

When saving space or object count in the database is critical

When communication overhead is low (such as in a centralized
server)



When the shared object is strictly immutable

Immutability of an attribute or an object can be declared in some
languages and environments but not in others. Such features help
communicate the design decision, but they are not essential. Many
of the distinctions we are making in the model cannot be explicitly
declared in the implementation with most current tools and
programming languages. You can't declare ENTITIES, for example,
and then have an identity operation automatically enforced. But the
lack of direct language support for a conceptual distinction does not
mean that the distinction is not useful. It just means that more
discipline is needed to maintain the rules that will be only implicit in
the implementation. This can be reinforced with naming conventions,
selective documentation, and lots of discussion.

As long as a VALUE OBJECT is immutable, change management is
simple�there isn't any change except full replacement. Immutable
objects can be freely shared, as in the electrical outlet example. If
garbage collection is reliable, deletion is just a matter of dropping all
references to the object. When a VALUE OBJECT is designated
immutable in the design, developers are free to make decisions
about issues such as copying and sharing on a purely technical
basis, secure in the knowledge that the application does not rely on
particular instances of the objects.



Special Cases: When to Allow Mutability

Immutability is a great simplifier in an implementation, making sharing and reference
passing safe. It is also consistent with the meaning of a value. If the value of an
attribute changes, you use a different VALUE OBJECT, rather than modifying the existing
one. Even so, there are cases when performance considerations will favor allowing a
VALUE OBJECT to be mutable. These factors would weigh in favor of a mutable
implementation:

If the VALUE changes frequently

If object creation or deletion is expensive

If replacement (rather than modification) will disturb clustering (as discussed in
the previous example)

If there is not much sharing of VALUES, or if such sharing is forgone to improve
clustering or for some other technical reason

Just to reiterate: If a VALUE's implementation is to be mutable, then it must not be
shared. Whether you will be sharing or not, design VALUE OBJECTS as immutable when
you can.

Defining VALUE OBJECTS and designating them as immutable is a case
of following a general rule: Avoiding unnecessary constraints in a
model leaves developers free to do purely technical performance
tuning. Explicitly defining the essential constraints lets developers
tweak the design while keeping safe from changing meaningful
behavior. Such design tweaks are often very specific to the
technology in use on a particular project.

Example
 Tuning a Database with VALUE OBJECTS

Databases, at the lowest level, have to place data in a physical
location on a disk, and it takes time for physical parts to move
around and read that data. Sophisticated databases attempt to



cluster these physical addresses so that related data can be fetched
from the disk in a single physical operation.

If an object is referenced by many other objects, some of those
objects will not be located nearby (on the same page), requiring an
additional physical operation to get the data. By making a copy,
rather than sharing a reference to the same instance, a VALUE OBJECT

that is acting as an attribute of many ENTITIES can be stored on the
same page as each ENTITY that uses it. This technique of storing
multiple copies of the same data is called denormalization and is
often used when access time is more critical than storage space or
simplicity of maintenance.

In a relational database, you might want to put a particular VALUE in
the table of the ENTITY that owns it, rather than creating an
association to a separate table. In a distributed system, holding a
reference to a VALUE OBJECT on another server will probably make for
slow responses to messages; instead, a copy of the whole object
should be passed to the other server. We can freely make these
copies because we are dealing with VALUE OBJECTS.

Designing Associations That Involve VALUE
OBJECTS

Most of the earlier discussion of associations applies to ENTITIES and
VALUE OBJECTS alike. The fewer and simpler the associations in the
model, the better.

But, while bidirectional associations between ENTITIES may be hard to
maintain, bidirectional associations between two VALUE OBJECTS just
make no sense. Without identity, it is meaningless to say that an
object points back to the same VALUE OBJECT that points to it. The
most you could say is that it points to an object that is equal to the
one pointing to it, but you would have to enforce that invariant
somewhere. And although you could do so, and set up pointers



going both ways, it is hard to think of examples where such an
arrangement would be useful. Try to completely eliminate
bidirectional associations between VALUE OBJECTS. If in the end such
associations seem necessary in your model, rethink the decision to
declare the object a VALUE OBJECT in the first place. Maybe it has an
identity that hasn't been explicitly recognized yet.

ENTITIES and VALUE OBJECTS are the main elements of conventional
object models, but pragmatic designers have come to use one
element, SERVICES. . . .



Services

Sometimes, it just isn't a thing.

In some cases, the clearest and most pragmatic design includes
operations that do not conceptually belong to any object. Rather than
force the issue, we can follow the natural contours of the problem
space and include SERVICES explicitly in the model.

  

There are important domain operations that can't find a natural home
in an ENTITY or VALUE OBJECT. Some of these are intrinsically activities
or actions, not things, but since our modeling paradigm is objects,
we try to fit them into objects anyway.

Now, the more common mistake is to give up too easily on fitting the
behavior into an appropriate object, gradually slipping toward
procedural programming. But when we force an operation into an
object that doesn't fit the object's definition, the object loses its
conceptual clarity and becomes hard to understand or refactor.
Complex operations can easily swamp a simple object, obscuring its
role. And because these operations often draw together many



domain objects, coordinating them and putting them into action, the
added responsibility will create dependencies on all those objects,
tangling concepts that could be understood independently.

Sometimes services masquerade as model objects, appearing as
objects with no meaning beyond doing some operation. These
"doers" end up with names ending in "Manager" and the like. They
have no state of their own nor any meaning in the domain beyond
the operation they host. Still, at least this solution gives these distinct
behaviors a home without messing up a real model object.

Some concepts from the domain aren't natural to model as
objects. Forcing the required domain functionality to be the
responsibility of an ENTITY or VALUE either distorts the definition
of a model-based object or adds meaningless artificial objects.

A SERVICE is an operation offered as an interface that stands alone in
the model, without encapsulating state, as ENTITIES and VALUE

OBJECTS do. SERVICES are a common pattern in technical frameworks,
but they can also apply in the domain layer.

The name service emphasizes the relationship with other objects.
Unlike ENTITIES and VALUE OBJECTS, it is defined purely in terms of
what it can do for a client. A SERVICE tends to be named for an
activity, rather than an entity�a verb rather than a noun. A SERVICE

can still have an abstract, intentional definition; it just has a different
flavor than the definition of an object. A SERVICE should still have a
defined responsibility, and that responsibility and the interface
fulfilling it should be defined as part of the domain model. Operation
names should come from the UBIQUITOUS LANGUAGE or be introduced
into it. Parameters and results should be domain objects.

SERVICES should be used judiciously and not allowed to strip the
ENTITIES and VALUE OBJECTS of all their behavior. But when an
operation is actually an important domain concept, a SERVICE forms a
natural part of a MODEL-DRIVEN DESIGN. Declared in the model as a
SERVICE, rather than as a phony object that doesn't actually



represent anything, the standalone operation will not mislead
anyone.

A good SERVICE has three characteristics.

1. The operation relates to a domain concept that is not a
natural part of an ENTITY or VALUE OBJECT.

The interface is defined in terms of other elements of the domain
model.

The operation is stateless.

Statelessness here means that any client can use any instance of a
particular SERVICE without regard to the instance's individual history.
The execution of a SERVICE will use information that is accessible
globally, and may even change that global information (that is, it may
have side effects). But the SERVICE does not hold state of its own that
affects its own behavior, as most domain objects do.

When a significant process or transformation in the domain is
not a natural responsibility of an ENTITY or VALUE OBJECT, add an
operation to the model as a standalone interface declared as a
SERVICE. Define the interface in terms of the language of the
model and make sure the operation name is part of the
UBIQUITOUS LANGUAGE. Make the SERVICE stateless.

  

SERVICES and the Isolated Domain Layer



This pattern is focused on those SERVICES that have an important
meaning in the domain in their own right, but of course SERVICES are
not used only in the domain layer. It takes care to distinguish
SERVICES that belong to the domain layer from those of other layers,
and to factor responsibilities to keep that distinction sharp.

Most SERVICES discussed in the literature are purely technical and
belong in the infrastructure layer. Domain and application SERVICES

collaborate with these infrastructure SERVICES. For example, a bank
might have an application that sends an e-mail to a customer when
an account balance falls below a specific threshold. The interface
that encapsulates the e-mail system, and perhaps alternate means
of notification, is a SERVICE in the infrastructure layer.

It can be harder to distinguish application SERVICES from domain
SERVICES. The application layer is responsible for ordering the
notification. The domain layer is responsible for determining if a
threshold was met�though this task probably does not call for a
SERVICE, because it would fit the responsibility of an "account" object.
That banking application could be responsible for funds transfers. If
a SERVICE were devised to make appropriate debits and credits for a
funds transfer, that capability would belong in the domain layer.
Funds transfer has a meaning in the banking domain language, and
it involves fundamental business logic. Technical SERVICES should
lack any business meaning at all.

Many domain or application SERVICES are built on top of the
populations of ENTITIES and VALUES, behaving like scripts that
organize the potential of the domain to actually get something done.
ENTITIES and VALUE OBJECTS are often too fine-grained to provide a
convenient access to the capabilities of the domain layer. Here we
encounter a very fine line between the domain layer and the
application layer. For example, if the banking application can convert
and export our transactions into a spreadsheet file for us to analyze,
that export is an application SERVICE. There is no meaning of "file
formats" in the domain of banking, and there are no business rules
involved.



On the other hand, a feature that can transfer funds from one
account to another is a domain SERVICE because it embeds
significant business rules (crediting and debiting the appropriate
accounts, for example) and because a "funds transfer" is a
meaningful banking term. In this case, the SERVICE does not do much
on its own; it would ask the two Account objects to do most of the
work. But to put the "transfer" operation on the Account object would
be awkward, because the operation involves two accounts and some
global rules.

We might like to create a Funds Transfer object to represent the two
entries plus the rules and history around the transfer. But we are still
left with calls to SERVICES in the interbank networks. What's more, in
most development systems, it is awkward to make a direct interface
between a domain object and external resources. We can dress up
such external SERVICES with a FACADE that takes inputs in terms of the
model, perhaps returning a Funds Transfer object as its result. But
whatever intermediaries we might have, and even though they don't
belong to us, those SERVICES are carrying out the domain
responsibility of funds transfer.

Partitioning Services into Layers

Application Funds Transfer App Service

Digests input (such as an XML request).

Sends message to domain service for fulfillment.

Listens for confirmation.

Decides to send notification using infrastructure service.

Domain Funds Transfer Domain Service

Interacts with necessary Account and Ledger objects, making appropriate
debits and credits.

Supplies confirmation of result (transfer allowed or not, and so on).



Partitioning Services into Layers

Infrastructure Send Notification Service

Sends e-mails, letters, and other communications as directed by the
application.

Granularity

Although this pattern discussion has emphasized the expressiveness
of modeling a concept as a SERVICE, the pattern is also valuable as a
means of controlling granularity in the interfaces of the domain layer,
as well as decoupling clients from the ENTITIES and VALUE OBJECTS.

Medium-grained, stateless SERVICES can be easier to reuse in large
systems because they encapsulate significant functionality behind a
simple interface. Also, fine-grained objects can lead to inefficient
messaging in a distributed system.

As previously discussed, fine-grained domain objects can contribute
to knowledge leaks from the domain into the application layer, where
the domain object's behavior is coordinated. The complexity of a
highly detailed interaction ends up being handled in the application
layer, allowing domain knowledge to creep into the application or
user interface code, where it is lost from the domain layer. The
judicious introduction of domain services can help maintain the bright
line between layers.

This pattern favors interface simplicity over client control and
versatility. It provides a medium grain of functionality very useful in
packaging components of large or distributed systems. And
sometimes a SERVICE is the most natural way to express a domain
concept.



Access to SERVICES

Distributed system architectures, such as J2EE and CORBA, provide
special publishing mechanisms for SERVICES, with conventions for
their use, and they add distribution and access capabilities. But such
frameworks are not always in use on a project, and even when they
are, they are likely to be overkill when the motivation is just a logical
separation of concerns.

The means of providing access to a SERVICE is not as important as
the design decision to carve off specific responsibilities. A "doer"
object may be satisfactory as an implementation of a SERVICE's
interface. A simple SINGLETON (Gamma et al. 1995) can be written
easily to provide access. Coding conventions can make it clear that
these objects are just delivery mechanisms for SERVICE interfaces,
and not meaningful domain objects. Elaborate architectures should
be used only when there is a real need to distribute the system or
otherwise draw on the framework's capabilities.



Modules (a.k.a. Packages)

MODULES are an old, established design element. There are technical
considerations, but cognitive overload is the primary motivation for
modularity. MODULES give people two views of the model: They can
look at detail within a MODULE without being overwhelmed by the
whole, or they can look at relationships between MODULES in views
that exclude interior detail.

The MODULES in the domain layer should emerge as a meaningful
part of the model, telling the story of the domain on a larger scale.

  

Everyone uses MODULES, but few treat them as a full-fledged part
of the model. Code gets broken down into all sorts of
categories, from aspects of the technical architecture to
developers' work assignments. Even developers who refactor a
lot tend to content themselves with MODULES conceived early in
the project.

It is a truism that there should be low coupling between MODULES
and high cohesion within them. Explanations of coupling and
cohesion tend to make them sound like technical metrics, to be
judged mechanically based on the distributions of associations
and interactions. Yet it isn't just code being divided into
MODULES, but concepts. There is a limit to how many things a
person can think about at once (hence low coupling).
Incoherent fragments of ideas are as hard to understand as an
undifferentiated soup of ideas (hence high cohesion).

Low coupling and high cohesion are general design principles that
apply as much to individual objects as to MODULES, but they are
particularly important at this larger grain of modeling and design.
These terms have been around for a long time; one patterns-style
explanation can be found in Larman 1998.



Whenever two model elements are separated into different modules,
the relationships between them become less direct than they were,
which increases the overhead of understanding their place in the
design. Low coupling between MODULES minimizes this cost, and
makes it possible to analyze the contents of one MODULE with a
minimum of reference to others that interact.

At the same time, the elements of a good model have synergy, and
well-chosen MODULES bring together elements of the model with
particularly rich conceptual relationships. This high cohesion of
objects with related responsibilities allows modeling and design work
to concentrate within a single MODULE, a scale of complexity a human
mind can easily handle.

MODULES and the smaller elements should coevolve, but typically
they do not. MODULES are chosen to organize an early form of the
objects. After that, the objects tend to change in ways that keep
them in the bounds of the existing MODULE definition. Refactoring
MODULES is more work and more disruptive than refactoring classes,
and probably can't be as frequent. But just as model objects tend to
start out naive and concrete and then gradually transform to reveal
deeper insight, MODULES can become subtle and abstract. Letting the
MODULES reflect changing understanding of the domain will also allow
more freedom for the objects within them to evolve.

Like everything else in a domain-driven design, MODULES are a
communications mechanism. The meaning of the objects being
partitioned needs to drive the choice of MODULES. When you place
some classes together in a MODULE, you are telling the next
developer who looks at your design to think about them together. If
your model is telling a story, the MODULES are chapters. The name of
the MODULE conveys its meaning. These names enter the UBIQUITOUS

LANGUAGE. "Now let's talk about the 'customer' module," you might
say to a business expert, and the context is set for your
conversation.

Therefore:



Choose MODULES that tell the story of the system and contain a
cohesive set of concepts. This often yields low coupling
between MODULES, but if it doesn't, look for a way to change the
model to disentangle the concepts, or search for an overlooked
concept that might be the basis of a MODULE that would bring the
elements together in a meaningful way. Seek low coupling in the
sense of concepts that can be understood and reasoned about
independently of each other. Refine the model until it partitions
according to highlevel domain concepts and the corresponding
code is decoupled as well.

Give the MODULES names that become part of the UBIQUITOUS
LANGUAGE. MODULES and their names should reflect insight into
the domain.

Looking at conceptual relationships is not an alternative to technical
measures. They are different levels of the same issue, and both
have to be accomplished. But model-focused thinking produces a
deeper solution, rather than an incidental one. And when there has
to be a trade-off, it is best to go with the conceptual clarity, even if it
means more references between MODULES or occasional ripple
effects when changes are made to a MODULE. Developers can handle
these problems if they understand the story the model is telling them.

  

Agile MODULES

MODULES need to coevolve with the rest of the model. This means
refactoring MODULES right along with the model and code. But this
refactoring often doesn't happen. Changing MODULES tends to require
widespread updates to the code. Such changes can be disruptive to
team communication and can even throw a monkey wrench into
development tools, such as source code control systems. As a
result, MODULE structures and names often reflect much earlier forms
of the model than the classes do.



Inevitable early mistakes in MODULE choices lead to high coupling,
which makes it hard to refactor. The lack of refactoring just keeps
increasing the inertia. It can only be overcome by biting the bullet
and reorganizing MODULES based on experience of where the trouble
spots lie.

Some development tools and programming systems exacerbate the
problem. Whatever development technology the implementation will
be based on, we need to look for ways of minimizing the work of
refactoring MODULES, and minimizing clutter in communicating to
other developers.

Example
 Package Coding Conventions in Java

In Java, imports (dependencies) must be declared in some individual
class. A modeler probably thinks of packages as depending on other
packages, but this can't be stated in Java. Common coding
conventions encourage the import of specific classes, resulting in
code like this:

ClassA1 
import packageB.ClassB1; 
import packageB.ClassB2; 
import packageB.ClassB3; 
import packageC.ClassC1; 
import packageC.ClassC2; 
import packageC.ClassC3; 
. . . 

In Java, unfortunately, there is no escape from importing into
individual classes, but you can at least import entire packages at a
time, reflecting the intention that packages are highly cohesive units
while simultaneously reducing the effort of changing package names.



ClassA1 
import packageB.*; 
import packageC.*; 
. . . 

True, this technique means mixing two scales (classes depend on
packages), but it communicates more than the previous voluminous
list of classes�it conveys the intent to create a dependency on
particular MODULES.

If an individual class really does depend on a specific class in
another package, and the local MODULE doesn't seem to have a
conceptual dependency on the other MODULE, then maybe a class
should be moved, or the MODULES themselves should be
reconsidered.

The Pitfalls of Infrastructure-Driven
Packaging

Strong forces on our packaging decisions come from technical
frameworks. Some of these are helpful, while others need to be
resisted.

An example of a very useful framework standard is the enforcement
of LAYERED ARCHITECTURE by placing infrastructure and user interface
code into separate groups of packages, leaving the domain layer
physically separated into its own set of packages.

On the other hand, tiered architectures can fragment the
implementation of the model objects. Some frameworks create tiers
by spreading the responsibilities of a single domain object across
multiple objects and then placing those objects in separate
packages. For example, with J2EE a common practice is to place
data and data access into an "entity bean" while placing associated
business logic into a "session bean." In addition to the increased



implementation complexity of each component, the separation
immediately robs an object model of cohesion. One of the most
fundamental concepts of objects is to encapsulate data with the logic
that operates on that data. This kind of tiered implementation is not
fatal, because both components can be viewed as together
constituting the implementation of a single model element, but to
make matters worse, the entity and session beans are often
separated into different packages. At that point, viewing the various
objects and mentally fitting them back together as a single
conceptual ENTITY is just too much effort. We lose the connection
between the model and design. Best practice is to use EJBs at a
larger grain than ENTITY objects, reducing the downside of separating
tiers. But fine-grain objects are often split into tiers also.

For example, I encountered these problems on a rather intelligently
run project in which each conceptual object was actually broken into
four tiers. Each division had a good rationale. The first tier was a
data persistence layer, handling mapping and access to the
relational database. Then came a layer that handled behavior
intrinsic to the object in all situations. Next was a layer for
superimposing application-specific functionality. The fourth tier was
meant as a public interface, decoupled from all the implementation
below. This scheme was a bit too complicated, but the layers were
well defined and there was some tidiness to the separation of
concerns. We could have lived with mentally connecting all the
physical objects making up one conceptual object. The separation of
aspects even helped at times. In particular, having the persistence
code moved out removed a lot of clutter.

But on top of all this, the framework required each tier to be in a
separate set of packages, named according to a convention that
identified the tier. This took up all the mental room for partitioning. As
a result, domain developers tended to avoid making too many
MODULES (each of which was multiplied by four) and hardly ever
changed one, because the effort of refactoring a MODULE was
prohibitive. Worse, hunting down all the data and behavior that
defined a single conceptual class was so difficult (combined with the



indirectness of the layering) that developers didn't have much mental
space left to think about models. The application was delivered, but
with an anemic domain model that basically fulfilled the database
access requirements of the application, with behavior supplied by a
few SERVICES. The leverage that should have derived from MODEL-

DRIVEN DESIGN was limited because the code did not transparently
reveal the model and allow a developer to work with it.

This kind of framework design is attempting to address two
legitimate issues. One is the logical division of concerns: One object
has responsibility for database access, another for business logic,
and so on. Such divisions make it easier to understand the
functioning of each tier (on a technical level) and make it easier to
switch out layers. The trouble is that the cost to application
development is not recognized. This is not a book on framework
design, so I won't go into alternative solutions to that problem, but
they do exist. And even if there were no options, it would be better to
trade off these benefits for a more cohesive domain layer.

The other motivation for these packaging schemes is the distribution
of tiers. This could be a strong argument if the code actually got
deployed on different servers. Usually it does not. The flexibility is
sought just in case it is needed. On a project that hopes to get
leverage from MODEL-DRIVEN DESIGN, this sacrifice is too great unless it
solves an immediate and pressing problem.

Elaborate technically driven packaging schemes impose two costs.

If the framework's partitioning conventions pull apart the
elements implementing the conceptual objects, the code no
longer reveals the model.

There is only so much partitioning a mind can stitch back
together, and if the framework uses it all up, the domain
developers lose their ability to chunk the model into meaningful
pieces.



It is best to keep things simple. Choose a minimum of technical
partitioning rules that are essential to the technical environment or
actually aid development. For example, decoupling complicated data
persistence code from the behavioral aspects of the objects may
make refactoring easier.

Unless there is a real intention to distribute code on different
servers, keep all the code that implements a single conceptual
object in the same MODULE, if not the same object.

We could have come to the same conclusion by drawing on the old
standard, "high cohesion/low coupling." The connections between an
"object" implementing the business logic and the one responsible for
database access are so extensive that the coupling is very high.

There are other pitfalls where framework design or just conventions
of a company or project can undermine MODEL-DRIVEN DESIGN by
obscuring the natural cohesion of the domain objects, but the bottom
line is the same. The restrictions, or just the large number of required
packages, rules out the use of other packaging schemes that are
tailored to the needs of the domain model.

Use packaging to separate the domain layer from other code.
Otherwise, leave as much freedom as possible to the domain
developers to package the domain objects in ways that support
their model and design choices.

One exception arises when code is generated based on a
declarative design (discussed in Chapter 10). In that case, the
developers do not need to read the code, and it is better to put it into
a separate package so that it is out of the way, not cluttering up the
design elements developers actually have to work with.

Modularity becomes more critical as the design gets bigger and
more complex. This section presents the basic considerations. Much
of Part IV, "Strategic Design," provides approaches to packaging and
breaking down big models and designs, and ways to give people
focal points to guide understanding.



Each concept from the domain model should be reflected in an
element of implementation. The ENTITIES, VALUE OBJECTS, and their
associations, along with a few domain SERVICES and the organizing
MODULES, are points of direct correspondence between the
implementation and the model. The objects, pointers, and retrieval
mechanisms in the implementation must map to model elements
straightforwardly, obviously. If they do not, clean up the code, go
back and change the model, or both.

Resist the temptation to add anything to the domain objects that
does not closely relate to the concepts they represent. These design
elements have their job to do: they express the model. There are
other domain-related responsibilities that must be carried out and
other data that must be managed in order to make the system work,
but they don't belong in these objects. In Chapter 6, I will discuss
some supporting objects that fulfill the technical responsibilities of
the domain layer, such as defining database searches and
encapsulating complex object creation.

The four patterns in this chapter provide the building blocks for an
object model. But MODEL-DRIVEN DESIGN does not necessarily mean
forcing everything into an object mold. There are also other model
paradigms supported by tools, such as rules engines. Projects have
to make pragmatic trade-offs between them. These other tools and
techniques are means to the end of a MODEL-DRIVEN DESIGN, not
alternatives to it.



Modeling Paradigms

MODEL-DRIVEN DESIGN calls for an implementation technology in tune
with the particular modeling paradigm being applied. Many such
paradigms have been experimented with, but only a few have been
widely used in practice. At present, the dominant paradigm is object-
oriented design, and most complex projects these days set out to
use objects. This predominance has come about for a variety of
reasons: some factors are intrinsic to objects, some are
circumstantial, and others derive from the advantages that come
from wide usage itself.

Why the Object Paradigm Predominates

Many of the reasons teams choose the object paradigm are not
technical, or even intrinsic to objects. But right out of the gate, object
modeling does strike a nice balance of simplicity and sophistication.

If a modeling paradigm is too esoteric, not enough developers will
master it, and they will use it badly. If the nontechnical members of
the team can't grasp at least the rudiments of the paradigm, they will
not understand the model, and the UBIQUITOUS LANGUAGE will be lost.
The fundamentals of object-oriented design seem to come naturally
to most people. Although some developers miss the subtleties of
modeling, even nontechnologists can follow a diagram of an object
model.

Yet, simple as the concept of object modeling is, it has proven rich
enough to capture important domain knowledge. And it has been
supported from the outset by development tools that allowed a
model to be expressed in software.

Today, the object paradigm also has some significant circumstantial
advantages deriving from maturity and widespread adoption. Without



mature infrastructure and tool support, a project can get sidetracked
into technological R&D, delaying and diverting resources away from
application development and introducing technical risks. Some
technologies don't play well with others, and it may not be possible to
integrate them with industry-standard solutions, forcing the team to
reinvent common utilities. But over the years, many of these
problems have been solved for objects, or made irrelevant by
widespread adoption. (Now it falls on other approaches to integrate
with mainstream object technology.) Most new technologies provide
the means to integrate with the popular object-oriented platforms.
This makes integration easier and even leaves open the option of
mixing in subsystems based on other modeling paradigms (which we
will discuss later in this chapter).

Equally important is the maturity of the developer community and the
design culture itself. A project that adopts a novel paradigm may be
unable to find developers with expertise in the technology, or with the
experience to create effective models in the chosen paradigm. It may
not be feasible to educate developers in a reasonable amount of
time because the patterns for making the most of the paradigm and
technology haven't gelled yet. Perhaps the pioneers of the field are
effective but haven't yet published their insights in an accessible
form.

Objects are already understood by a community of thousands of
developers, project managers, and all the other specialists involved
in project work.

A story from an object-oriented project of only a decade ago
illustrates the risks of working in an immature paradigm. In the early
1990s, this project committed itself to several cutting-edge
technologies, including use of an object-oriented database on a large
scale. It was exciting. People on the team would proudly tell visitors
that we were deploying the biggest database this technology had
ever supported. When I joined the project, different teams were
spinning out object-oriented designs and storing their objects in the
database effortlessly. But gradually the realization crept upon us that



we were beginning to absorb a significant fraction of the database's
capacity�with test data! The actual database would be dozens of
times larger. The actual transaction volume would be dozens of
times higher. Was it impossible to use this technology for this
application? Had we used it improperly? We were out of our depth.

Fortunately, we were able to bring onto the team one of a handful of
people in the world with the skills to extricate us from the problem.
He named his price and we paid it. There were three sources of the
problem. First, the off-the-shelf infrastructure provided with the
database simply didn't scale up to our needs. Second, storage of
fine-grained objects turned out to be much more costly than we had
realized. Third, parts of the object model had such a tangle of
interdependencies that contention became a problem with a
relatively small number of concurrent transactions.

With the help of this hired expert, we enhanced the infrastructure.
The team, now aware of the impact of fine-grained objects, began to
find models that worked better with this technology. All of us
deepened our thinking about the importance of limiting the web of
relationships in a model, and we began applying this new
understanding to making better models with more decoupling
between closely interrelated aggregates.

Several months were lost in this recovery, in addition to the earlier
months spent going down a failed path. And this had not been the
team's first setback resulting from the immaturity of the chosen
technologies and our own lack of experience with the associated
learning curve. Sadly, this project eventually retrenched and became
quite conservative. To this day they use the exotic technologies, but
for cautiously scoped applications that probably don't really benefit
from them.

A decade later, object-oriented technology is relatively mature. Most
common infrastructure needs can be met with off-the-shelf solutions
that have been used in the field. Mission-critical tools come from
major vendors, often multiple vendors, or from stable open-source
projects. Many of these infrastructure pieces themselves are used



widely enough that there is a base of people who already understand
them, as well as books explaining them, and so forth. The limitations
of these established technologies are fairly well understood, so that
knowledgeable teams are less likely to overreach.

Other interesting modeling paradigms just don't have this maturity.
Some are too hard to master and will never be used outside small
specialties. Others have potential, but the technical infrastructure is
still patchy or shaky, and few people understand the subtleties of
creating good models for them. These may come of age, but they
are not ready for most projects.

This is why, for the present, most projects attempting MODEL-DRIVEN

DESIGN are wise to use object-oriented technology as the core of their
system. They will not be locked into an object-only system�because
objects have become the mainstream of the industry, integration
tools are available to connect with almost any other technology in
current use.

Yet this doesn't mean that people should restrict themselves to
objects forever. Traveling with the crowd provides some safety, but it
isn't always the way to go. Object models address a large number of
practical software problems, but there are domains that are not
natural to model as discrete packets of encapsulated behavior. For
example, domains that are intensely mathematical or that are
dominated by global logical reasoning do not fit well into the object-
oriented paradigm.

Nonobjects in an Object World

A domain model does not have to be an object model. There are
MODEL-DRIVEN DESIGNS implemented in Prolog, for example, with a
model made up of logical rules and facts. Model paradigms have
been conceived to address certain ways people like to think about
domains. Then the models of those domains are shaped by the
paradigm. The result is a model that conforms to the paradigm so



that it can be effectively implemented in the tools that support that
modeling style.

Whatever the dominant model paradigm may be on a project, there
are bound to be parts of the domain that would be much easier to
express in some other paradigm. When there are just a few
anomalous elements of a domain that otherwise works well in a
paradigm, developers can live with a few awkward objects in an
otherwise consistent model. (Or, on the other extreme, if the greater
part of the problem domain is more naturally expressed in a
particular other paradigm, it may make sense to switch paradigms
altogether and choose a different implementation platform.) But
when major parts of the domain seem to belong to different
paradigms, it is intellectually appealing to model each part in a
paradigm that fits, using a mixture of tool sets to support
implementation. When the interdependence is small, a subsystem in
the other paradigm can be encapsulated, such as a complex math
calculation that simply needs to be called by an object. Other times
the different aspects are more intertwined, such as when the
interaction of the objects depends on some mathematical
relationships.

This is what motivates the integration into object systems of such
nonobject components as business rules engines and workflow
engines. Mixing paradigms allows developers to model particular
concepts in the style that fits best. Furthermore, most systems must
use some nonobject technical infrastructure, most commonly
relational databases. But making a coherent model that spans
paradigms is hard, and making the supporting tools coexist is
complicated. When developers can't clearly see a coherent model
embodied in the software, MODEL-DRIVEN DESIGN can go out the
window, even as this mixture increases the need for it.

Sticking with MODEL-DRIVEN DESIGN When
Mixing Paradigms



Rules engines will serve as an example of a technology sometimes
mixed into an object-oriented application development project. A
knowledge-rich domain model probably contains explicit rules, yet
the object paradigm lacks specific semantics for stating rules and
their interactions. Although rules can be modeled as objects, and
often are successfully, object encapsulation makes it awkward to
apply global rules that cross the whole system. Rules engine
technology is appealing because it promises to provide a more
natural and declarative way to define rules, effectively allowing the
rules paradigm to be mixed into the object paradigm. The logic
paradigm is well developed and powerful, and it seems like a good
complement to the strengths and weaknesses of objects.

But people don't always get what they hope for out of rules engines.
Some products just don't work very well. Some lack a seamless view
that can show the relatedness of model concepts that run between
the two implementation environments. One common outcome is an
application fractured in two: a static data storage system using
objects, and an ad hoc rules processing application that has lost
almost all connection with the object model.

It is important to continue to think in terms of models while working
with rules. The team has to find a single model that can work with
both implementation paradigms. This is not easy, but it should be
possible if the rules engine allows expressive implementation.
Otherwise, the data and the rules become unconnected. The rules in
the engine end up more like little programs than conceptual rules in
the domain model. With tight, clear relationships between the rules
and the objects, the meaning of both pieces is retained.

Without a seamless environment, it falls on the developers to distill a
model made up of clear, fundamental concepts to hold the whole
design together.

The most effective tool for holding the parts together is a robust
UBIQUITOUS LANGUAGE that underlies the whole heterogeneous model.
Consistently applying names in the two environments and exercising
those names in the UBIQUITOUS LANGUAGE can help bridge the gap.



This is a topic that deserves a book of its own. The goal of this
section is merely to show that it isn't necessary to give up MODEL-

DRIVEN DESIGN, and that it is worth the effort to keep it.

Although a MODEL-DRIVEN DESIGN does not have to be object oriented,
it does depend on having an expressive implementation of the model
constructs, be they objects, rules, or workflows. If the available tool
does not facilitate that expressiveness, reconsider the choice of
tools. An unexpressive implementation negates the advantage of the
extra paradigm.

Here are four rules of thumb for mixing nonobject elements into a
predominantly object-oriented system:

Don't fight the implementation paradigm. There's always another
way to think about a domain. Find model concepts that fit the
paradigm.

Lean on the ubiquitous language. Even when there is no
rigorous connection between tools, very consistent use of
language can keep parts of the design from diverging.

Don't get hung up on UML. Sometimes the fixation on a tool,
such as UML diagramming, leads people to distort the model to
make it fit what can easily be drawn. For example, UML does
have some features for representing constraints, but they are
not always sufficient. Some other style of drawing (perhaps
conventional for the other paradigm), or simple English
descriptions, are better than tortuous adaptation of a drawing
style intended for a certain view of objects.

Be skeptical. Is the tool really pulling its weight? Just because
you have some rules, that doesn't necessarily mean you need
the overhead of a rules engine. Rules can be expressed as
objects, perhaps a little less neatly; multiple paradigms
complicate matters enormously.



Before taking on the burden of mixed paradigms, the options within
the dominant paradigm should be exhausted. Even though some
domain concepts don't present themselves as obvious objects, they
often can be modeled within the paradigm. Chapter 9 will discuss the
modeling of unconventional types of concepts using object
technology

The relational paradigm is a special case of paradigm mixing. The
most common nonobject technology, the relational database is also
more intimately related to the object model than other components,
because it acts as the persistent store of the data that makes up the
objects themselves. Storing object data in relational databases will
be discussed in Chapter 6, along with the many other challenges of
the object life cycle.



Chapter Six. The Life Cycle of a
Domain Object
Every object has a life cycle. An object is born, it likely goes through
various states, and it eventually dies�being either archived or
deleted. Of course, many of these are simple, transient objects,
created with an easy call to their constructor, used in some
computation, and then abandoned to the garbage collector. There is
no need to complicate such objects. But other objects have longer
lives, not all of which are spent in active memory. They have
complex interdependencies with other objects. They go through
changes of state to which invariants apply. Managing these objects
presents challenges that can easily derail an attempt at MODEL-DRIVEN

DESIGN.

Figure 6.1. The life cycle of a domain object

The challenges fall into two categories.



1. Maintaining integrity throughout the life cycle

Preventing the model from getting swamped by the complexity of
managing the life cycle

This chapter will address these issues through three patterns. First,
AGGREGATES tighten up the model itself by defining clear ownership
and boundaries, avoiding a chaotic, tangled web of objects. This
pattern is crucial to maintaining integrity in all phases of the life
cycle.

Next, the focus turns to the beginning of the life cycle, using
FACTORIES to create and reconstitute complex objects and
AGGREGATES, keeping their internal structure encapsulated. Finally,
REPOSITORIES address the middle and end of the life cycle, providing
the means of finding and retrieving persistent objects while
encapsulating the immense infrastructure involved.

Although REPOSITORIES and FACTORIES do not themselves come from
the domain, they have meaningful roles in the domain design. These
constructs complete the MODEL-DRIVEN DESIGN by giving us accessible
handles on the model objects.

Modeling AGGREGATES and adding FACTORIES and REPOSITORIES to the
design gives us the ability to manipulate the model objects
systematically and in meaningful units throughout their life cycle.
AGGREGATES mark off the scope within which invariants have to be
maintained at every stage of the life cycle. FACTORIES and
REPOSITORIES operate on AGGREGATES, encapsulating the complexity
of specific life cycle transitions.



Aggregates

Minimalist design of associations helps simplify traversal and limit
the explosion of relationships somewhat, but most business domains
are so interconnected that we still end up tracing long, deep paths
through object references. In a way, this tangle reflects the realities
of the world, which seldom obliges us with sharp boundaries. It is a
problem in a software design.

Say you were deleting a Person object from a database. Along with
the person go a name, birth date, and job description. But what
about the address? There could be other people at the same
address. If you delete the address, those Person objects will have
references to a deleted object. If you leave it, you accumulate junk
addresses in the database. Automatic garbage collection could



eliminate the junk addresses, but that technical fix, even if available
in your database system, ignores a basic modeling issue.

Even when considering an isolated transaction, the web of
relationships in a typical object model gives no clear limit to the
potential effect of a change. It is not practical to refresh every object
in the system, just in case there is some dependency.

The problem is acute in a system with concurrent access to the
same objects by multiple clients. With many users consulting and
updating different objects in the system, we have to prevent
simultaneous changes to interdependent objects. Getting the scope
wrong has serious consequences.

It is difficult to guarantee the consistency of changes to objects
in a model with complex associations. Invariants need to be
maintained that apply to closely related groups of objects, not
just discrete objects. Yet cautious locking schemes cause
multiple users to interfere pointlessly with each other and make
a system unusable.

Put another way, how do we know where an object made up of other
objects begins and ends? In any system with persistent storage of
data, there must be a scope for a transaction that changes data, and
a way of maintaining the consistency of the data (that is, maintaining
its invariants). Databases allow various locking schemes, and tests
can be programmed. But these ad hoc solutions divert attention
away from the model, and soon you are back to hacking and hoping.

In fact, finding a balanced solution to these kinds of problems calls
for deeper understanding of the domain, this time extending to
factors such as the frequency of change between the instances of
certain classes. We need to find a model that leaves high-contention
points looser and strict invariants tighter.

Although this problem surfaces as technical difficulties in database
transactions, it is rooted in the model�in its lack of defined
boundaries. A solution driven from the model will make the model



easier to understand and make the design easier to communicate.
As the model is revised, it will guide our changes to the
implementation.

Schemes have been developed for defining ownership relationships
in the model. The following simple but rigorous system, distilled from
those concepts, includes a set of rules for implementing transactions
that modify the objects and their owners.[1]

[1] David Siegel devised and used this system on projects in the 1990s but has not
published it.

First we need an abstraction for encapsulating references within the
model. An AGGREGATE is a cluster of associated objects that we treat
as a unit for the purpose of data changes. Each AGGREGATE has a
root and a boundary. The boundary defines what is inside the
AGGREGATE. The root is a single, specific ENTITY contained in the
AGGREGATE. The root is the only member of the AGGREGATE that
outside objects are allowed to hold references to, although objects
within the boundary may hold references to each other. ENTITIES other
than the root have local identity, but that identity needs to be
distinguishable only within the AGGREGATE, because no outside object
can ever see it out of the context of the root ENTITY.

A model of a car might be used in software for an auto repair shop.
The car is an ENTITY with global identity: we want to distinguish that
car from all other cars in the world, even very similar ones. We can
use the vehicle identification number for this, a unique identifier
assigned to each new car. We might want to track the rotation history
of the tires through the four wheel positions. We might want to know
the mileage and tread wear of each tire. To know which tire is which,
the tires must be identified ENTITIES also. But it is very unlikely that we
care about the identity of those tires outside of the context of that
particular car. If we replace the tires and send the old ones to a
recycling plant, either our software will no longer track them at all, or
they will become anonymous members of a heap of tires. No one will
care about their rotation histories. More to the point, even while they



are attached to the car, no one will try to query the system to find a
particular tire and then see which car it is on. They will query the
database to find a car and then ask it for a transient reference to the
tires. Therefore, the car is the root ENTITY of the AGGREGATE whose
boundary encloses the tires also. On the other hand, engine blocks
have serial numbers engraved on them and are sometimes tracked
independently of the car. In some applications, the engine might be
the root of its own AGGREGATE.

Figure 6.2. Local versus global identity and object
references

Invariants, which are consistency rules that must be maintained
whenever data changes, will involve relationships between members
of the AGGREGATE. Any rule that spans AGGREGATES will not be
expected to be up-to-date at all times. Through event processing,
batch processing, or other update mechanisms, other dependencies
can be resolved within some specified time. But the invariants
applied within an AGGREGATE will be enforced with the completion of
each transaction.

Figure 6.3. AGGREGATE invariants



Now, to translate that conceptual AGGREGATE into the implementation,
we need a set of rules to apply to all transactions.

The root ENTITY has global identity and is ultimately responsible
for checking invariants.

Root ENTITIES have global identity. ENTITIES inside the boundary
have local identity, unique only within the AGGREGATE.

Nothing outside the AGGREGATE boundary can hold a reference to
anything inside, except to the root ENTITY. The root ENTITY can
hand references to the internal ENTITIES to other objects, but
those objects can use them only transiently, and they may not
hold on to the reference. The root may hand a copy of a VALUE

OBJECT to another object, and it doesn't matter what happens to
it, because it's just a VALUE and no longer will have any
association with the AGGREGATE.

As a corollary to the previous rule, only AGGREGATE roots can be
obtained directly with database queries. All other objects must
be found by traversal of associations.



Objects within the AGGREGATE can hold references to other
AGGREGATE roots.

A delete operation must remove everything within the AGGREGATE

boundary at once. (With garbage collection, this is easy.
Because there are no outside references to anything but the
root, delete the root and everything else will be collected.)

When a change to any object within the AGGREGATE boundary is
committed, all invariants of the whole AGGREGATE must be
satisfied.

Cluster the ENTITIES and VALUE OBJECTS into AGGREGATES and define
boundaries around each. Choose one ENTITY to be the root of
each AGGREGATE, and control all access to the objects inside the
boundary through the root. Allow external objects to hold
references to the root only. Transient references to internal
members can be passed out for use within a single operation
only. Because the root controls access, it cannot be blindsided
by changes to the internals. This arrangement makes it
practical to enforce all invariants for objects in the AGGREGATE
and for the AGGREGATE as a whole in any state change.

It can be very helpful to have a technical framework that allows you
to declare AGGREGATES and then automatically carries out the locking
scheme and so forth. Without that assistance, the team must have
the self-discipline to agree on the AGGREGATES and code consistently
with them.

Example
 Purchase Order Integrity

Consider the complications possible in a simplified purchase order
system.



Figure 6.4. A model for a purchase order system

This diagram presents a pretty conventional view of a purchase
order (PO), broken down into line items, with an invariant rule that
the sum of the line items can't exceed the limit for the PO as a
whole. The existing implementation has three interrelated problems.

1. Invariant enforcement. When a new line item is added, the
PO checks the total and marks itself invalid if an item
pushes it over the limit. As we'll see, this is not adequate
protection.

Change management. When the PO is deleted or archived, the line
items are taken along, but the model gives no guidance on where to
stop following the relationships. There is also confusion about the
impact of changing the part price at different times.

Sharing the database. Multiple users are creating contention
problems in the database.

Multiple users will be entering and updating various POs
concurrently, and we have to prevent them from messing up each



other's work. Let's start with a very simple strategy, in which we lock
any object a user begins to edit until that user commits the
transaction. So, when George is editing line item 001, Amanda
cannot access it. She can edit any other line item on any other PO
(including other items in the PO George is working on).

Figure 6.5. The initial condition of the PO stored in the
database

Objects will be read from the database and instantiated in each
user's memory space. There they can be viewed and edited.
Database locks will be requested only when an edit begins. So both
George and Amanda can work concurrently, as long as they stay
away from each other's items. All is well . . . until both George and
Amanda start working on separate line items in the same PO.

Figure 6.6. Simultaneous edits in distinct transactions



Everything looks fine to both users and to their software because
they ignore changes to other parts of the database that happen
during the transaction, and neither locked line item is involved in the
other user's change.

Figure 6.7. The resulting PO violates the approval limit
(broken invariant).

After both users have saved their changes, a PO is stored in the
database that violates the invariant of the domain model. An
important business rule has been broken. And nobody even knows.

Clearly, locking a single line item isn't an adequate safeguard. If
instead we had locked an entire PO at a time, the problem would
have been prevented.

Figure 6.8. Locking the entire PO allows the invariant to
be enforced.



The program will not allow this transaction to be saved until Amanda
has resolved the problem, perhaps by raising the limit or by
eliminating a guitar. This mechanism prevents the problem, and it
may be a fine solution if work is mostly spread widely across many
POs. But if multiple people typically work simultaneously on different
line items of a large PO, then this locking will get cumbersome.

Even assuming many small POs, there are other ways to violate the
assertion. Consider that "part." If someone changed the price of a
trombone while Amanda was adding to her order, wouldn't that
violate the invariant too?

Let's try locking the part in addition to the entire PO. Here's what
happens when George, Amanda, and Sam are working on different
POs:

Figure 6.9. Over-cautious locking is interfering with
people's work.



The inconvenience is mounting, because there is a lot of contention
for the instruments (the "parts"). And then:

Figure 6.10. Deadlock

Those three will be waiting a while.

At this point we can begin to improve the model by incorporating the
following knowledge of the business:



1. Parts are used in many POs (high contention).

There are fewer changes to parts than there are to POs.

Changes to part prices do not necessarily propagate to existing POs.
It depends on the time of a price change relative to the status of the
PO.

Point 3 is particularly obvious when we consider archived POs that
have already been delivered. They should, of course, show the
prices as of the time they were filled, rather than current prices.

Figure 6.11. Price is copied into Line Item. AGGREGATE
invariant can now be enforced.

An implementation consistent with this model would guarantee the
invariant relating PO and its items, while changes to the price of a
part would not have to immediately affect the items that reference it.



Broader consistency rules could be addressed in other ways. For
example, the system could present a queue of items with outdated
prices to the users each day, so they could update or exempt each
one. But this is not an invariant that must be enforced at all times. By
making the dependency of line items on parts looser, we avoid
contention and reflect the realities of the business better. At the
same time, tightening the relationship of the PO and its line items
guarantees that an important business rule will be followed.

The AGGREGATE imposes an ownership of the PO and its items that is
consistent with business practice. The creation and deletion of a PO
and items are naturally tied together, while the creation and deletion
of parts is independent.

  

AGGREGATES mark off the scope within which invariants have to be
maintained at every stage of the life cycle. The following patterns,
FACTORIES and REPOSITORIES, operate on AGGREGATES, encapsulating
the complexity of specific life cycle transitions. . . .



Factories

When creation of an object, or an entire AGGREGATE, becomes
complicated or reveals too much of the internal structure, FACTORIES

provide encapsulation.

  

Much of the power of objects rests in the intricate configuration of
their internals and their associations. An object should be distilled
until nothing remains that does not relate to its meaning or support
its role in interactions. This mid-life cycle responsibility is plenty.
Problems arise from overloading a complex object with responsibility
for its own creation.

A car engine is an intricate piece of machinery, with dozens of parts
collaborating to perform the engine's responsibility: to turn a shaft.



One could imagine trying to design an engine block that could grab
on to a set of pistons and insert them into its cylinders, spark plugs
that would find their sockets and screw themselves in. But it seems
unlikely that such a complicated machine would be as reliable or as
efficient as our typical engines are. Instead, we accept that
something else will assemble the pieces. Perhaps it will be a human
mechanic or perhaps it will be an industrial robot. Both the robot and
the human are actually more complex than the engine they
assemble. The job of assembling parts is completely unrelated to the
job of spinning a shaft. The assemblers function only during the
creation of the car�you don't need a robot or a mechanic with you
when you're driving. Because cars are never assembled and driven
at the same time, there is no value in combining both of these
functions into the same mechanism. Likewise, assembling a complex
compound object is a job that is best separated from whatever job
that object will have to do when it is finished.

But shifting responsibility to the other interested party, the client
object in the application, leads to even worse problems. The client
knows what job needs to be done and relies on the domain objects
to carry out the necessary computations. If the client is expected to
assemble the domain objects it needs, it must know something about
the internal structure of the object. In order to enforce all the
invariants that apply to the relationship of parts in the domain object,
the client must know some of the object's rules. Even calling
constructors couples the client to the concrete classes of the objects
it is building. No change to the implementation of the domain objects
can be made without changing the client, making refactoring harder.

A client taking on object creation becomes unnecessarily
complicated and blurs its responsibility. It breaches the
encapsulation of the domain objects and the AGGREGATES being
created. Even worse, if the client is part of the application layer, then
responsibilities have leaked out of the domain layer altogether. This
tight coupling of the application to the specifics of the implementation
strips away most of the benefits of abstraction in the domain layer
and makes continuing changes ever more expensive.



Creation of an object can be a major operation in itself, but
complex assembly operations do not fit the responsibility of the
created objects. Combining such responsibilities can produce
ungainly designs that are hard to understand. Making the client
direct construction muddies the design of the client, breaches
encapsulation of the assembled object or AGGREGATE, and overly
couples the client to the implementation of the created object.

Complex object creation is a responsibility of the domain layer, yet
that task does not belong to the objects that express the model.
There are some cases in which an object creation and assembly
corresponds to a milestone significant in the domain, such as "open
a bank account." But object creation and assembly usually have no
meaning in the domain; they are a necessity of the implementation.
To solve this problem, we have to add constructs to the domain
design that are not ENTITIES, VALUE OBJECTS, or SERVICES. This is a
departure from the previous chapter, and it is important to make the
point clear: We are adding elements to the design that do not
correspond to anything in the model, but they are nonetheless part of
the domain layer's responsibility.

Every object-oriented language provides a mechanism for creating
objects (constructors in Java and C++, instance creation class
methods in Smalltalk, for example), but there is a need for more
abstract construction mechanisms that are decoupled from the other
objects. A program element whose responsibility is the creation of
other objects is called a FACTORY.

Figure 6.12. Basic interactions with a FACTORY



Just as the interface of an object should encapsulate its
implementation, thus allowing a client to use the object's behavior
without knowing how it works, a FACTORY encapsulates the
knowledge needed to create a complex object or AGGREGATE. It
provides an interface that reflects the goals of the client and an
abstract view of the created object.

Therefore:

Shift the responsibility for creating instances of complex
objects and AGGREGATES to a separate object, which may itself
have no responsibility in the domain model but is still part of
the domain design. Provide an interface that encapsulates all
complex assembly and that does not require the client to
reference the concrete classes of the objects being instantiated.
Create entire AGGREGATES as a piece, enforcing their invariants.

  

There are many ways to design FACTORIES. Several special-purpose
creation patterns� FACTORY METHOD, ABSTRACT FACTORY, and
BUILDER�were thoroughly treated in Gamma et al. 1995. That book
mostly explored patterns for the most difficult object construction
problems. The point here is not to delve deeply into designing
FACTORIES, but rather to show the place of FACTORIES as important
components of a domain design. Proper use of FACTORIES can help
keep a MODEL-DRIVEN DESIGN on track.

The two basic requirements for any good FACTORY are

1. Each creation method is atomic and enforces all invariants
of the created object or AGGREGATE. A FACTORY should only be
able to produce an object in a consistent state. For an
ENTITY, this means the creation of the entire AGGREGATE,
with all invariants satisfied, but probably with optional
elements still to be added. For an immutable VALUE OBJECT,
this means that all attributes are initialized to their correct
final state. If the interface makes it possible to request an



object that can't be created correctly, then an exception
should be raised or some other mechanism should be
invoked that will ensure that no improper return value is
possible.

The FACTORY should be abstracted to the type desired, rather than
the concrete class(es) created. The sophisticated FACTORY patterns in
Gamma et al. 1995 help with this.

Choosing FACTORIES and Their Sites

Generally speaking, you create a factory to build something whose
details you want to hide, and you place the FACTORY where you want
the control to be. These decisions usually revolve around
AGGREGATES.

For example, if you needed to add elements inside a preexisting
AGGREGATE, you might create a FACTORY METHOD on the root of the
AGGREGATE. This hides the implementation of the interior of the
AGGREGATE from any external client, while giving the root
responsibility for ensuring the integrity of the AGGREGATE as elements
are added, as shown in Figure 6.13 on the next page.

Figure 6.13. A FACTORY METHOD encapsulates expansion
of an AGGREGATE.



Another example would be to place a FACTORY METHOD on an object
that is closely involved in spawning another object, although it
doesn't own the product once it is created. When the data and
possibly the rules of one object are very dominant in the creation of
an object, this saves pulling information out of the spawner to be
used elsewhere to create the object. It also communicates the
special relationship between the spawner and the product.

In Figure 6.14, the Trade Order is not part of the same AGGREGATE as
the Brokerage Account because, for a start, it will go on to interact
with the trade execution application, where the Brokerage Account
would only be in the way. Even so, it seems natural to give the
Brokerage Account control over the creation of Trade Orders. The
Brokerage Account contains information that will be embedded in
the Trade Order (starting with its own identity), and it contains rules
that govern what trades are allowed. We might also benefit from
hiding the implementation of Trade Order. For example, it might be
refactored into a hierarchy, with separate subclasses for Buy Order
and Sell Order. The FACTORY keeps the client from being coupled to
the concrete classes.



Figure 6.14. A FACTORY METHOD spawns an ENTITY that
is not part of the same AGGREGATE.

A FACTORY is very tightly coupled to its product, so a FACTORY should
be attached only to an object that has a close natural relationship
with the product. When there is something we want to hide�either
the concrete implementation or the sheer complexity of
construction�yet there doesn't seem to be a natural host, we must
create a dedicated FACTORY object or SERVICE. A standalone FACTORY

usually produces an entire AGGREGATE, handing out a reference to the
root, and ensuring that the product AGGREGATE'S invariants are
enforced. If an object interior to an AGGREGATE needs a FACTORY, and
the AGGREGATE root is not a reasonable home for it, then go ahead
and make a standalone FACTORY. But respect the rules limiting
access within an AGGREGATE, and make sure there are only transient
references to the product from outside the AGGREGATE.

Figure 6.15. A standalone FACTORY builds AGGREGATE.

When a Constructor Is All You Need



I've seen far too much code in which all instances are created by
directly calling class constructors, or whatever the primitive level of
instance creation is for the programming language. The introduction
of FACTORIES has great advantages, and is generally underused. Yet
there are times when the directness of a constructor makes it the
best choice. FACTORIES can actually obscure simple objects that don't
use polymorphism.

The trade-offs favor a bare, public constructor in the following
circumstances.

The class is the type. It is not part of any interesting hierarchy,
and it isn't used polymorphically by implementing an interface.

The client cares about the implementation, perhaps as a way of
choosing a STRATEGY.

All of the attributes of the object are available to the client, so
that no object creation gets nested inside the constructor
exposed to the client.

The construction is not complicated.

A public constructor must follow the same rules as a FACTORY: It
must be an atomic operation that satisfies all invariants of the
created object.

Avoid calling constructors within constructors of other classes.
Constructors should be dead simple. Complex assemblies,
especially of AGGREGATES, call for FACTORIES. The threshold for
choosing to use a little FACTORY METHOD isn't high.

The Java class library offers interesting examples. All collections
implement interfaces that decouple the client from the concrete
implementation. Yet they are all created by direct calls to



constructors. A FACTORY could have encapsulated the collection
hierarchy. The FACTORY's methods could have allowed a client to ask
for the features it needed, with the FACTORY selecting the appropriate
class to instantiate. Code that created collections would be more
expressive, and new collection classes could be installed without
breaking every Java program.

But there is a case in favor of the concrete constructors. First, the
choice of implementation can be performance sensitive for many
applications, so an application might want control. (Even so, a really
smart FACTORY could accommodate such factors.) Anyway, there
aren't very many collection classes, so it isn't that complicated to
choose.

The abstract collection types preserve some value in spite of the lack
of a FACTORY because of their usage patterns. Collections are very
often created in one place and used in another. This means that the
client that ultimately uses the collection�adding, removing, and
retrieving its contents�can still talk to the interface and be decoupled
from the implementation. The selection of a collection class typically
falls to the object that owns the collection, or to the owning object's
FACTORY.

Designing the Interface

When designing the method signature of a FACTORY, whether
standalone or FACTORY METHOD, keep in mind these two points.

Each operation must be atomic. You have to pass in everything
needed to create a complete product in a single interaction with
the FACTORY. You also have to decide what will happen if
creation fails, in the event that some invariant isn't satisfied. You
could throw an exception or just return a null. To be consistent,
consider adopting a coding standard for failures in FACTORIES.



The FACTORY will be coupled to its arguments. If you are not
careful in your selection of input parameters, you can create a
rat's nest of dependencies. The degree of coupling will depend
on what you do with the argument. If it is simply plugged into the
product, you've created a modest dependency. If you are picking
parts out of the argument to use in the construction, the coupling
gets tighter.

The safest parameters are those from a lower design layer. Even
within a layer, there tend to be natural strata with more basic objects
that are used by higher level objects. (Such layering will be
discussed in different ways in Chapter 10, "Supple Design," and
again in Chapter 16, "Large-Scale Structure.")

Another good choice of parameter is an object that is closely related
to the product in the model, so that no new dependency is being
added. In the earlier example of a Purchase Order Item, the
FACTORY METHOD takes a Catalog Part as an argument, which is an
essential association for the Item. This adds a direct dependency
between the Purchase Order class and the Part. But these three
objects form a close conceptual group. The Purchase Order's
AGGREGATE already referenced the Part, anyway. So giving control to
the AGGREGATE root and encapsulating the AGGREGATE'S internal
structure is a good trade-off.

Use the abstract type of the arguments, not their concrete classes.
The FACTORY is coupled to the concrete class of the products; it does
not need to be coupled to concrete parameters also.

Where Does Invariant Logic Go?

A FACTORY is responsible for ensuring that all invariants are met for
the object or AGGREGATE it creates; yet you should always think twice
before removing the rules applying to an object outside that object.



The FACTORY can delegate invariant checking to the product, and this
is often best.

But FACTORIES have a special relationship with their products. They
already know their product's internal structure, and their entire
reason for being involves the implementation of their product. Under
some circumstances, there are advantages to placing invariant logic
in the FACTORY and reducing clutter in the product. This is especially
appealing with AGGREGATE rules (which span many objects). It is
especially unappealing with FACTORY METHODS attached to other
domain objects.

Although in principle invariants apply at the end of every operation,
often the transformations allowed to the object can never bring them
into play. There might be a rule that applies to the assignment of the
identity attributes of an ENTITY. But after creation that identity is
immutable. VALUE OBJECTS are completely immutable. An object
doesn't need to carry around logic that will never be applied in its
active lifetime. In such cases, the FACTORY is a logical place to put
invariants, keeping the product simpler.

ENTITY FACTORIES Versus VALUE OBJECT
FACTORIES

ENTITY FACTORIES differ from VALUE OBJECT FACTORIES in two ways.
VALUE OBJECTS are Immutable; the product comes out complete in its
final form. So the FACTORY operations have to allow for a full
description of the product. ENTITY FACTORIES tend to take just the
essential attributes required to make a valid AGGREGATE. Details can
be added later if they are not required by an invariant.

Then there are the issues involved in assigning identity to an
ENTITY�irrelevant to a VALUE OBJECT. As pointed out in Chapter 5, an
identifier can either be assigned automatically by the program or
supplied from the outside, typically by the user. If a customer's



identity is to be tracked by the telephone number, then that
telephone number must obviously be passed in as an argument to
the FACTORY. When the program is assigning an identifier, the
FACTORY is a good place to control it. Although the actual generation
of a unique tracking ID is typically done by a database "sequence" or
other infrastructure mechanism, the FACTORY knows what to ask for
and where to put it.

Reconstituting Stored Objects

Up to this point, the FACTORY has played its part in the very beginning
of an object's life cycle. At some point, most objects get stored in
databases or transmitted through a network, and few current
database technologies retain the object character of their contents.
Most transmission methods flatten an object into an even more
limited presentation. Therefore, retrieval requires a potentially
complex process of reassembling the parts into a live object.

A FACTORY used for reconstitution is very similar to one used for
creation, with two major differences.

1. An ENTITY FACTORY used for reconstitution does not assign a
new tracking ID. To do so would lose the continuity with the
object's previous incarnation. So identifying attributes must
be part of the input parameters in a FACTORY
reconstituting a stored object.

A FACTORY reconstituting an object will handle violation of an invariant
differently. During creation of a new object, a FACTORY should
simply balk when an invariant isn't met, but a more flexible response
may be necessary in reconstitution. If an object already exists
somewhere in the system (such as in the database), this fact cannot
be ignored. Yet we also can't ignore the rule violation. There has to



be some strategy for repairing such inconsistencies, which can make
reconstitution more challenging than the creation of new objects.

Figures 6.16 and 6.17 (on the next page) show two kinds of
reconstitution. Object-mapping technologies may provide some or all
of these services in the case of database reconstitution, which is
convenient. Whenever there is exposed complexity in reconstituting
an object from another medium, the FACTORY is a good option.

Figure 6.16. Reconstituting an ENTITY retrieved from a
relational database

Figure 6.17. Reconstituting an ENTITY transmitted as
XML



To sum up, the access points for creation of instances must be
identified, and their scope must be defined explicitly. They may
simply be constructors, but often there is a need for a more abstract
or elaborate instance creation mechanism. This need introduces new
constructs into the design: FACTORIES. FACTORIES usually do not
express any part of the model, yet they are a part of the domain
design that helps keep the model-expressing objects sharp.

A FACTORY encapsulates the life cycle transitions of creation and
reconstitution. Another transition that exposes technical complexity
that can swamp the domain design is the transition to and from
storage. This transition is the responsibility of another domain design
construct, the REPOSITORY.



Repositories

Associations allow us to find an object based on its relationship to
another. But we must have a starting point for a traversal to an ENTITY

or VALUE in the middle of its life cycle.

  

To do anything with an object, you have to hold a reference to it.
How do you get that reference? One way is to create the object, as
the creation operation will return a reference to the new object. A
second way is to traverse an association. You start with an object
you already know and ask it for an associated object. Any object-
oriented program is going to do a lot of this, and these links give
object models much of their expressive power. But you have to get
that first object.



I actually encountered a project once in which the team was
attempting, in an enthusiastic embrace of MODEL-DRIVEN DESIGN, to do
all object access by creation or traversal! Their objects resided in an
object database, and they reasoned that existing conceptual
relationships would provide all necessary associations. They needed
only to analyze them enough, making their entire domain model
cohesive. This self-imposed limitation forced them to create just the
kind of endless tangle that we have been trying to avert over the last
few chapters, with careful implementation of ENTITIES and application
of AGGREGATES. The team members didn't stick with this strategy
long, but they never replaced it with another coherent approach.
They cobbled together ad hoc solutions and became less ambitious.

Few would even think of this approach, much less be tempted by it,
because they store most of their objects in relational databases. This
storage technology makes it natural to use the third way of getting a
reference: Execute a query to find the object in a database based on
its attributes, or find the constituents of an object and then
reconstitute it.

A database search is globally accessible and makes it possible to go
directly to any object. There is no need for all objects to be
interconnected, which allows us to keep the web of objects
manageable. Whether to provide a traversal or depend on a search
becomes a design decision, trading off the decoupling of the search
against the cohesiveness of the association. Should the Customer
object hold a collection of all the Orders placed? Or should the
Orders be found in the database, with a search on the Customer ID
field? The right combination of search and association makes the
design comprehensible.

Unfortunately, developers don't usually get to think much about such
design subtleties, because they are swimming in the sea of
mechanisms needed to pull off the trick of storing an object and
bringing it back�and eventually removing it from storage.

Now from a technical point of view, retrieval of a stored object is
really a subset of creation, because the data from the database is



used to assemble new objects. Indeed, the code that usually has to
be written makes it hard to forget this reality. But conceptually, this is
the middle of the life cycle of an ENTITY. A Customer object does not
represent a new customer just because we stored it in a database
and retrieved it. To keep this distinction in mind, I refer to the creation
of an instance from stored data as reconstitution.

The goal of domain-driven design is to create better software by
focusing on a model of the domain rather than the technology. By the
time a developer has constructed an SQL query, passed it to a query
service in the infrastructure layer, obtained a result set of table rows,
pulled the necessary information out, and passed it to a constructor
or FACTORY, the model focus is gone. It becomes natural to think of
the objects as containers for the data that the queries provide, and
the whole design shifts toward a data-processing style. The details of
the technology vary, but the problem remains that the client is
dealing with technology, rather than model concepts. Infrastructure
such as METADATA MAPPING LAYERS (Fowler 2002) help a great deal, by
making easier the conversion of the query result into objects, but the
developer is still thinking about technical mechanisms, not the
domain. Worse, as client code uses the database directly,
developers are tempted to bypass model features such as
AGGREGATES, or even object encapsulation, instead directly taking and
manipulating the data they need. More and more domain rules
become embedded in query code or simply lost. Object databases
do eliminate the conversion problem, but search mechanisms are
usually still mechanistic, and developers are still tempted to grab
whatever objects they want.

A client needs a practical means of acquiring references to
preexisting domain objects. If the infrastructure makes it easy
to do so, the developers of the client may add more traversable
associations, muddling the model. On the other hand, they may
use queries to pull the exact data they need from the database,
or to pull a few specific objects rather than navigating from
AGGREGATE roots. Domain logic moves into queries and client
code, and the ENTITIES and VALUE OBJECTS become mere data



containers. The sheer technical complexity of applying most
database access infrastructure quickly swamps the client code,
which leads developers to dumb down the domain layer, which
makes the model irrelevant.

Drawing on the design principles discussed so far, we can reduce
the scope of the object access problem somewhat, assuming that we
find a method of access that keeps the model focus sharp enough to
employ those principles. For starters, we need not concern ourselves
with transient objects. Transients (typically VALUE OBJECTS) live brief
lives, used in the client operation that created them and then
discarded. We also need no query access for persistent objects that
are more convenient to find by traversal. For example, the address
of a person could be requested from the Person object. And most
important, any object internal to an AGGREGATE is prohibited from
access except by traversal from the root.

Persistent VALUE OBJECTS are usually found by traversal from some
ENTITY that acts as the root of the AGGREGATE that encapsulates them.
In fact, a global search access to a VALUE is often meaningless,
because finding a VALUE by its properties would be equivalent to
creating a new instance with those properties. There are exceptions,
though. For example, when I am planning travel online, I sometimes
save a few prospective itineraries and return later to select one to
book. Those itineraries are VALUES (if there were two made up of the
same flights, I would not care which was which), but they have been
associated with my user name and retrieved for me intact. Another
case would be an "enumeration," when a type has a strictly limited,
predetermined set of possible values. Global access to VALUE

OBJECTS is much less common than for ENTITIES, though, and if you
find you need to search the database for a preexisting VALUE, it is
worth considering the possibility that you've really got an ENTITY

whose identity you haven't recognized.

From this discussion, it is clear that most objects should not be
accessed by a global search. It would be nice for the design to
communicate those that do.



Now the problem can be restated more precisely.

A subset of persistent objects must be globally accessible
through a search based on object attributes. Such access is
needed for the roots of AGGREGATES that are not convenient to
reach by traversal. They are usually ENTITIES, sometimes VALUE
OBJECTS with complex internal structure, and sometimes
enumerated VALUES. Providing access to other objects muddies
important distinctions. Free database queries can actually
breach the encapsulation of domain objects and AGGREGATES.
Exposure of technical infrastructure and database access
mechanisms complicates the client and obscures the MODEL-
DRIVEN DESIGN.

There is a raft of techniques for dealing with the technical challenges
of database access. Examples include encapsulating SQL into QUERY

OBJECTS or translating between objects and tables with METADATA

MAPPING LAYERS (Fowler 2002). FACTORIES can help reconstitute stored
objects (as discussed later in this chapter). These and many other
techniques help keep a lid on complexity.

But even so, take note of what has been lost. We are no longer
thinking about concepts in our domain model. Our code will not be
communicating about the business; it will be manipulating the
technology of data retrieval. The REPOSITORY pattern is a simple
conceptual framework to encapsulate those solutions and bring back
our model focus.

A REPOSITORY represents all objects of a certain type as a conceptual
set (usually emulated). It acts like a collection, except with more
elaborate querying capability. Objects of the appropriate type are
added and removed, and the machinery behind the REPOSITORY

inserts them or deletes them from the database. This definition
gathers a cohesive set of responsibilities for providing access to the
roots of AGGREGATES from early life cycle through the end.

Clients request objects from the REPOSITORY using query methods
that select objects based on criteria specified by the client, typically



the value of certain attributes. The REPOSITORY retrieves the
requested object, encapsulating the machinery of database queries
and metadata mapping. REPOSITORIES can implement a variety of
queries that select objects based on whatever criteria the client
requires. They can also return summary information, such as a count
of how many instances meet some criteria. They can even return
summary calculations, such as the total across all matching objects
of some numerical attribute.

Figure 6.18. A REPOSITORY doing a search for a client

A REPOSITORY lifts a huge burden from the client, which can now talk
to a simple, intention-revealing interface, and ask for what it needs in
terms of the model. To support all this requires a lot of complex
technical infrastructure, but the interface is simple and conceptually
connected to the domain model.

Therefore:

For each type of object that needs global access, create an
object that can provide the illusion of an in-memory collection
of all objects of that type. Set up access through a well-known
global interface. Provide methods to add and remove objects,
which will encapsulate the actual insertion or removal of data in
the data store. Provide methods that select objects based on
some criteria and return fully instantiated objects or collections
of objects whose attribute values meet the criteria, thereby
encapsulating the actual storage and query technology. Provide
REPOSITORIES only for AGGREGATE roots that actually need direct



access. Keep the client focused on the model, delegating all
object storage and access to the REPOSITORIES.

  

REPOSITORIES have many advantages, including the following:

They present clients with a simple model for obtaining persistent
objects and managing their life cycle.

They decouple application and domain design from persistence
technology, multiple database strategies, or even multiple data
sources.

They communicate design decisions about object access.

They allow easy substitution of a dummy implementation, for
use in testing (typically using an in-memory collection).

Querying a REPOSITORY

All repositories provide methods that allow a client to request objects
matching some criteria, but there is a range of options of how to
design this interface.

The easiest REPOSITORY to build has hard-coded queries with specific
parameters. These queries can be various: retrieving an ENTITY by its
identity (provided by almost all REPOSITORIES); requesting a collection
of objects with a particular attribute value or a complex combination
of parameters; selecting objects based on value ranges (such as
date ranges); and even performing some calculations that fall within
the general responsibility of a REPOSITORY (especially drawing on
operations supported by the underlying database).



Although most queries return an object or a collection of objects, it
also fits within the concept to return some types of summary
calculations, such as an object count, or a sum of a numerical
attribute that was intended by the model to be tallied.

Figure 6.19. Hard-coded queries in a simple REPOSITORY

Hard-coded queries can be built on top of any infrastructure and
without a lot of investment, because they do just what some client
would have had to do anyway.

On projects with a lot of querying, a REPOSITORY framework can be
built that allows more flexible queries. This calls for a staff familiar
with the necessary technology and is greatly aided by a supportive
infrastructure.

One particularly apt approach to generalizing REPOSITORIES through a
framework is to use SPECIFICATION-based queries. A SPECIFICATION

allows a client to describe (that is, specify) what it wants without
concern for how it will be obtained. In the process, an object that can
actually carry out the selection is created. This pattern will be
discussed in depth in Chapter 9.

Figure 6.20. A flexible, declarative SPECIFICATION of
search criteria in a sophisticated REPOSITORY



The SPECIFICATION-based query is elegant and flexible. Depending on
the infrastructure available, it may be a modest framework or it may
be prohibitively difficult. Rob Mee and Edward Hieatt discuss more of
the technical issues involved in designing such REPOSITORIES in
Fowler 2002.

Even a REPOSITORY design with flexible queries should allow for the
addition of specialized hard-coded queries. They might be
convenience methods that encapsulate an often-used query or a
query that doesn't return the objects themselves, such as a
mathematical summary of selected objects. Frameworks that don't
allow for such contingencies tend to distort the domain design or get
bypassed by developers.

Client Code Ignores REPOSITORY
Implementation; Developers Do Not

Encapsulation of the persistence technology allows the client to be
very simple, completely decoupled from the implementation of the
REPOSITORY. But as is often the case with encapsulation, the
developer must understand what is happening under the hood. The
performance implications can be extreme when REPOSITORIES are
used in different ways or work in different ways.

Kyle Brown told me the story of getting called in on a manufacturing
application based on WebSphere that was being rolled out to
production. The system was mysteriously running out of memory



after a few hours of use. Kyle browsed through the code and found
the reason: At one point, they were summarizing some information
about every item in the plant. The developers had done this using a
query called "all objects," which instantiated each of the objects and
then selected the bits they needed. This code had the effect of
bringing the entire database into memory at once! The problem
hadn't shown up in testing because of the small amount of test data.

This is an obvious nono, but much more subtle oversights can
present equally serious problems. Developers need to understand
the implications of using encapsulated behavior. That does not have
to mean detailed familiarity with the implementation. Well-designed
components can be characterized. (This is one of the main points of
Chapter 10, "Supple Design.")

As was discussed in Chapter 5, the underlying technology may
constrain your modeling choices. For example, a relational database
can place a practical limit on deep compositional object structures. In
just the same way, there must be feedback to developers in both
directions between the use of the REPOSITORY and the implementation
of its queries.

Implementing a REPOSITORY

Implementation will vary greatly, depending on the technology being
used for persistence and the infrastructure you have. The ideal is to
hide all the inner workings from the client (although not from the
developer of the client), so that client code will be the same whether
the data is stored in an object database, stored in a relational
database, or simply held in memory. The REPOSITORY will delegate to
the appropriate infrastructure services to get the job done.
Encapsulating the mechanisms of storage, retrieval, and query is the
most basic feature of a REPOSITORY implementation.



Figure 6.21. The REPOSITORY encapsulates the
underlying data store.

The REPOSITORY concept is adaptable to many situations. The
possibilities of implementation are so diverse that I can only list
some concerns to keep in mind.

Abstract the type. A REPOSITORY "contains" all instances of a
specific type, but this does not mean that you need one
REPOSITORY for each class. The type could be an abstract
superclass of a hierarchy (for example, a TradeOrder could be
a BuyOrder or a Sell-Order). The type could be an interface
whose implementers are not even hierarchically related. Or it
could be a specific concrete class. Keep in mind that you may
well face constraints imposed by the lack of such polymorphism
in your database technology.

Take advantage of the decoupling from the client. You have
more freedom to change the implementation of a REPOSITORY

than you would if the client were calling the mechanisms directly.
You can take advantage of this to optimize for performance, by
varying the query technique or by caching objects in memory,



freely switching persistence strategies at any time. You can
facilitate testing of the client code and the domain objects by
providing an easily manipulated, dummy in-memory strategy.

Leave transaction control to the client. Although the REPOSITORY

will insert into and delete from the database, it will ordinarily not
commit anything. It is tempting to commit after saving, for
example, but the client presumably has the context to correctly
initiate and commit units of work. Transaction management will
be simpler if the REPOSITORY keeps its hands off.

Typically teams add a framework to the infrastructure layer to
support the implementation of REPOSITORIES. In addition to the
collaboration with the lower level infrastructure components, the
REPOSITORY superclass might implement some basic queries,
especially when a flexible query is being implemented. Unfortunately,
with a type system such as Java's, this approach would force you to
type returned objects as "Object," leaving the client to cast them to
the REPOSITORY'S contained type. But of course, this will have to be
done with queries that return collections anyway in Java.

Some additional guidance on implementing REPOSITORIES and some
of their supporting technical patterns such as QUERY OBJECT can be
found in Fowler (2002).

Working Within Your Frameworks

Before implementing something like a REPOSITORY, you need to think
carefully about the infrastructure you are committed to, especially
any architectural frameworks. You may find that the framework
provides services you can use to easily create a REPOSITORY, or you
may find that the framework fights you all the way. You may discover
that the architectural framework has already defined an equivalent
pattern of getting persistent objects. Or you may discover that it has
defined a pattern that is not like a REPOSITORY at all.



For example, your project might be committed to J2EE. Looking for
conceptual affinities between the framework and the patterns of
MODEL-DRIVEN DESIGN (and keeping in mind that an entity bean is not
the same thing as an ENTITY), you may have chosen to use entity
beans to correspond to AGGREGATE roots. The construct within the
architectural framework of J2EE that is responsible for providing
access to these objects is the "EJB Home." Trying to dress up the
EJB Home to look like a REPOSITORY could lead to other problems.

In general, don't fight your frameworks. Seek ways to keep the
fundamentals of domain-driven design and let go of the specifics
when the framework is antagonistic. Look for affinities between the
concepts of domain-driven design and the concepts in the
framework. This is assuming that you have no choice but to use the
framework. Many J2EE projects don't use entity beans at all. If you
have the freedom, choose frameworks, or parts of frameworks, that
are harmonious with the style of design you want to use.

The Relationship with FACTORIES

A FACTORY handles the beginning of an object's life; a REPOSITORY

helps manage the middle and the end. When objects are being held
in memory, or stored in an object database, this is straightforward.
But typically there is at least some object storage in relational
databases, files, or other, non-object-oriented systems. In such
cases, the retrieved data must be reconstituted into object form.

Because the REPOSITORY is, in this case, creating objects based on
data, many people consider the REPOSITORY to be a FACTORY�indeed
it is, from a technical point of view. But it is more useful to keep the
model in the forefront, and as mentioned before, the reconstitution of
a stored object is not the creation of a new conceptual object. In this
domain-driven view of the design, FACTORIES and REPOSITORIES have
distinct responsibilities. The FACTORY makes new objects; the
REPOSITORY finds old objects. The client of a REPOSITORY should be
given the illusion that the objects are in memory. The object may



have to be reconstituted (yes, a new instance may be created), but it
is the same conceptual object, still in the middle of its life cycle.

These two views can be reconciled by making the REPOSITORY

delegate object creation to a FACTORY, which (in theory, though
seldom in practice) could also be used to create objects from
scratch.

Figure 6.22. A REPOSITORY uses a FACTORY to
reconstitute a preexisting object.

This clear separation also helps by unloading all responsibility for
persistence from the FACTORIES. A FACTORY'S job is to instantiate a
potentially complex object from data. If the product is a new object,
the client will know this and can add it to the REPOSITORY, which will
encapsulate the storage of the object in the database.

Figure 6.23. A client uses a REPOSITORY to store a new
object.



One other case that drives people to combine FACTORY and
REPOSITORY is the desire for "find or create" functionality, in which a
client can describe an object it wants and, if no such object is found,
will be given a newly created one. This function should be avoided. It
is a minor convenience at best. A lot of cases in which it seems
useful go away when ENTITIES and VALUE OBJECTS are distinguished. A
client that wants a VALUE OBJECT can go straight to a FACTORY and ask
for a new one. Usually, the distinction between a new object and an
existing object is important in the domain, and a framework that
transparently combines them will actually muddle the situation.



Designing Objects for Relational Databases

The most common nonobject component of primarily object-oriented
software systems is the relational database. This reality presents the
usual problems of a mixture of paradigms (see Chapter 5). But the
database is more intimately related to the object model than are
most other components. The database is not just interacting with the
objects; it is storing the persistent form of the data that makes up the
objects themselves. A good deal has been written about the
technical challenges of mapping objects to relational tables and
effectively storing and retrieving them. A recent discussion can be
found in Fowler 2002. There are reasonably refined tools for creating
and managing mappings between the two. Apart from the technical
concerns, this mismatch can have a significant impact on the object
model.

There are three common cases:

1. The database is primarily a repository for the objects.

The database was designed for another system.

The database is designed for this system but serves in roles other
than object store.

When the database schema is being created specifically as a store
for the objects, it is worth accepting some model limitations in order
to keep the mapping very simple. Without other demands on schema
design, the database can be structured to make aggregate integrity
safer and more efficient as updates are made. Technically, the
relational table design does not have to reflect the domain model.



Mapping tools are sophisticated enough to bridge significant
differences. The trouble is, multiple overlapping models are just too
complicated. Many of the same arguments presented for MODEL-

DRIVEN DESIGN�avoiding separate analysis and design models�apply
to this mismatch. This does entail some sacrifice in the richness of
the object model, and sometimes compromises have to be made in
the database design (such as selective denormalization), but to do
otherwise is to risk losing the tight coupling of model and
implementation. This approach doesn't require a simplistic one-
object/one-table mapping. Depending on the power of the mapping
tool, some aggregation or composition of objects may be possible.
But it is crucial that the mappings be transparent, easily
understandable by inspecting the code or reading entries in the
mapping tool.

When the database is being viewed as an object store, don't let
the data model and the object model diverge far, regardless of
the powers of the mapping tools. Sacrifice some richness of
object relationships to keep close to the relational model.
Compromise some formal relational standards, such as
normalization, if it helps simplify the object mapping.

Processes outside the object system should not access such an
object store. They could violate the invariants enforced by the
objects. Also, their access will lock in the data model so that it is
hard to change when the objects are refactored.

On the other hand, there are many cases in which the data comes
from a legacy or external system that was never intended as a store
of objects. In this situation, there are, in reality, two domain models
coexisting in the same system. Chapter 14, "Maintaining Model
Integrity," deals with this issue in depth. It may make sense to
conform to the model implicit in the other system, or it may be better
to make the model completely distinct.



Another reason for exceptions is performance. Quirky design
changes may have to be introduced to solve execution speed
problems.

But for the important common case of a relational database acting as
the persistent form of an object-oriented domain, simple directness is
best. A table row should contain an object, perhaps along with
subsidiaries in an AGGREGATE. A foreign key in the table should
translate to a reference to another ENTITY object. The necessity of
sometimes deviating from this simple directness should not lead to
total abandonment of the principle of simple mappings.

The UBIQUITOUS LANGUAGE can help tie the object and relational
components together to a single model. The names and associations
of elements in the objects should correspond meticulously to those
of the relational tables. Although the power of some mapping tools
may make this seem unnecessary, subtle differences in relationships
will cause a lot of confusion.

The tradition of refactoring that has increasingly taken hold in the
object world has not really affected relational database design much.
What's more, serious data migration issues discourage frequent
change. This may create a drag on the refactoring of the object
model, but if the object model and the database model start to
diverge, transparency can be lost quickly.

Finally, there are some reasons to go with a schema that is quite
distinct from the object model, even when the database is being
created specifically for your system. The database may also be used
by other software that will not instantiate objects. The database may
require little change, even while the behavior of the objects changes
or evolves rapidly. Cutting the two loose from each other is a
seductive path. It is often taken unintentionally, when the team fails
to keep the database current with the model. If the separation is
chosen consciously, it can result in a clean database schema�not an
awkward one full of compromises conforming to last year's object
model.





Chapter Seven. Using the Language:
An Extended Example
The preceding three chapters introduced a pattern language for
honing the fine detail of a model and maintaining a tight MODEL-DRIVEN

DESIGN. In the earlier examples, the patterns were mostly applied one
at a time, but on a real project you have to combine them. This
chapter presents one elaborate example (still drastically simpler than
a real project, of course). The example will step through a
succession of model and design refinements as a hypothetical team
deals with requirements and implementation issues and develops a
MODEL-DRIVEN DESIGN, showing the forces that apply and how the
patterns of Part II can resolve them.



Introducing the Cargo Shipping System

We're developing new software for a cargo shipping company. The
initial requirements are three basic functions.

1. Track key handling of customer cargo

Book cargo in advance

Send invoices to customers automatically when the cargo reaches
some point in its handling

In a real project, it would take some time and iteration to get to the
clarity of this model. Part III of this book will go into the discovery
process in depth. But here we'll start with a model that has the
needed concepts in a reasonable form, and we'll focus on fine-tuning
the details to support design.

Figure 7.1. A class diagram representing a model of the
shipping domain



This model organizes domain knowledge and provides a language
for the team. We can make statements like this:

"Multiple Customers are involved with a Cargo, each playing
a different role."

"The Cargo delivery goal is specified."

"A series of Carrier Movements satisfying the Specification
will fulfill the delivery goal."

Each object in the model has a clear meaning:

A Handling Event is a discrete action taken with the Cargo, such as
loading it onto a ship or clearing it through customs. This class would
probably be elaborated into a hierarchy of different kinds of incidents,
such as loading, unloading, or being claimed by the receiver.



Delivery Specification defines a delivery goal, which at minimum
would include a destination and an arrival date, but it can be more
complex. This class follows the SPECIFICATION pattern (see Chapter
9).

This responsibility could have been taken on by the Cargo object,
but the abstraction of Delivery Specification gives at least three
advantages.

1. Without Delivery Specification, the Cargo object would be
responsible for the detailed meaning of all those attributes
and associations for specifying the delivery goal. This
would clutter up Cargo and make it harder to understand or
change.

This abstraction makes it easy and safe to suppress detail when
explaining the model as a whole. For example, there could be other
criteria encapsulated in the Delivery Specification, but a diagram at
this level of detail would not have to expose it. The diagram is telling
the reader that there is a SPECIFICATION of delivery, and the details of
that are not important to think about (and, in fact, could be easily
changed later).

This model is more expressive. Adding Delivery Specification says
explicitly that the exact means of delivery of the Cargo is
undetermined, but that it must accomplish the goal set out in the
Delivery Specification.

A role distinguishes the different parts played by Customers in a
shipment. One is the "shipper," one the "receiver," one the "payer,"
and so on. Because only one Customer can play a given role for a
particular Cargo, the association becomes a qualified many-to-one



instead of many-to-many. Role might be implemented as simply a
string, or it could be a class if other behavior is needed.

Carrier Movement represents one particular trip by a particular
Carrier (such as a truck or a ship) from one Location to another.
Cargoes can ride from place to place by being loaded onto Carriers
for the duration of one or more Carrier Movements.

Delivery History reflects what has actually happened to a Cargo, as
opposed to the Delivery Specification, which describes goals. A
Delivery History object can compute the current Location of the
Cargo by analyzing the last load or unload and the destination of the
corresponding Carrier Movement. A successful delivery would end
with a Delivery History that satisfied the goals of the Delivery
Specification.

All the concepts needed to work through the requirements just
described are present in this model, assuming appropriate
mechanisms to persist the objects, find the relevant objects, and so
on. Such implementation issues are not dealt with in the model, but
they must be in the design.

In order to frame up a solid implementation, this model still needs
some clarification and tightening.

Remember, ordinarily, model refinement, design, and implementation
should go hand-in-hand in an iterative development process. But in
this chapter, for clarity of explanation, we are starting with a relatively
mature model, and changes will be motivated strictly by the need to
connect that model with a practical implementation, employing the
building block patterns.

Ordinarily, as the model is being refined to support the design better,
is should also be refined to reflect new insight into the domain. But in
this chapter, for clarity of explanation, changes will be strictly
motivated by the need to connect with a practical implementation,
employing the building block patterns.



Isolating the Domain: Introducing the
Applications

To prevent domain responsibilities from being mixed with those of
other parts of the system, let's apply LAYERED ARCHITECTURE to mark
off a domain layer.

Without going into deep analysis, we can identify three user-level
application functions, which we can assign to three application layer
classes.

1. A Tracking Query that can access past and present
handling of a particular Cargo

A Booking Application that allows a new Cargo to be registered
and prepares the system for it

An Incident Logging Application that can record each handling of
the Cargo (providing the information that is found by the Tracking
Query)

These application classes are coordinators. They should not work
out the answers to the questions they ask. That is the domain layer's
job.



Distinguishing ENTITIES and VALUE Objects

Considering each object in turn, we'll look for identity that must be
tracked or a basic value that is represented. First we'll go through the
clear-cut cases and then consider the more ambiguous ones.

Customer

Let's start with an easy one. A Customer object represents a person
or a company, an entity in the usual sense of the word. The
Customer object clearly has identity that matters to the user, so it is
an ENTITY in the model. How to track it? Tax ID might be appropriate
in some cases, but an international company could not use that. This
question calls for consultation with a domain expert. We discuss the
problem with a businessperson in the shipping company, and we
discover that the company already has a customer database in
which each Customer is assigned an ID number at first sales
contact. This ID is already used throughout the company; using the
number in our software will establish continuity of identity between
those systems. It will initially be a manual entry.

Cargo

Two identical crates must be distinguishable, so Cargo objects are
ENTITIES. In practice, all shipping companies assign tracking IDs to
each piece of cargo. This ID will be automatically generated, visible
to the user, and in this case, probably conveyed to the customer at
booking time.

Handling Event and Carrier Movement



We care about such individual incidents because they allow us to
keep track of what is going on. They reflect real-world events, which
are not usually interchangeable, so they are ENTITIES. Each Carrier
Movement will be identified by a code obtained from a shipping
schedule.

Another discussion with a domain expert reveals that Handling
Events can be uniquely identified by the combination of Cargo ID,
completion time, and type. For example, the same Cargo cannot be
both loaded and unloaded at the same time.

Location

Two places with the same name are not the same. Latitude and
longitude could provide a unique key, but probably not a very
practical one, since those measurements are not of interest to most
purposes of this system, and they would be fairly complicated. More
likely, the Location will be part of a geographical model of some kind
that will relate places according to shipping lanes and other domain-
specific concerns. So an arbitrary, internal, automatically generated
identifier will suffice.

Delivery History

This is a tricky one. Delivery Histories are not interchangeable, so
they are ENTITIES. But a Delivery History has a one-to-one
relationship with its Cargo, so it doesn't really have an identity of its
own. Its identity is borrowed from the Cargo that owns it. This will
become clearer when we model the AGGREGATES.

Delivery Specification



Although it represents the goal of a Cargo, this abstraction does not
depend on Cargo. It really expresses a hypothetical state of some
Delivery History. We hope that the Delivery History attached to
our Cargo will eventually satisfy the Delivery Specification
attached to our Cargo. If we had two Cargoes going to the same
place, they could share the same Delivery Specification, but they
could not share the same Delivery History, even though the
histories start out the same (empty). Delivery Specifications are
VALUE OBJECTS.

Role and Other Attributes

Role says something about the association it qualifies, but it has no
history or continuity. It is a VALUE OBJECT, and it could be shared
among different Cargo/Customer associations.

Other attributes such as time stamps or names are VALUE OBJECTS.



Designing Associations in the Shipping
Domain

None of the associations in the original diagram specified a traversal
direction, but bidirectional associations are problematic in a design.
Also, traversal direction often captures insight into the domain,
deepening the model itself.

If the Customer has a direct reference to every Cargo it has
shipped, it will become cumbersome for long-term, repeat
Customers. Also, the concept of a Customer is not specific to
Cargo. In a large system, the Customer may have roles to play with
many objects. Best to keep it free of such specific responsibilities. If
we need the ability to find Cargoes by Customer, this can be done
through a database query. We'll return to this issue later in this
chapter, in the section on REPOSITORIES.

If our application were tracking the inventory of ships, traversal from
Carrier Movement to Handling Event would be important. But our
business needs to track only the Cargo. Making the association
traversable only from Handling Event to Carrier Movement
captures that understanding of our business. This also reduces the
implementation to a simple object reference, because the direction
with multiplicity was disallowed.

The rationale behind the remaining decisions is explained in Figure
7.2, on the next page.

Figure 7.2. Traversal direction has been constrained on
some associations.



There is one circular reference in our model: Cargo knows its
Delivery History, which holds a series of Handling Events, which
in turn point back to the Cargo. Circular references logically exist in
many domains and are sometimes necessary in design as well, but
they are tricky to maintain. Implementation choices can help by
avoiding holding the same information in two places that must be
kept synchronized. In this case, we can make a simple but fragile
implementation (in Java) in an initial prototype, by giving Delivery
History a List object containing Handling Events. But at some
point we'll probably want to drop the collection in favor of a database
lookup with Cargo as the key. This discussion will be taken up again
when choosing REPOSITORIES. If the query to see the history is
relatively infrequent, this should give good performance, simplify
maintenance, and reduce the overhead of adding Handling Events.
If this query is very frequent, then it is better to go ahead and
maintain the direct pointer. These design trade-offs balance
simplicity of implementation against performance. The model is the
same; it contains the cycle and the bidirectional association.



AGGREGATE Boundaries

Customer, Location, and Carrier Movement have their own
identities and are shared by many Cargoes, so they must be the
roots of their own AGGREGATES, which contain their attributes and
possibly other objects below the level of detail of this discussion.
Cargo is also an obvious AGGREGATE root, but where to draw the
boundary takes some thought.

The Cargo AGGREGATE could sweep in everything that would not exist
but for the particular Cargo, which would include the Delivery
History, the Delivery Specification, and the Handling Events. This
fits for Delivery History. No one would look up a Delivery History
directly without wanting the Cargo itself. With no need for direct
global access, and with an identity that is really just derived from the
Cargo, the Delivery History fits nicely inside Cargo's boundary,
and it does not need to be a root. The Delivery Specification is a
VALUE OBJECT, so there are no complications from including it in the
Cargo AGGREGATE.

The Handling Event is another matter. Previously we have
considered two possible database queries that would search for
these: one, to find the Handling Events for a Delivery History as a
possible alternative to the collection, would be local within the Cargo
AGGREGATE; the other would be used to find all the operations to load
and prepare for a particular Carrier Movement. In the second case,
it seems that the activity of handling the Cargo has some meaning
even when considered apart from the Cargo itself. So the Handling
Event should be the root of its own AGGREGATE.

Figure 7.3. AGGREGATE boundaries imposed on the
model. (Note: An ENTITY outside a drawn boundary is

implied to be the root of its own AGGREGATE.)





Selecting REPOSITORIES

There are five ENTITIES in the design that are roots of AGGREGATES, so
we can limit our consideration to these, since none of the other
objects is allowed to have REPOSITORIES.

To decide which of these candidates should actually have a
REPOSITORY, we must go back to the application requirements. In
order to take a booking through the Booking Application, the user
needs to select the Customer(s) playing the various roles (shipper,
receiver, and so on). So we need a Customer Repository. We also
need to find a Location to specify as the destination for the Cargo,
so we create a Location Repository.

The Activity Logging Application needs to allow the user to look
up the Carrier Movement that a Cargo is being loaded onto, so we
need a Carrier Movement Repository. This user must also tell the
system which Cargo has been loaded, so we need a Cargo
Repository.

Figure 7.4. REPOSITORIES give access to selected
AGGREGATE roots.



For now there is no Handling Event Repository, because we
decided to implement the association with Delivery History as a
collection in the first iteration, and we have no application
requirement to find out what has been loaded onto a Carrier
Movement. Either of these reasons could change; if they did, then
we would add a REPOSITORY.



Walking Through Scenarios

To cross-check all these decisions, we have to constantly step
through scenarios to confirm that we can solve application problems
effectively.

Sample Application Feature: Changing the
Destination of a Cargo

Occasionally a Customer calls up and says, "Oh no! We said to
send our cargo to Hackensack, but we really need it in Hoboken."
We are here to serve, so the system is required to provide for this
change.

Delivery Specification is a VALUE OBJECT, so it would be simplest to
just to throw it away and get a new one, then use a setter method on
Cargo to replace the old one with the new one.

Sample Application Feature: Repeat
Business

The users say that repeated bookings from the same Customers
tend to be similar, so they want to use old Cargoes as prototypes for
new ones. The application will allow them to find a Cargo in the
REPOSITORY and then select a command to create a new Cargo
based on the selected one. We'll design this using the PROTOTYPE

pattern (Gamma et al. 1995).

Cargo is an ENTITY and is the root of an AGGREGATE. Therefore, it
must be copied carefully; we need to consider what should happen



to each object or attribute enclosed by its AGGREGATE boundary. Let's
go over each one:

Delivery History: We should create a new, empty one, because
the history of the old one doesn't apply. This is the usual case
with ENTITIES inside the AGGREGATE boundary.

Customer Roles: We should copy the Map (or other collection)
that holds the keyed references to Customers, including the
keys, because they are likely to play the same roles in the new
shipment. But we have to be careful not to copy the Customer
objects themselves. We must end up with references to the
same Customer objects as the old Cargo object referenced,
because they are ENTITIES outside the AGGREGATE boundary.

Tracking ID: We must provide a new Tracking ID from the
same source as we would when creating a new Cargo from
scratch.

Notice that we have copied everything inside the Cargo AGGREGATE

boundary, we have made some modifications to the copy, but we
have affected nothing outside the AGGREGATE boundary at all.



Object Creation

FACTORIES and Constructors for Cargo

Even if we have a fancy FACTORY for Cargo, or use another Cargo as
the FACTORY, as in the "Repeat Business" scenario, we still have to
have a primitive constructor. We would like the constructor to
produce an object that fulfills its invariants or at least, in the case of
an ENTITY, has its identity intact.

Given these decisions, we might create a FACTORY method on Cargo
such as this:

public Cargo copyPrototype(String newTrackingID) 

Or we might make a method on a standalone FACTORY such as this:

public Cargo newCargo(Cargo prototype, String 
newTrackingID) 

A standalone FACTORY could also encapsulate the process of
obtaining a new (automatically generated) ID for a new Cargo, in
which case it would need only one argument:

public Cargo newCargo(Cargo prototype) 

The result returned from any of these FACTORIES would be the same:
a Cargo with an empty Delivery History, and a null Delivery
Specification.

The two-way association between Cargo and Delivery History
means that neither Cargo nor Delivery History is complete without
pointing to its counterpart, so they must be created together.
Remember that Cargo is the root of the AGGREGATE that includes
Delivery History. Therefore, we can allow Cargo's constructor or



FACTORY to create a Delivery History. The Delivery History
constructor will take a Cargo as an argument. The result would be
something like this:

public Cargo(String id) { 
    trackingID = id; 
    deliveryHistory = new DeliveryHistory(this); 
    customerRoles = new HashMap(); 
} 

The result is a new Cargo with a new Delivery History that points
back to the Cargo. The Delivery History constructor is used
exclusively by its AGGREGATE root, namely Cargo, so that the
composition of Cargo is encapsulated.

Adding a Handling Event

Each time the cargo is handled in the real world, some user will enter
a Handling Event using the Incident Logging Application.

Every class must have primitive constructors. Because the Handling
Event is an ENTITY, all attributes that define its identity must be
passed to the constructor. As discussed previously, the Handling
Event is uniquely identified by the combination of the ID of its
Cargo, the completion time, and the event type. The only other
attribute of Handling Event is the association to a Carrier
Movement, which some types of Handling Events don't even have.
A basic constructor that creates a valid Handling Event would be:

public HandlingEvent(Cargo c, String eventType, 
Date timeStamp) { 
    handled = c; 
    type = eventType; 
    completionTime = timeStamp; 
} 



Nonidentifying attributes of an ENTITY can usually be added later. In
this case, all attributes of the Handling Event are going to be set in
the initial transaction and never altered (except possibly for
correcting a data-entry error), so it could be convenient, and make
client code more expressive, to add a simple FACTORY METHOD to
Handling Event for each event type, taking all the necessary
arguments. For example, a "loading event" does involve a Carrier
Movement:

public static HandlingEvent newLoading( 
   Cargo c, CarrierMovement loadedOnto, Date 
timeStamp) { 
      HandlingEvent result = 
         new HandlingEvent(c, LOADING_EVENT, 
timeStamp); 
      result.setCarrierMovement(loadedOnto); 
      return result; 
} 

The Handling Event in the model is an abstraction that might
encapsulate a variety of specialized Handling Event classes,
ranging from loading and unloading to sealing, storing, and other
activities not related to Carriers. They might be implemented as
multiple subclasses or have complicated initialization�or both. By
adding FACTORY METHODS to the base class (Handling Event) for
each type, instance creation is abstracted, freeing the client from
knowledge of the implementation. The FACTORY is responsible for
knowing what class was to be instantiated and how it should be
initialized.

Unfortunately, the story isn't quite that simple. The cycle of
references, from Cargo to Delivery History to History Event and
back to Cargo, complicates instance creation. The Delivery History
holds a collection of Handling Events relevant to its Cargo, and the
new object must be added to this collection as part of the
transaction. If this back-pointer were not created, the objects would
be inconsistent.



Figure 7.5. Adding a Handling Event requires inserting it
into a Delivery History.

Creation of the back-pointer could be encapsulated in the FACTORY

(and kept in the domain layer where it belongs), but now we'll look at
an alternative design that eliminates this awkward interaction
altogether.



Pause for Refactoring: An Alternative Design
of the Cargo AGGREGATE

Modeling and design is not a constant forward process. It will grind
to a halt unless there is frequent refactoring to take advantage of
new insights to improve the model and the design.

By now, there are a couple of cumbersome aspects to this design,
although it does work and it does reflect the model. Problems that
didn't seem important when starting the design are beginning to be
annoying. Let's go back to one of them and, with the benefit of
hindsight, stack the design deck in our favor.

The need to update Delivery History when adding a Handling
Event gets the Cargo AGGREGATE involved in the transaction. If some
other user was modifying Cargo at the same time, the Handling
Event transaction could fail or be delayed. Entering a Handling
Event is an operational activity that needs to be quick and simple, so
an important application requirement is the ability to enter Handling
Events without contention. This pushes us to consider a different
design.

Replacing the Delivery History's collection of Handling Events with
a query would allow Handling Events to be added without raising
any integrity issues outside its own AGGREGATE. This change would
enable such transactions to complete without interference. If there
are a lot of Handling Events being entered and relatively few
queries, this design is more efficient. In fact, if a relational database
is the underlying technology, a query was probably being used under
the covers anyway to emulate the collection. Using a query rather
than a collection would also reduce the difficulty of maintaining
consistency in the cyclical reference between Cargo and Handling
Event.



To take responsibility for the queries, we'll add a REPOSITORY for
Handling Events. The Handling Event Repository will support a
query for the Events related to a certain Cargo. In addition, the
REPOSITORY can provide queries optimized to answer specific
questions efficiently. For example, if a frequent access path is the
Delivery History finding the last reported load or unload, in order to
infer the current status of the Cargo, a query could be devised to
return just that relevant Handling Event. And if we wanted a query
to find all Cargoes loaded on a particular Carrier Movement, we
could easily add it.

Figure 7.6. Implementing Delivery History's collection of
Handling Events as a query makes insertion of Handling

Events simple and free of contention with the Cargo
AGGREGATE.



This leaves the Delivery History with no persistent state. At this
point, there is no real need to keep it around. We could derive
Delivery History itself whenever it is needed to answer some
question. We can derive this object because, although the ENTITY will
be repeatedly recreated, the association with the same Cargo object
maintains the thread of continuity between incarnations.

The circular reference is no longer tricky to create and maintain. The
Cargo Factory will be simplified to no longer attach an empty
Delivery History to new instances. Database space can be reduced
slightly, and the actual number of persistent objects might be
reduced considerably, which is a limited resource in some object
databases. If the common usage pattern is that the user seldom
queries for the status of a Cargo until it arrives, then a lot of
unneeded work will be avoided altogether.

On the other hand, if we are using an object database, traversing an
association or an explicit collection is probably much faster than a
REPOSITORY query. If the access pattern includes frequent listing of
the full history, rather than the occasional targeted query of last
position, the performance trade-off might favor the explicit collection.
And remember that the added feature ("What is on this Carrier
Movement?") hasn't been requested yet, and may never be, so we
don't want to pay much for that option.

These kinds of alternatives and design trade-offs are everywhere,
and I could come up with lots of examples just in this little simplified
system. But the important point is that these are degrees of freedom
within the same model. By modeling VALUES, ENTITIES, and their
AGGREGATES as we have, we have reduced the impact of such design
changes. For example, in this case all changes are encapsulated
within the Cargo's AGGREGATE boundary. It also required the addition
of the Handling Event Repository, but it did not call for any
redesign of the Handling Event itself (although some
implementation changes might be involved, depending on the details
of the REPOSITORY framework).



MODULES in the Shipping Model

So far we've been looking at so few objects that modularity is not an
issue. Now let's look at a little bigger part of a shipping model
(though still simplified, of course) to see its organization into MODULES

that will affect the model.

Figure 7.7 shows a model neatly partitioned by a hypothetical
enthusiastic reader of this book. This diagram is a variation on the
infrastructure-driven packaging problem raised in Chapter 5. In this
case, the objects have been grouped according to the pattern each
follows. The result is that objects that conceptually have little
relationship (low cohesion) are crammed together, and associations
run willy-nilly between all the MODULES (high coupling). The packages
tell a story, but it is not the story of shipping; it is the story of what the
developer was reading at the time.

Figure 7.7. These MODULES do not convey domain
knowledge.



Partitioning by pattern may seem like an obvious error, but it is not
really any less sensible than separating persistent objects from
transient ones or any other methodical scheme that is not grounded
in the meaning of the objects.

Instead, we should be looking for the cohesive concepts and
focusing on what we want to communicate to others on the project.
As with smaller scale modeling decisions, there are many ways to do
it. Figure 7.8 shows a straightforward one.



Figure 7.8. MODULES based on broad domain concepts

The MODULE names in Figure 7.8 contribute to the team's language.
Our company does shipping for customers so that we can bill them.
Our sales and marketing people deal with customers, and make
agreements with them. The operations people do the shipping,
getting the cargo to its specified destination. The back office takes
care of billing, submitting invoices according to the pricing in the
customer's agreement. That's one story I can tell with this set of
MODULES.

This intuitive breakdown could be refined, certainly, in successive
iterations, or even replaced entirely, but it is now aiding MODEL-DRIVEN

DESIGN and contributing to the UBIQUITOUS LANGUAGE.



Introducing a New Feature: Allocation
Checking

Up to this point, we've been working off the initial requirements and
model. Now the first major new functions are going to be added.

The sales division of the imaginary shipping company uses other
software to manage client relationships, sales projections, and so
forth. One feature supports yield management by allowing the firm to
allocate how much cargo of specific types they will attempt to book
based on the type of goods, the origin and destination, or any other
factor they may choose that can be entered as a category name.
These constitute goals of how much will be sold of each type, so that
more profitable types of business will not be crowded out by less
profitable cargoes, while at the same time avoiding underbooking
(not fully utilizing their shipping capacity) or excessive overbooking
(resulting in bumping cargo so often that it hurts customer
relationships).

Now they want this feature to be integrated with the booking system.
When a booking comes in, they want it checked against these
allocations to see if it should be accepted.

The information needed resides in two places, which will have to be
queried by the Booking Application so that it can either accept or
reject the requested booking. A sketch of the general information
flows looks something like this.

Figure 7.9. Our Booking Application must use
information from the Sales Management System and

from our own domain REPOSITORIES.



Connecting the Two Systems

The Sales Management System was not written with the same
model in mind that we are working with here. If the Booking
Application interacts with it directly, our application will have to
accommodate the other system's design, which will make it harder to
keep a clear MODEL-DRIVEN DESIGN and will confuse the UBIQUITOUS

LANGUAGE. Instead, let's create another class whose job it will be to
translate between our model and the language of the Sales
Management System. It will not be a general translation
mechanism. It will expose just the features our application needs,
and it will reabstract them in terms of our domain model. This class
will act as an ANTICORRUPTION LAYER (discussed in Chapter 14).

This is an interface to the Sales Management System, so we might
first think of calling it something like "Sales Management Interface."
But we would be missing an opportunity to use language to recast
the problem along lines more useful to us. Instead, let's define a
SERVICE for each of the allocation functions we need to get from the
other system. We'll implement the SERVICES with a class whose name
reflects its responsibility in our system: "Allocation Checker."

If some other integration is needed (for example, using the Sales
Management System's customer database instead of our own
Customer REPOSITORY), another translator can be created with
SERVICES fulfilling that responsibility. It might still be useful to have a
lower level class like Sales Management System Interface to



handle the machinery of talking to the other program, but it wouldn't
be responsible for translation. Also, it would be hidden behind the
Allocation Checker, so it wouldn't show up in the domain design.

Enhancing the Model: Segmenting the
Business

Now that we have outlined the interaction of the two systems, what
kind of interface are we going to supply that can answer the question
"How much of this type of Cargo may be booked?" The tricky issue
is to define what the "type" of a Cargo is, because our domain model
does not categorize Cargoes yet. In the Sales Management
System, Cargo types are just a set of category keywords, and we
could conform our types to that list. We could pass in a collection of
strings as an argument. But we would be passing up another
opportunity: this time, to reabstract the domain of the other system.
We need to enrich our domain model to accommodate the
knowledge that there are categories of cargo. We should brainstorm
with a domain expert to work out the new concept.

Sometimes (as will be discussed in Chapter 11) an analysis pattern
can give us an idea for a modeling solution. The book Analysis
Patterns (Fowler 1996) describes a pattern that addresses this kind
of problem: the ENTERPRISE SEGMENT. An ENTERPRISE SEGMENT is a set
of dimensions that define a way of breaking down a business. These
dimensions could include all those mentioned already for the
shipping business, as well as time dimensions, such as month to
date. Using this concept in our model of allocation makes the model
more expressive and simplifies the interfaces. A class called
"Enterprise Segment" will appear in our domain model and design
as an additional VALUE OBJECT, which will have to be derived for each
Cargo.



Figure 7.10. The Allocation Checker acts as an
ANTICORRUPTION LAYER presenting a selective interface
to the Sales Management System in terms of our domain

model.

The Allocation Checker will translate between Enterprise
Segments and the category names of the external system. The
Cargo Repository must also provide a query based on the
Enterprise Segment. In both cases, collaboration with the
Enterprise Segment object can be used to perform the operations
without breaching the Segment's encapsulation and complicating
their own implementations. (Notice that the Cargo Repository is
answering a query with a count, rather than a collection of
instances.)

There are still a few problems with this design.

1. We have given the Booking Application the job of applying
this rule: "A Cargo is accepted if the space allocated for its
Enterprise Segment is greater than the quantity already
booked plus the size of the new Cargo." Enforcing a



business rule is domain responsibility and shouldn't be
performed in the application layer.

It isn't clear how the Booking Application derives the Enterprise
Segment.

Both of these responsibilities seem to belong to the Allocation
Checker. Changing its interface can separate these two SERVICES

and make the interaction clear and explicit.

Figure 7.11. Domain responsibilities shifted from
Booking Application to Allocation Checker

The only serious constraint imposed by this integration will be that
the Sales Management System mustn't use dimensions that the
Allocation Checker can't turn into Enterprise Segments. (Without
applying the ENTERPRISE SEGMENT pattern, the same constraint would
force the sales system to use only dimensions that can be used in a
query to the Cargo Repository. This approach is feasible, but the
sales system spills into other parts of the domain. In this design, the
Cargo Repository need only be designed to handle Enterprise
Segment, and changes in the sales system ripple only as far as the
Allocation Checker, which was conceived as a FACADE in the first
place.)



Performance Tuning

Although the Allocation Checker's interface is the only part that
concerns the rest of the domain design, its internal implementation
can present opportunities to solve performance problems, if they
arise. For example, if the Sales Management System is running on
another server, perhaps at another location, the communications
overhead could be significant, and there are two message
exchanges for each allocation check. There is no alternative to the
second message, which invokes the Sales Management System to
answer the basic question of whether a certain cargo should be
accepted. But the first message, which derives the Enterprise
Segment for a cargo, is based on relatively static data and behavior
compared to the allocation decisions themselves. One design option
would be to cache this information so that it could be relocated on
the server with the Allocation Checker, reducing messaging
overhead by half. There is a price for this flexibility. The design is
more complicated and the duplicated data must now be kept up to
date somehow. But when performance is critical in a distributed
system, flexible deployment can be an important design goal.



A Final Look

That's it. This integration could have turned our simple, conceptually
consistent design into a tangled mess, but now, using an
ANTICORRUPTION LAYER, a SERVICE, and some ENTERPRISE SEGMENTS, we
have integrated the functionality of the Sales Management System
into our booking system cleanly, enriching the domain.

A final design question: Why not give Cargo the responsibility of
deriving the Enterprise Segment? At first glance it seems elegant, if
all the data the derivation is based on is in the Cargo, to make it a
derived attribute of Cargo. Unfortunately, it is not that simple.
Enterprise Segments are defined arbitrarily to divide along lines
useful for business strategy. The same ENTITIES could be segmented
differently for different purposes. We are deriving the segment for a
particular Cargo for booking allocation purposes, but it could have a
completely different Enterprise Segment for tax accounting
purposes. Even the allocation Enterprise Segment could change if
the Sales Management System is reconfigured because of a new
sales strategy. So the Cargo would have to know about the
Allocation Checker, which is well outside its conceptual
responsibility, and it would be laden with methods for deriving
specific types of Enterprise Segment. Therefore, the responsibility
for deriving this value lies properly with the object that knows the
rules for segmentation, rather than the object that has the data to
which those rules apply. Those rules could be split out into a
separate "Strategy" object, which could be passed to a Cargo to
allow it to derive an Enterprise Segment. That solution seems to go
beyond the requirements we have here, but it would be an option for
a later design and shouldn't be a very disruptive change.



Part III: Refactoring Toward Deeper
Insight

Part II of this book laid a foundation for maintaining the
correspondence between model and implementation. Using a
proven set of basic building blocks along with consistent
language brings some sanity to the development effort.

Of course, the real challenge is to actually find an incisive
model, one that captures subtle concerns of the domain
experts and can drive a practical design. Ultimately, we hope
to develop a model that captures a deep understanding of the
domain. This should make the software more in tune with the
way the domain experts think and more responsive to the
user's needs. This part of the book will clarify that goal,
describe the process by which it can be approached, and
explain some design principles and patterns to apply to make
the design accommodate the needs of the application as well
as the developers themselves.

Success developing useful models comes down to three
points.

1. Sophisticated domain models are achievable and
worth the trouble.

They are seldom developed except through an iterative
process of refactoring, including close involvement of the
domain experts with developers interested in learning about
the domain.



They may call for sophisticated design skills to implement and
to use effectively.

Levels of Refactoring

Refactoring is the redesign of software in ways that do not
change its functionality. Rather than making elaborate up-front
design decisions, developers take code through a continuous
series of small, discrete design changes, each leaving existing
functionality unchanged while making the design more flexible
or easier to understand. A suite of automated unit tests allows
relatively safe experimentation with the code. The process
frees the developers from the need to look far ahead.

But nearly all the literature on how to refactor focuses on
mechanical changes to the code that make it easier to read or
to enhance at a very detailed level. The approach of
"refactoring to patterns"[1] can give a higher-level target to the
refactoring process when a developer recognizes an
opportunity to apply an established design pattern. Still, it is a
primarily technical view of the quality of a design.

[1] Patterns as targets for refactoring were briefly mentioned in Gamma et
al. (1995). Joshua Kerievsky has developed refactoring to patterns into a
more mature and useful form (Kerievsky 2003).

The refactorings that have the greatest impact on the viability
of the system are those motivated by new insights into the
domain or those that clarify the model's expression through
the code. This type of refactoring does not in any way replace
the refactorings to design patterns or the micro-refactorings,
which should proceed continuously. It superimposes another
level: refactoring to a deeper model. Executing a refactoring
based on domain insight often involves a series of micro-
refactorings, but the motivation is not just the state of the
code. Rather, the micro-refactorings provide convenient units



of change toward a more insightful model. The goal is that not
only can a developer understand what the code does; he or
she can also understand why it does what it does and can
relate that to the ongoing communication with the domain
experts.

The catalog in Refactoring (Fowler 1999) covers most of the
micro-refactorings that come up regularly. Each is motivated
primarily by some problem that can be observed in the code
itself. By contrast, domain models are transformed in such a
range of ways as new insights emerge that a comprehensive
catalog would be impossible to compile.

Modeling is as inherently unstructured as any exploration.
Refactoring to deeper insight should follow wherever learning
and deep thinking lead. Published collections of successful
models can be helpful, as discussed in Chapter 11, but we
shouldn't get sidetracked trying to reduce domain modeling to
a cookbook or a toolkit. Modeling and design call for creativity.
The next six chapters will suggest some specific approaches
to thinking about improving a domain model, along with the
design that brings it to life.

Deep Models

The traditional way of explaining object analysis involves
identifying nouns and verbs in the requirements documents
and using them as the initial objects and methods. This
explanation is recognized as an oversimplification that can be
useful for teaching object modeling to beginners. The truth is,
though, that initial models usually are naive and superficial,
based on shallow knowledge.

For example, I once worked on a shipping application for
which my initial idea of an object model involved ships and
containers. Ships moved from place to place. Containers were



associated and disassociated through load and unload
operations. That is an accurate description of some physical
shipping activities. It does not turn out to be a very useful
model for shipping business software.

Eventually, after months working with shipping experts through
many iterations, we evolved a quite different model. It was less
obvious to a layperson, but much more relevant to the experts.
It was refocused on the business of delivering cargo.

The ships were still there, but abstracted in the form of a
"vessel voyage," a particular trip scheduled for a ship, train, or
other carrier. The ship itself was secondary, and could be
substituted at the last minute for maintenance or a slipping
schedule, while the vessel voyage went on as planned. The
shipping container all but disappeared from the model. It did
emerge in a cargo-handling application in a different, very
complex form, but in the context of the original application, the
container was an operational detail. The physical movement of
the cargo took a back seat to the transfers of legal
responsibility for that cargo. Less obvious objects, such as the
"bill of lading," came to the fore.

Whenever new object modelers showed up on the project,
what was their first suggestion? The missing classes: ship and
container. They were smart people. They just hadn't gone
through the processes of discovery.

A deep model provides a lucid expression of the primary
concerns of the domain experts and their most relevant
knowledge while it sloughs off the superficial aspects of the
domain. This definition doesn't mention abstraction. A deep
model usually has abstract elements, but it may well have
concrete elements where those cut to the heart of the
problem.

Versatility, simplicity, and explanatory power come from a
model that is truly in tune with the domain. One feature such



models almost always have is a simple, though possibly
abstract, language that the business experts like to use.

Deep Model/Supple Design

In a process of constant refactoring, the design itself needs to
support change. Chapter 10 looks at ways to make a design
easy to work with, both for those changing it and for those
integrating it with other parts of the system.

Certain characteristics of a design make it easier to change
and use. They are not complicated, but they are challenging.
"Supple design" and ways to approach it are the subjects of
Chapter 10.

One bit of luck is that the very act of transforming the model
and code again and again�if each change reflects new
understanding�can bring about flexibility at just the points
where change is most needed, along with easy ways of doing
the common things. A well-worn glove becomes supple at the
points where the fingers bend, while other parts are stiff and
protective. So although there is a lot of trial and error involved
in this approach to modeling and design, the changes can
actually become easier to make, and the repeated changes
actually move us toward a supple design.

In addition to facilitating change, a supple design contributes
to the refinement of the model itself. A MODEL-DRIVEN DESIGN

stands on two legs. A deep model makes possible an
expressive design. At the same time, a design can actually
feed insight into the model discovery process when it has the
flexibility to let a developer experiment and the clarity to show
a developer what is happening. This half of the feedback loop
is essential, because the model we are looking for is not just a
nice set of ideas: it is the foundation of the system.



The Discovery Process

To create a design really fitted to the problem at hand, you
must first have a model that captures the central relevant
concepts of the domain. Actively searching for these concepts
and bringing them into the design is the subject of Chapter 9,
"Making Implicit Concepts Explicit."

Because of the close relationship between model and design,
the modeling process comes to a halt when the code is hard
to refactor. Chapter 10, "Supple Design," discusses how to
write software for software developers, not least yourself, so
that it is productive to extend and change. This effort goes
hand in hand with further refinements to the model. It often
entails more advanced design techniques and more rigor in
model definitions.

You will usually depend on creativity and trial and error to find
good ways to model the concepts you discover, but
sometimes someone has laid down a pattern you can follow.
Chapters 11 and 12 discuss the application of "analysis
patterns" and "design patterns." Such patterns are not ready-
made solutions, but they feed your knowledge crunching
process and narrow your search.

But I'll start Part III with the most exciting event in domain-
driven design. Sometimes, when the stage is set with a MODEL-

DRIVEN DESIGN and explicit concepts, you have a breakthrough.
An opportunity opens up to transform your software into
something more expressive and versatile than you expected.
This can mean new features or it can just mean the
replacement of a big chunk of rigid code with a simple, flexible
expression of a deeper model. Although such breakthroughs
don't come along every day, they are so valuable that when
they do happen, the opportunity needs to be recognized and
grasped.



Chapter 8 tells the true story of a project on which a process
of refactoring toward deeper insight led to a breakthrough.
This experience is not something you can plan for.
Nonetheless, it provides a good context for thinking about
domain refactoring.



Chapter Eight. Breakthrough

The returns from refactoring are not linear. Usually there is a
marginal return for a small effort, and the small improvements add
up. They fight entropy, and they are the frontline protection against a
fossilized legacy. But some of the most important insights come
abruptly and send a shock through the project.

Slowly but surely, the team assimilates knowledge and crunches it
into a model. Deep models can emerge gradually through a
sequence of small refactorings, an object at a time: a tweaked
association here, a shifted responsibility there.

Often, though, continuous refactoring prepares the way for
something less orderly. Each refinement of code and model gives
developers a clearer view. This clarity creates the potential for a
breakthrough of insights. A rush of change leads to a model that
corresponds on a deeper level to the realities and priorities of the



users. Versatility and explanatory power suddenly increase even as
complexity evaporates.

This sort of breakthrough is not a technique; it is an event. The
challenge lies in recognizing what is happening and deciding how to
deal with it. To convey what this experience feels like, I'll tell a true
story of a project I worked on some years ago, and how we arrived
at a very valuable deep model.



Story of a Breakthrough

After a long New York winter of refactoring, we had arrived at a
model that captured some of the key knowledge of the domain and a
design that did some real work for the application. We were
developing a core part of a large application for managing
syndicated loans in an investment bank.

When Intel wants to build a billion-dollar factory, they need a loan
that is too big for any single lending company to take on, so the
lenders form a syndicate that pools its resources to support a facility
(see sidebar). An investment bank usually acts as syndicate leader,
co-ordinating transactions and other services. Our project was to
build software to track and support this whole process.

A Decent Model, and Yet . . .

We were feeling pretty good. Four months before, we had been in
deep trouble with a completely unworkable, inherited code base,
which we had since wrestled into a coherent MODEL-DRIVEN DESIGN.

The model reflected in Figure 8.1 makes the common case very
simple. The Loan Investment is a derived object that represents a
particular investor's contribution to the Loan, proportional to its share
in the Facility.

Figure 8.1. A model that assumes lender shares are fixed





What Is a "Facility"?

A "facility" in this context is not a building. As on most projects, specialized
terminology from the domain experts entered our vocabulary and became part of the
UBIQUITOUS LANGUAGE. In the domain of commercial banking, a facility is a commitment
by a company to lend. Your credit card is a facility that entitles you to borrow on
demand up to a prearranged limit at a predetermined interest rate. When you use the
card, you create an outstanding loan, and each additional charge is a drawdown
against your facility that increases the loan. Finally you pay back the loan principal.
You may also pay an annual fee. This is a fee for the privilege of having the card (the
facility) and is independent of your loan.

But there were some disconcerting signs. We kept stumbling over
unexpected requirements that complicated the design. A major
example was the creeping understanding that the shares in a
Facility were only a guideline to participation in any particular loan
draw-down. When the borrower requests its money, the leader of the
syndicate calls all members for their shares.

When called, the investors usually cough up their share, but often
they negotiate with other members of the syndicate and invest less
(or more). We had accommodated this by adding Loan
Adjustments to the model.

Figure 8.2. A model incrementally changed to solve
problems. Loan Adjustments track departures from the

share a lender originally agreed to in the Facility.



Refinements of this kind allowed us to keep up as the rules of
various transactions became clearer. But complexity was increasing,
and we did not seem to be converging quickly onto really solid
functionality.

Even more troubling were subtle rounding inconsistencies that we
had not been able to squash with increasingly complex algorithms.
True, in a $100 million (MM) deal, no one cares about where the
extra pennies go, but bankers don't trust software that cannot
meticulously account for those pennies. We began to suspect that
our difficulties were symptomatic of a basic design problem.

The Breakthrough

Suddenly one week it dawned on us what was wrong. Our model
tied together the Facility and Loan shares in a way that was not
appropriate to the business. This revelation had wide repercussions.
With the business experts nodding, enthusiastically helping�and, I
dare say, wondering what took us so long�we hashed out a new
model on a whiteboard. Although the details hadn't jelled yet, we
knew the crucial feature of the new model: shares of the Loan and
those of the Facility could change independently of each other. With



that insight, we walked through numerous scenarios using a
visualization of the new model that looked something like this:

Figure 8.3. A drawdown distributed based on Facility
shares

This diagram says that the borrower has chosen to draw an initial
$50MM from the $100MM committed under the Facility. The three
lenders chip in their shares in exact proportion to the Facility shares,
resulting in a $50MM Loan divided among the lenders.

Then, in Figure 8.4, the borrower draws an additional $30MM,
bringing his outstanding Loan to $80MM, still under the $100MM
limit of the Facility. This time, Company B chooses not to
participate, letting Company A take an extra share. The shares of the
draw-down reflect these investment choices. When the drawdown
amounts are added to the Loan, the shares of the Loan are no
longer proportional to the shares of the Facility. This is common.

Figure 8.4. Lender B opts out of a second drawdown.



Figure 8.5. Principal payments are always distributed
proportional to shares in the outstanding Loan.

When the borrower pays down the Loan, the money is divided
among the lenders according to the shares of the Loan, not the
Facility. Likewise, interest payments will be divided according to the
Loan shares.

Figure 8.6. Fee payments are always distributed
proportionally to shares in the Facility.



On the other hand, when the borrower pays a fee for the privilege of
having the Facility available, this money is divided according to the
Facility shares, regardless of who actually has lent money. The
Loan is unchanged by fee payments. There are even scenarios in
which lenders trade shares of fees separately from their shares of
interest, and so on.

A Deeper Model

We had two deep insights. First was the realization that our
"Investments" and "Loan Investments" were just two special cases of
a general and fundamental concept: shares. Shares of a facility,
shares of a loan, shares of a payment distribution. Shares, shares
everywhere. Shares of any divisible value.

A few tumultuous days later I had sketched a model of shares,
drawing on the language used in the discussions with experts and
the scenarios we had explored together.

Figure 8.7. An abstract model of shares



I also sketched a new loan model to go with it.

Figure 8.8. The Loan model using Share Pie

There were no longer specialized objects for the shares of a Facility
or a Loan. They both were broken down into the more intuitive
"Share Pie." This generalization allowed the introduction of "shares
math," vastly simplifying the calculation of shares in any transaction,
and making those calculations more expressive, concise, and easily
combined.

But most of all, problems went away because the new model
removed an inappropriate constraint. It freed the Loan's Shares to



depart from the proportions of the Facility's Shares, while keeping
in place the valid constraints on totals, fee distributions, and so on.
The Share Pie of the Loan could be adjusted directly, so the Loan
Adjustment was no longer needed, and a large amount of special-
case logic was eliminated.

The Loan Investment had disappeared, and at this point we
realized that "loan investment" was not a banking term. In fact, the
business experts had told us a number of times that they didn't
understand it. They had deferred to our software knowledge and
assumed it was useful to the technical design. Actually, we had
created it based on our incomplete understanding of the domain.

Suddenly, on the basis of this new way of looking at the domain, we
could run through every scenario we had ever encountered relatively
effortlessly, much more simply than ever before. And our model
diagrams made perfect sense to the business experts, who had
often indicated that the diagrams were "too technical" for them. Even
just sketching on a whiteboard, we could see that our most
persistent rounding problems would be pulled out by the roots,
allowing us to scrap some of the complicated rounding code.

Our new model worked well. Really, really well.

And we all felt sick!

A Sobering Decision

You might reasonably assume that we would have been elated at
this point. We were not. We were under a severe deadline; the
project was already dangerously behind schedule. Our dominant
emotion was fear.

The gospel of refactoring is that you always go in small steps,
always keeping everything working. But to refactor our code to this
new model would require changing a lot of supporting code, and



there would be few, if any, stable stopping points in between. We
could see some small improvements we could make, but none that
would take us closer to the new concept. We could see a sequence
of small steps to get there, but parts of the application would be
disabled along the way. And this was before the age when
automated tests were widely used on such projects. We had none,
so there was bound to be unforeseen breakage.

And it was going to take effort. We were already exhausted from
months of pushing.

At this point, we had a meeting with our project manager that I will
never forget. Our manager was an intelligent and bold man. He
asked a series of questions:

Q1: How long would it take to get back to current functionality with the new design?

A1: About three weeks.

Q2: Could we solve the problems without it?

A2: Probably. But no way to be sure.

Q3: Would we be able to move forward in the next release if we didn't do it now?

A3: Forward movement would be slow without the change. And the change would be much
harder once we had an installed base.

Q4: Did we think it was the right thing to do?

A4:
We knew the political situation was unstable, so we'd cope if we had to. And we were tired.
But, yes, it was a simpler solution that fit the business much better. In the long run it was
lower risk.

He gave us the go-ahead and told us he would handle the heat. I've
always had tremendous admiration for the courage and trust it took



for him to make that decision.

We busted our butts and got it done in three weeks. It was a big job,
but it went surprisingly smoothly.

The Payoff

The mystifyingly unexpected requirement changes stopped. The
rounding logic, though never exactly simple, stabilized and made
sense. We delivered version one and the way was clear to version
two. My nervous breakdown was narrowly averted.

As version two evolved, this Share Pie became the unifying theme
of the whole application. Technical people and business experts
used it to discuss the system. Marketing people used it to explain the
features to prospective customers. Those prospects and customers
immediately grasped it and used it to discuss features. It truly
became part of the UBIQUITOUS LANGUAGE because it got to the heart
of what loan syndication is about.



Opportunities

When the prospect of a breakthrough to a deeper model presents
itself, it is often scary. Such a change has higher opportunity and
higher risk than most refactorings. And timing may be inopportune.

Much as we might like it to be otherwise, progress isn't a smooth
ride. The transition to a really deep model is a profound shift in your
thinking and demands a major change to the design. On many
projects the most important progress in model and design come in
these breakthroughs.



Focus on Basics

Don't become paralyzed trying to bring about a breakthrough. The
possibility usually comes after many modest refactorings. Most of the
time is spent making piecemeal improvements, with model insights
emerging gradually during each successive refinement.

To set the stage for a breakthrough, concentrate on knowledge
crunching and cultivating a robust UBIQUITOUS LANGUAGE. Probe for
important domain concepts and make them explicit in the model (as
discussed in Chapter 9). Refine the design to be suppler (see
Chapter 10). Distill the model (see Chapter 15). Push on these more
predictable levers, which increase clarity�usually a precursor of
breakthroughs.

Don't hold back from modest improvements, which gradually deepen
the model, even if confined within the same general conceptual
framework. Don't be paralyzed by looking too far forward. Just be
watchful for the opportunity.



Epilogue: A Cascade of New Insights

That breakthrough got us out of the woods, but it was not the end of
the story. The deeper model opened unexpected opportunities to
make the application richer and the design clearer.

Just weeks after the release of the Share Pie version of the
software, we noticed another awkward aspect of the model that was
complicating the design. An important ENTITY was missing, its
absence leaving extra responsibilities to be taken up by other
objects. Specifically, there were significant rules governing loan
drawdowns, fee payments, and so on, and all this logic was
crammed into various methods on the Facility and Loan. These
design problems, which had been barely noticeable before the
Share Pie breakthrough, became obvious with our clearer field of
vision. Now we noticed terms popping up in our discussions that
were nowhere to be found in the model�terms such as "transaction"
(meaning a financial transaction)�that we started to realize were
being implied by all those complicated methods.

Following a process similar to the one described earlier (although,
thankfully, under much less time pressure) led to yet another round
of insights and a still deeper model. This new model made those
implicit concepts explicit, as kinds of Transactions, and at the same
time simplified the Positions (an abstraction including the Facility
and Loan). It became easy to define the diverse transactions we
had, along with their rules, negotiating procedures, and approval
processes, and all in relatively self-explanatory code.

Figure 8.9. Another model break-through that followed
several weeks later. Constraints on Transactions could

be expressed with easy precision.



As is often the case after a real breakthrough to a deep model, the
clarity and simplicity of the new design, combined with the enhanced
communication based on the new UBIQUITOUS LANGUAGE, had led to
yet another modeling breakthrough.

Our pace of development was accelerating at a stage where most
projects are beginning to bog down in the mass and complexity of
what has already been built.



Chapter Nine. Making Implicit
Concepts Explicit
Deep modeling sounds great, but how do you actually do it? A deep
model has power because it contains the central concepts and
abstractions that can succinctly and flexibly express essential
knowledge of the users' activities, their problems, and their solutions.
The first step is to somehow represent the essential concepts of the
domain in the model. Refinement comes later, after successive
iterations of knowledge crunching and refactoring. But this process
really gets into gear when an important concept is recognized and
made explicit in the model and design.

Many transformations of domain models and the corresponding
code happen when developers recognize a concept that has
been hinted at in discussion or present implicitly in the design,
and they then represent it explicitly in the model with one or
more objects or relationships.

Occasionally, this transformation of a formerly implicit concept into
an explicit one is a breakthrough that leads to a deep model. More
often, though, the breakthrough comes later, after a number of
important concepts are explicit in the model; after successive
refactorings have tweaked their responsibilities repeatedly, changed
their relationships with other objects, and even changed their names
a few times. Everything finally snaps into focus. But the process
starts with recognizing the implied concepts in some form, however
crude.



Digging Out Concepts

Developers have to sensitize themselves to the hints that reveal
lurking implicit concepts, and sometimes they have to proactively
search them out. Most such discoveries come from listening to the
language of the team, scrutinizing awkwardness in the design and
seeming contradictions in the statements of experts, mining the
literature of the domain, and doing lots and lots of experimentation.

Listen to Language

You may remember an experience like this: The users have always
talked about some item on a report. The item is compiled from
attributes of various objects and maybe even a direct database
query. The same data set is assembled in another part of the
application in order to present or report or derive something. But you
have never seen the need for an object. Probably, you have never
really understood what the users meant by a particular term and had
not realized it was important.

Then suddenly a light comes on in your head. The name of the item
on that report designates an important domain concept. You talk
excitedly with your experts about your new insight. Maybe they show
relief that you finally got it. Maybe they yawn because they've taken
it for granted all along. Either way, you start to draw model diagrams
on the board that fill in for some hand waving that you've always
done before. The users correct you on the details of how the new
model connects, but you can tell that there is a change in the quality
of the discussion. You and the users understand each other more
precisely, and demonstrations of model interactions to solve specific
scenarios have become more natural. The language of the domain
model has become more powerful. You refactor the code to reflect
the new model and find you have a cleaner design.



Listen to the language the domain experts use. Are there terms
that succinctly state something complicated? Are they
correcting your word choice (perhaps diplomatically)? Do the
puzzled looks on their faces go away when you use a particular
phrase? These are hints of a concept that might benefit the
model.

This is not the old "nouns are objects" notion. Hearing a new word
produces a lead, which you follow up with conversation and
knowledge crunching, with the goal of carving out a clean, useful
concept. When the users or domain experts use vocabulary that is
nowhere in the design, that is a warning sign. It is a doubly strong
warning when both the developers and the domain experts are using
terms that are not in the design.

Or perhaps it is better to look at it as an opportunity. The UBIQUITOUS

LANGUAGE is made up of the vocabulary that pervades speech,
documents, model diagrams, and even code. If a term is absent from
the design, it is an opportunity to improve the model and design by
including it.

Example
 Hearing a Missing Concept in the Shipping

Model

The team had already developed a working application that could
book a cargo. They were starting to build an "operations support"
application that would help juggle the work orders for loading and
unloading cargos at the origin and destination and at transfers
between ships.

The booking application used a routing engine to plan the trip for a
cargo. Each leg of the journey was stored in a row of a database
table, indicating the ID of the vessel voyage (a particular voyage by a



particular ship) slated to carry the cargo, the location where it would
be loaded, and the location where it would be unloaded.

 

Figure 9.1.

 
Let's eavesdrop on a conversation (heavily abbreviated) between the
developer and a shipping expert.

Developer: I want to make sure the "cargo bookings" table has all
the data that the operations application will need.

Expert: They're going to need the whole itinerary for the Cargo.
What information does it have now?

Developer: The cargo ID, the vessel voyage, the loading port, and
the unloading port for each leg.

Expert: What about the date? Operations will need to contract
handling work based on the expected times.



Developer: Well, that can be derived from the schedule of the vessel
voyage. The table data is normalized.

Expert: Yes, it is normal to need the date. Operations people use
these kinds of itineraries to plan for upcoming handling work.

Developer: Yeah . . . OK, they'll definitely have access to the dates.
The operations management application will be able to provide the
whole loading and unloading sequence, with the date of each
handling operation. The "itinerary," I guess you would say.

Expert: Good. The itinerary is the main thing they'll need. Actually,
you know, the booking application has a menu item that will print an
itinerary or e-mail it to the customer. Can you use that somehow?

Developer: That's just a report, I think. We won't be able to base the
operations application on that.

[Developer looks thoughtful, then excited.]

Developer: So, this itinerary is really the link between booking and
operations.

Expert: Yes, and some customer relations, too.

Developer: [Sketching a diagram on the whiteboard.] So would you
say it is something like this?

 

Figure 9.2.



 
Expert: Yes, that looks basically right. For each leg you'd like to see
the vessel voyage, the load and unload location, and time.

Developer: So once we create the Leg object, it can derive the
times from the vessel voyage schedule. We can make the Itinerary
object our main point of contact with the operations application. And
we can rewrite that itinerary report to use this, so we'll get the
domain logic back into the domain layer.

Expert: I didn't follow all of that, but you are right that the two main
uses for the Itinerary are in the report in booking and in the
operations application.

Developer: Hey! We can make the Routing Service interface return
an itinerary object instead of putting the data in the database table.
That way the routing engine doesn't need to know about our tables.

Expert: Huh?

Developer: I mean, I'll make the routing engine just return an
Itinerary. Then it can be saved in the database by the booking
application when the rest of the booking is saved.

Expert: You mean it isn't that way now?!

The developer then went off to talk with the other developers
involved in the routing process. They hashed out the changes to the
model and the implications for the design, calling on the shipping
experts when needed. They came up with the diagram in Figure 9.3.



 

Figure 9.3.

 
Next, the developers refactored the code to reflect the new model.
They did it in a series of two or three refactorings, but in quick
succession, within a week, except for simplifying the itinerary report
in the booking application, which they took care of early the following
week.

The developer had been listening closely enough to the shipping
expert to notice how important the concept of an "itinerary" was to
him. True, all the data was already being collected, and the behavior
was implicit in the itinerary report, but the explicit Itinerary as part of
the model opened up opportunities.



Benefits of refactoring to the explicit Itinerary object:

1. Defining the interface of the Routing Service more
expressively

Decoupling the Routing Service from the booking database tables

Clarifying the relationship between the booking application and the
operations support application (the sharing of the Itinerary object)

Reducing duplication, because the Itinerary derives
loading/unloading times for both the booking report and the
operations support application

Removing domain logic from the booking report and placing it in the
isolated domain layer

Expanding the UBIQUITOUS LANGUAGE, allowing a more precise
discussion of the model and design between developers and domain
experts and among the developers themselves

Scrutinize Awkwardness

The concept you need is not always floating on the surface,
emerging in conversation or documents. You may have to dig and



invent. The place to dig is the most awkward part of your design. The
place where procedures are doing complicated things that are hard
to explain. The place where every new requirement seems to add
complexity.

Sometimes it can be hard to recognize that there even is a missing
concept. You may have objects doing all the work but find some of
the responsibilities awkward. Or, if you do realize something is
missing, a model solution may elude you.

Now you have to actively engage the domain experts in the search.
If you are lucky, they may enjoy playing with ideas and
experimenting with the model. If you are not that lucky, you and your
fellow developers will have to come up with the ideas, using the
domain expert as a validator, watching for discomfort or recognition
on his or her face.

Example
 Earning Interest the Hard Way

The next story is set in a hypothetical financial company that invests
in commercial loans and other interest-bearing assets. An
application that tracks those investments and the earnings from them
has been evolving incrementally, feature by feature. Each night, one
component was to run as a batch script, calculating all interest and
fees for the day and then recording them appropriately in the
company's accounting software.

Figure 9.4. An awkward model



The nightly batch script iterated through each Asset, telling each to
calculateInterestForDate() on that day's date. The script
took the return value (the amount earned) and passed this amount,
along with the name of a specific ledger, to a SERVICE that provided
the public interface of the accounting program. That software posted
the amount to the named ledger. The script went through a similar
process to get the day's fees from each Asset, posting them to a
different ledger.

A developer had been struggling with the increasing complexity of
calculating interest. She started to suspect an opportunity for a
model better suited to the task. This developer asked her favorite
domain expert to help her dig into the problem area.

Developer: Our Interest Calculator is getting out of hand.

Expert: That is a complicated part. We still have more cases we've
been holding back.

Developer: I know. We can add new interest types by substituting a
different Interest Calculator. But what we're having the most trouble
with right now is all these special cases when they don't pay the
interest on schedule.

Expert: Those really aren't special cases. There's a lot of flexibility in
when people pay.

Developer: Back when we factored out the Interest Calculator from
the Asset, it helped a lot. We may need to break it up more.



Expert: OK.

Developer: I was thinking you might have a way of talking about this
interest calculation.

Expert: What do you mean?

Developer: Well, for example, we're tracking the interest due but un-
paid within an accounting period. Do you have a name for that?

Expert: Well, we don't really do it like that. The interest earned and
the payment are quite separate postings.

Developer: So you don't need that number?

Expert: Well, sometimes we might look at it, but it isn't the way we
do business.

Developer: OK, so if the payment and interest are separate, maybe
we should model them that way. How does this look? [Sketching on
whiteboard]

 

Figure 9.5.



 
Expert: It makes sense, I guess. But you just moved it from one
place to another.

Developer: Except now the Interest Calculator only keeps track of
interest earned, and the Payment keeps that number separately. It
hasn't simplified it a lot, but does it better reflect your business
practice?

Expert: Ah. I see. Could we have interest history, too? Like the
Payment History.

Developer: Yes, that has been requested as a new feature. But that
could have been added onto the original design.

Expert: Oh. Well, when I saw interest and Payment History
separated like that, I thought you were breaking up the interest to
organize it more like the Payment History. Do you know anything
about accrual basis accounting?

Developer: Please explain.

Expert: Each day, or whenever the schedule calls for, we have an
interest accrual that gets posted to a ledger. The payments are



posted a different way. This aggregate you have here is a little
awkward.

Developer: You're saying that if we keep a list of "accruals," they
could be aggregated or . . . "posted" as needed.

Expert: Probably posted on the accrual date, but yes, aggregated
any-time. Fees work the same way, posted to a different ledger, of
course.

Developer: Actually, the interest calculation would be simpler if it
was done just for one day, or period. And then we could just hang on
to them all. How about this?

 

Figure 9.6.

 
Expert: Sure. It looks good. I'm not sure why this would be easier for
you. But basically, what makes any asset valuable is what it can
accrue in interest, fees, and so on.



Developer: You said fees work the same way? They . . . what was it
. . . post to different ledgers?

 

Figure 9.7.

 
Developer: With this model, we get the interest calculation, or
rather, the accrual calculation logic that was in the Interest
Calculator separated from tracking. And I hadn't noticed until now
how much duplication there is in the Fee Calculator. Also, now the
different kinds of fees can easily be added.

Expert: Yes, the calculation was correct before, but I can see
everything now.

Because the Calculator classes hadn't been directly coupled with
other parts of the design, this was a fairly easy refactoring. The
developer was able to rewrite the unit tests to use the new language



in a few hours and had the new design working late the next day.
She ended up with this.

Figure 9.8. A deeper model after refactoring

In the refactored application, the nightly batch script tells each Asset
to calculateAccrualsThroughDate(). The return value is a
collection of Accruals, each of whose amounts it posts to the
indicated ledger.

The new model has several advantages. The change

1. Enriches the UBIQUITOUS LANGUAGE with the term "accrual"

Decouples accrual from payment

Moves domain knowledge (such as which ledger to post to) from the
script and into the domain layer



Brings fees and interest together in a way that fits the business and
eliminates duplication in the code

Provides a straightforward path for adding new variations of fees and
interest as Accrual Schedules

This time, the developer had to dig for the new concepts she
needed. She could see the awkwardness of the interest calculations
and made a committed effort to look for a deeper answer.

She was lucky to have an intelligent and motivated partner in the
banking expert. With a more passive source of expertise, she would
have made more false starts and depended more on other
developers as brainstorming partners. Progress would have been
slower, but still possible.

Contemplate Contradictions

Different domain experts see things different ways based on their
experience and needs. Even the same person provides information
that is logically inconsistent after careful analysis. Such pesky
contradictions, which we encounter all the time when digging into
program requirements, can be great clues to deeper models. Some
are just variations in terminology or are based on misunderstanding.
But there is a residue where two factual statements by experts seem
to contradict.

The astronomer Galileo once posed a paradox. The evidence of the
senses clearly indicates that the Earth is stationary: people are not
being blown off and falling behind. Yet Copernicus had made a
compelling argument that the Earth was moving around the sun quite
rapidly. Reconciling this might reveal something profound about how
nature works.



Galileo devised a thought experiment. If a rider dropped a ball from a
running horse, where would it fall? Of course, the ball would move
along with the horse until it hit the ground by the horse's feet, just as
if the horse were standing still. From this he deduced an early form
of the idea of inertial frames of reference, solving the paradox and
leading to a much more useful model of the physics of motion.

OK. Our contradictions are usually not so interesting, nor the
implications so profound. Even so, this same pattern of thought often
helps pierce the superficial layers of a problem domain into a deeper
insight.

It is not practical to reconcile all contradictions, and it may not even
be desirable. (Chapter 14 delves into how to decide and how to
manage the result.) However, even when a contradiction is left in
place, contemplation of how two statements could both apply to the
same external reality can be revealing.

Read the Book

Don't overlook the obvious when seeking model concepts. In many
fields, you can find books that explain the fundamental concepts and
conventional wisdom. You still have to work with your own domain
experts to distill the part relevant to your problem and to crunch it
into something suited to object-oriented software. But you may be
able to start with a coherent, deeply considered view.

Example
 Earning Interest by the Book

Let's imagine a different scenario for the investment-tracking
application discussed in the previous example. Just as before, the
story starts with the developer realizing that the design is getting



unwieldy, particularly the Interest Calculator. But in this scenario,
the domain expert's primary responsibilities lie elsewhere, and he
doesn't have much interest in helping the software development
project. In this scenario, the developer couldn't turn to the expert for
a brainstorming session to probe for the missing concepts she
suspected to be lurking under the surface.

Instead, she went to the bookstore. After a little browsing, she found
an introductory accounting book she liked, and she skimmed it. She
discovered a whole system of well-defined concepts. An excerpt that
particularly fired her thinking:

Accrual Basis Accounting. This method recognizes income
when it is earned, even if it is not paid. All expenses also show
when they are incurred whether they have been paid for or
billed to be paid at a later date. Any obligation due, including
taxes, will be shown as expense.

�Finance and Accounting: How to Keep Your Books and
Manage Your Finances Without an MBA, a CPA or a Ph.D., by
Suzanne Caplan (Adams Media, 2000)

The developer no longer needed to reinvent accounting. After some
brainstorming with another developer, she came up with a model.

Figure 9.9. A somewhat deeper model based on book
learning



She did not have the insight that Assets are income generators, and
so the Calculators are still there. The knowledge of ledgers is still in
the application, rather than the domain layer where it probably
belongs. But she did separate the issue of payment from the accrual
of income, which was the most problematic area, and she introduced
the word "accrual" into the model and into the UBIQUITOUS LANGUAGE.
Further refinement could come with later iterations.

When she did finally have the chance to talk with the domain expert,
he was quite surprised. It was the first time a programmer had
shown a glimmer of interest in what he did. Due to the way his
responsibilities were assigned, the expert never engaged with her,
sitting down to go over the model, as happened in the previous
scenario. However, because this developer's knowledge allowed her
to ask better questions, from then on the expert did listen to her
carefully, and he made a special effort to answer her questions
promptly.

Of course, this is not an either-or proposition. Even with ample
support from domain experts, it pays to look at the literature to get a
grasp of the theory of the field. Most businesses do not have models
refined to the level of accounting or finance, but in many there have
been thinkers in the field who have organized and abstracted the
common practices of the business.

Yet another option the developer had was to read something written
by another software professional with development experience in



this domain. For example, Chapter 6 of the book Analysis Patterns:
Reusable Object Models (Fowler 1997) would have sent her in quite
a different direction, not necessarily better or worse. Such reading
would not have provided an off-the-shelf solution. It would have
given several new starting points for her own experiments, along
with the distilled experience of people who have traveled the territory.
She would have been spared reinventing the wheel. Chapter 11,
"Applying Analysis Patterns," will delve further into this option.

Try, Try Again

The examples I've given don't convey the amount of trial and error
involved. I might follow half a dozen leads in conversation before
finding one that seems clear and useful enough to try out in the
model. I'll end up replacing that one at least once later, as additional
experience and knowledge crunching serve up better ideas. A
modeler/designer cannot afford to get attached to his own ideas.

All these changes of direction are not just thrashing. Each change
embeds deeper insight into the model. Each refactoring leaves the
design more supple, easier to change the next time, ready to bend in
the places that turn out to need to bend.

There really is no choice, anyway. Experimentation is the way to
learn what works and doesn't. Trying to avoid missteps in design will
result in a lower quality result because it will be based on less
experience. And it can easily take longer than a series of quick
experiments.



How to Model Less Obvious Kinds of
Concepts

The object-oriented paradigm leads us to look for and invent certain
kinds of concepts. Things, even very abstract ones such as
"accruals," are the meat of most object models, along with the
actions those things take. These are the "nouns and verbs" that
introductory object-oriented design books talk about. But other
important categories of concepts can be made explicit in a model as
well.

I'll discuss three such categories that were not obvious to me when I
started with objects. My designs became sharper with each one of
these I learned.

Explicit Constraints

Constraints make up a particularly important category of model
concepts. They often emerge implicitly, and expressing them
explicitly can greatly improve a design.

Sometimes constraints find a natural home in an object or method. A
"Bucket" object must guarantee the invariant that it does not hold
more than its capacity.

 

Figure 9.10.



 
A simple invariant like this can be enforced using case logic in each
operation capable of changing contents.

class Bucket { 
   private float capacity; 
   private float contents; 
 
   public void pourIn(float addedVolume) { 
      if (contents + addedVolume > capacity) { 
         contents = capacity; 
      } else { 
         contents = contents + addedVolume; 
      } 
   } 
} 

This logic is so simple that the rule is obvious. But you can easily
imagine this constraint getting lost in a more complicated class. Let's
factor it into a separate method, with a name that clearly and
explicitly expresses the significance of the constraint.

class Bucket { 
   private float capacity; 
   private float contents; 
   public void pourIn(float addedVolume) { 
      float volumePresent = contents + 
addedVolume; 



      contents = 
constrainedToCapacity(volumePresent); 
   } 
 
   private float constrainedToCapacity(float 
volumePlacedIn) { 
      if (volumePlacedIn > capacity) return 
capacity; 
      return volumePlacedIn; 
   } 
} 

Both versions of this code enforce the constraint, but the second has
a more obvious relationship to the model (the basic requirement of
MODEL-DRIVEN DESIGN). This very simple rule was understandable in its
original form, but when the rules being enforced are more complex,
they start to overwhelm the object or operation they apply to, as any
implicit concept does. Factoring the constraint into its own method
allows us to give it an intention-revealing name that makes the
constraint explicit in our design. It is now a named thing we can
discuss. This approach also gives the constraint room. A more
complex rule than this might easily produce a method longer than its
caller (the pourIn() method, in this case). This way, the caller
stays simple and focused on its task while the constraint can grow in
complexity if need be.

This separate method gives the constraint some room to grow, but
there are lots of cases when a constraint just can't fit comfortably in a
single method. Or even if the method stays simple, it may call on
information that the object doesn't need for its primary responsibility.
The rule may just have no good home in an existing object.

Here are some warning signs that a constraint is distorting the
design of its host object.

1. Evaluating a constraint requires data that does not
otherwise fit the object's definition.



Related rules appear in multiple objects, forcing duplication or
inheritance between objects that are not otherwise a family.

A lot of design and requirements conversation revolves around the
constraints, but in the implementation, they are hidden away in
procedural code.

When the constraints are obscuring the object's basic responsibility,
or when the constraint is prominent in the domain yet not prominent
in the model, you can factor it out into an explicit object or even
model it as a set of objects and relationships. (One in-depth,
semiformal treatment of this subject can be found in The Object
Constraint Language: Precise Modeling with UML [Warmer and
Kleppe 1999].)

Example
 Review: Overbooking Policy

In Chapter 1, we worked with a common shipping business practice:
booking 10 percent more cargo than the transports could handle.
(Experience has taught shipping firms that this overbooking
compensates for last-minute cancellations, so their ships will sail
nearly full.)

This constraint on the association between Voyage and Cargo was
made explicit, both in the diagrams and in the code, by adding a new
class that represented the constraint.

Figure 9.11. The model refactored to make policy explicit



To review the code and reasoning in the full example, see page 17.

Processes as Domain Objects

Right up front, let's agree that we do not want to make procedures a
prominent aspect of our model. Objects are meant to encapsulate
the procedures and let us think about their goals or intentions
instead.

What I am talking about here are processes that exist in the domain,
which we have to represent in the model. When these emerge, they
tend to make for awkward object designs.

The first example in this chapter described a shipping system that
routed cargo. This routing process was something with business
meaning. A SERVICE is one way of expressing such a process
explicitly, while still encapsulating the extremely complex algorithms.

When there is more than one way to carry out a process, another
approach is to make the algorithm itself, or some key part of it, an
object in its own right. The choice between processes becomes a
choice between these objects, each of which represents a different
STRATEGY. (Chapter 12 will look in more detail at the use of
STRATEGIES in the domain.)

The key to distinguishing a process that ought to be made explicit
from one that should be hidden is simple: Is this something the
domain experts talk about, or is it just part of the mechanism of the
computer program?



Constraints and processes are two broad categories of model
concepts that don't come leaping to mind when programming in an
object-oriented language, yet they can really sharpen up a design
once we start thinking about them as model elements.

Some useful categories of concepts are much narrower. I'll round out
this chapter with one much more specific, yet quite common.
SPECIFICATION provides a concise way of expressing certain kinds of
rules, extricating them from conditional logic and making them
explicit in the model.

I developed SPECIFICATION in collaboration with Martin Fowler (Evans
and Fowler 1997). The simplicity of the concept belies the subtlety in
application and implementation, so there is a lot of detail in this
section. There will be even more discussion in Chapter 10, where
the pattern is extended. After reading the initial explanation of the
pattern that follows, you may want to skim the "Applying and
Implementing SPECIFICATIONS" section, until you are actually
attempting to apply the pattern.

Specification

In all kinds of applications, Boolean test methods appear that are
really parts of little rules. As long as they are simple, we handle them
with testing methods, such as anIterator.hasNext() or
anInvoice.isOverdue(). In an Invoice class, the code in
isOverdue() is an algorithm that evaluates a rule. For example,

public boolean isOverdue() { 
   Date currentDate = new Date(); 
   return currentDate.after(dueDate); 
} 



But not all rules are so simple. On the same Invoice class, another
rule, anInvoice.isDelinquent() would presumably start with
testing if the Invoice is overdue, but that would just be the
beginning. A policy on grace periods could depend on the status of
the customer's account. Some delinquent invoices will be ready for a
second notice, while others will be ready to be sent to a collection
agency. The payment history of the customer, company policy on
different product lines . . . the clarity of Invoice as a request for
payment will soon be lost in the sheer mass of rule evaluation code.
The Invoice will also develop all sorts of dependencies on domain
classes and subsystems that do not support that basic meaning.

At this point, in an attempt to save the Invoice class, a developer will
often refractor the rule evaluation code into the application layer (in
this case, a bill collection application). Now the rules have been
separated from the domain layer altogether, leaving behind a dead
data object that does not express the rules inherent in the business
model. These rules need to stay in the domain layer, but they don't fit
into the object being evaluated (the Invoice in this case). Not only
that, but evaluating methods swell with conditional code, which make
the rule hard to read.

Developers working in the logic-programming paradigm would
handle this situation differently. Such rules would be expressed as
predicates. Predicates are functions that evaluate to "true" or "false"
and can be combined using operators such as "AND" and "OR" to
express more complex rules. With predicates, we could declare rules
explicitly and use them with the Invoice. If only we were in the logic
paradigm.

Seeing this, people have made attempts at implementing logical
rules in terms of objects. Some such attempts were very
sophisticated, others naive. Some were ambitious, others modest.
Some turned out valuable, some were tossed aside as failed
experiments. A few attempts were allowed to derail their projects.
One thing is clear: As appealing as the idea is, full implementation of



logic in objects is a major undertaking. (After all, logic programming
is a whole modeling and design paradigm in its own right.)

Business rules often do not fit the responsibility of any of the
obvious ENTITIES or VALUE OBJECTS, and their variety and
combinations can overwhelm the basic meaning of the domain
object. But moving the rules out of the domain layer is even
worse, since the domain code no longer expresses the model.

Logic programming provides the concept of separate,
combinable, rule objects called "predicates," but full
implementation of this concept with objects is cumbersome. It
is also so general that it doesn't communicate intent as much
as more specialized designs.

Fortunately, we don't really need to fully implement logic
programming to get a large benefit. Most of our rules fall into a few
special cases. We can borrow the concept of predicates and create
specialized objects that evaluate to a Boolean. Those testing
methods that get out of hand will neatly expand into objects of their
own. They are little truth tests that can be factored out into a
separate VALUE OBJECT. This new object can evaluate another object
to see if the predicate is true for that object.

 

Figure 9.12.

 
To put it another way, the new object is a specification. A
SPECIFICATION states a constraint on the state of another object, which



may or may not be present. It has multiple uses, but one that
conveys the most basic concept is that a SPECIFICATION can test any
object to see if it satisfies the specified criteria.

Therefore:

Create explicit predicate-like VALUE OBJECTS for specialized
purposes. A SPECIFICATION is a predicate that determines if an
object does or does not satisfy some criteria.

Many SPECIFICATIONS are simple, special-purpose tests, as in the
delinquent invoice example. In cases where the rules are complex,
the concept can be extended to allow simple specifications to be
combined, just as predicates are combined with logical operators.
(This technique will be discussed in the next chapter.) The
fundamental pattern stays the same and provides a path from the
simpler to more complex models.

The case of the delinquent invoice can be modeled using a
SPECIFICATION that states what it means to be delinquent and that can
evaluate any Invoice and make the determination.

Figure 9.13. A more elaborate delinquency rule factored
out as a SPECIFICATION

The SPECIFICATION keeps the rule in the domain layer. Because the
rule is a full-fledged object, the design can be a more explicit



reflection of the model. A FACTORY can configure a SPECIFICATION

using information from other sources, such as the customer's
account or the corporate policy database. Providing direct access to
these sources from the Invoice would couple the objects in a way
that does not relate to the request for payment (the basic
responsibility of Invoice). In this case, the Delinquent Invoice
Specification was to be created, used to evaluate some Invoices,
and then discarded, so a specific evaluation date was built right in�a
nice simplification. A SPECIFICATION can be given the information it will
need to do its job in a simple, straightforward way.

  

The basic concept of SPECIFICATION is very simple and helps us think
about a domain modeling problem. But a MODEL-DRIVEN DESIGN

requires an effective implementation that also expresses the
concept. To pull that off requires digging a little deeper into how the
pattern will be applied. A domain pattern is not just a neat idea for a
UML diagram; it is a solution to a programming problem that retains
a MODEL-DRIVEN DESIGN.

When you apply a pattern appropriately, you can tap into a whole
body of thought about how to approach a class of domain modeling
problem, and you can benefit from years of experience in finding
effective implementations. There is a lot of detail in the discussion of
SPECIFICATION that follows: many options for features and approaches
to implementation. A pattern is not a cookbook. It lets you start from
a base of experience to develop your solution, and it gives you some
language to talk about what you are doing.

You may want to skim the key concepts when first reading. Later,
when you run into the situation, you can come back and draw on the
experience captured in the detailed discussion. Then you can go and
figure out a solution to your problem.

Applying and Implementing SPECIFICATION



Much of the value of SPECIFICATION is that it unifies application
functionality that may seem quite different. We might need to specify
the state of an object for one or more of these three purposes.

1. To validate an object to see if it fulfills some need or is
ready for some purpose

To select an object from a collection (as in the case of querying for
overdue invoices)

To specify the creation of a new object to fit some need

These three uses�validation, selection, and building to order�are the
same on a conceptual level. Without a pattern such as SPECIFICATION,
the same rule may show up in different guises, and possibly
contradictory forms. The conceptual unity can be lost. Applying the
SPECIFICATION pattern allows a consistent model to be used, even
when the implementation may have to diverge.

Validation

The simplest use of a SPECIFICATION is validation, and it is the use that
demonstrates the concept most straightforwardly.

Figure 9.14. A model applying a SPECIFICATION for
validation



class DelinquentInvoiceSpecification extends 
      InvoiceSpecification { 
   private Date currentDate; 
   // An instance is used and discarded on a 
single date 
 
   public DelinquentInvoiceSpecification(Date 
currentDate) { 
      this.currentDate = currentDate; 
} 
 
   public boolean isSatisfiedBy(Invoice candidate) 
{ 
      int gracePeriod = 
         
candidate.customer().getPaymentGracePeriod(); 
      Date firmDeadline = 
         
DateUtility.addDaysToDate(candidate.dueDate(), 
            gracePeriod); 
         return currentDate.after(firmDeadline); 
   } 
 
} 

Now, suppose we need to display a red flag whenever a salesperson
brings up a customer with delinquent bills. We just have to write a
method in a client class, something like this.



public boolean accountIsDelinquent(Customer 
customer) { 
   Date today = new Date(); 
   Specification delinquentSpec = 
      new DelinquentInvoiceSpecification(today); 
   Iterator it = 
customer.getInvoices().iterator(); 
   while (it.hasNext()) { 
      Invoice candidate = (Invoice) it.next(); 
      if (delinquentSpec.isSatisfiedBy(candidate)) 
return true; 
   } 
   return false; 
} 

Selection (or Querying)

Validation tests an individual object to see if it meets some criteria,
presumably so that the client can act on the conclusion. Another
common need is to select a subset of a collection of objects based
on some criteria. The same concept of SPECIFICATION can be applied
here, but implementation issues are different.

Suppose there was an application requirement to list all customers
with delinquent Invoices. In theory, the Delinquent Invoice
Specification that we defined before will still serve, but in practice
its implementation would probably have to change. To demonstrate
that the concept is the same, let's assume first that the number of
Invoices is small, maybe already in memory. In this case, the
straightforward implementation developed for validation still serves.
The Invoice Repository could have a generalized method to select
Invoices based on a SPECIFICATION:

public Set selectSatisfying(InvoiceSpecification 
spec) { 
 



   Set results = new HashSet(); 
   Iterator it = invoices.iterator(); 
   while (it.hasNext()) { 
      Invoice candidate = (Invoice) it.next(); 
      if (spec.isSatisfiedBy(candidate)) 
results.add(candidate); 
   } 
 
   return results; 
} 

So a client could obtain a collection of all delinquent Invoices with a
single code statement:

Set delinquentInvoices = 
invoiceRepository.selectSatisfying( 
   new 
DelinquentInvoiceSpecification(currentDate)); 

That line of code establishes the concept behind the operation. Of
course, the Invoice objects probably aren't in memory. There may
be thousands of them. In a typical business system, the data is
probably in a relational database. And, as pointed out in earlier
chapters, the model focus tends to get lost at these intersections
with other technologies.

Relational databases have powerful search capabilities. How can we
take advantage of that power to solve this problem efficiently while
retaining the model of a SPECIFICATION? MODEL-DRIVEN DESIGN

demands that the model stay in lockstep with the implementation,
but it allows freedom to choose any implementation that faithfully
captures the meaning of the model. Lucky for us, SQL is a very
natural way to write SPECIFICATIONS.

Here is a simple example, in which the query is encapsulated in the
same class as the validation rule. A single method is added to the
Invoice Specification and is implemented in the Delinquent
Invoice Specification subclass:



public String asSQL() { 
   return 
      "SELECT * FROM INVOICE, CUSTOMER" + 
      "  WHERE INVOICE.CUST_ID = CUSTOMER.ID" + 
      "  AND INVOICE.DUE_DATE + 
CUSTOMER.GRACE_PERIOD" + 
      "     < " + 
SQLUtility.dateAsSQL(currentDate); 
} 

SPECIFICATIONS mesh smoothly with REPOSITORIES, which are the
building-block mechanisms for providing query access to domain
objects and encapsulating the interface to the database (see Figure
9.15).

Figure 9.15. The interaction between REPOSITORY and
SPECIFICATION

Now this design has some problems. Most important, the details of
the table structure have leaked into the DOMAIN LAYER; they should be



isolated in a mapping layer that relates the domain objects to the
relational tables. Implicitly duplicating that information here could
hurt the modifiability and maintainability of the Invoice and
Customer objects, because any change to their mappings now have
to be tracked in more than one place. But this example is a simple
illustration of how to keep the rule in just one place. Some object-
relational mapping frameworks provide the means to express such a
query in terms of the model objects and attributes, generating the
actual SQL in the infrastructure layer. This would let us have our
cake and eat it too.

When the infrastructure doesn't come to the rescue, we can refactor
the SQL out of the expressive domain objects by adding a
specialized query method to the Invoice Repository. To avoid
embedding the rule into the REPOSITORY, we have to express the
query in a more generic way, one that doesn't capture the rule but
can be combined or placed in context to work the rule out (in this
example, by using a double dispatch).

public class InvoiceRepository { 
 
   public Set selectWhereGracePeriodPast(Date 
aDate){ 
      //This is not a rule, just a specialized 
query 
      String sql = 
whereGracePeriodPast_SQL(aDate); 
      ResultSet queryResultSet = 
         
SQLDatabaseInterface.instance().executeQuery(sql); 
      return 
buildInvoicesFromResultSet(queryResultSet); 
   } 
 
   public String whereGracePeriodPast_SQL(Date 
aDate) { 
      return 



         "SELECT * FROM INVOICE, CUSTOMER" + 
         "  WHERE INVOICE.CUST_ID = CUSTOMER.ID" + 
         "  AND INVOICE.DUE_DATE + 
CUSTOMER.GRACE_PERIOD" + 
         "     < " + SQLUtility.dateAsSQL(aDate); 
   } 
 
   public Set 
selectSatisfying(InvoiceSpecification spec) { 
      return spec.satisfyingElementsFrom(this); 
   } 
} 

The asSql() method on Invoice Specification is replaced with
satisfyingElementsFrom(InvoiceRepository), which
Delinquent Invoice Specification implements as:

public class DelinquentInvoiceSpecification { 
   // Basic DelinquentInvoiceSpecification code 
here 
 
   public Set satisfyingElementsFrom( 
                     InvoiceRepository repository) 
{ 
      //Delinquency rule is defined as: 
      //   "grace period past as of current date" 
      return 
repository.selectWhereGracePeriodPast(currentDate)
; 
   } 
} 

This puts the SQL in the REPOSITORY, while the SPECIFICATION controls
what query should be used. The rules aren't as neatly collected into
the SPECIFICATION, but the essential declaration is there of what
constitutes delinquency (that is, past grace period).



The REPOSITORY now has a very specialized query that most likely will
be used only in this case. That is acceptable, but depending on the
relative numbers of Invoices that are overdue compared to those
that are delinquent, an intermediate solution that leaves the
REPOSITORY methods more generic may still give good performance,
while keeping the SPECIFICATION more self-explanatory.

public class InvoiceRepository { 
 
   public Set selectWhereDueDateIsBefore(Date 
aDate) { 
      String sql = 
whereDueDateIsBefore_SQL(aDate); 
      ResultSet queryResultSet = 
         
SQLDatabaseInterface.instance().executeQuery(sql); 
      return 
buildInvoicesFromResultSet(queryResultSet); 
   } 
 
   public String whereDueDateIsBefore_SQL(Date 
aDate) { 
      return 
         "SELECT * FROM INVOICE" + 
         "  WHERE INVOICE.DUE_DATE" + 
         "     < " + SQLUtility.dateAsSQL(aDate); 
   } 
 
   public Set 
selectSatisfying(InvoiceSpecification spec) { 
      return spec.satisfyingElementsFrom(this); 
   } 
} 
 
public class DelinquentInvoiceSpecification { 
   //Basic DelinquentInvoiceSpecification code 
here 



 
   public Set satisfyingElementsFrom( 
                          InvoiceRepository 
repository) { 
      Collection pastDueInvoices = 
         
repository.selectWhereDueDateIsBefore(currentDate)
; 
 
      Set delinquentInvoices = new HashSet(); 
      Iterator it = pastDueInvoices.iterator(); 
      while (it.hasNext()) { 
         Invoice anInvoice = (Invoice) it.next(); 
         if (this.isSatisfiedBy(anInvoice)) 
            delinquentInvoices.add(anInvoice); 
      } 
      return delinquentInvoices; 
   } 
} 

We'll take a performance hit with this code, because we pull out
more Invoices and then have to select from them in memory.
Whether this is an acceptable cost for the better factoring of
responsibility depends entirely on circumstances. There are many
ways to implement the interactions between SPECIFICATIONS and
REPOSITORIES, to take advantage of the development platform, while
keeping the basic responsibilities in place.

Sometimes, to improve performance, or more likely to tighten
security, queries may be implemented on the server as stored
procedures. In that case, the SPECIFICATION could carry only the
parameters allowed by the stored procedure. For all that, there is no
difference in the model between these various implementations. The
choice of implementation is free except where specifically
constrained by the model. The price comes in a more cumbersome
way of writing and maintaining queries.



This discussion barely scratches the surface of the challenges of
combining SPECIFICATIONS with databases, and I'll make no attempt to
cover all the considerations that may arise. I just want to give a taste
of the kind of choices that have to be made. Mee and Hieatt discuss
a few of the technical issues involved in designing REPOSITORIES with
SPECIFICATIONS in Fowler 2002.

Building to Order (Generating)

When the Pentagon wants a new fighter jet, officials write a
specification. This specification may require that the jet reach Mach
2, that it have a range of 1800 miles, that it cost no more than $50
million, and so on. But however detailed it is, the specification is not
a design for a plane, much less a plane. An aerospace engineering
company will take the specification and create one or more designs
based on it. Competing companies may produce different designs,
all of which presumably satisfy the original spec.

Many computer programs generate things, and those things have to
be specified. When you place a picture into a word-processing
document, the text flows around it. You have specified the location of
the picture, and perhaps the style of text flow. The exact placement
of the words on the page is then worked out by the word processor
in such a way that it meets your specification.

Although it may not be apparent at first, this is the same concept of a
SPECIFICATION that was applied to validation and selection. We are
specifying criteria for objects that are not yet present. The
implementation will be quite different, however. This SPECIFICATION is
not a filter for preexisting objects, as with querying. It is not a test for
an existing object, as with validation. This time, a whole new object
or set of objects will be made or reconfigured to satisfy the
SPECIFICATION.

Without using SPECIFICATION, a generator can be written that has
procedures or a set of instructions that create the needed objects.



This code implicitly defines the behavior of the generator.

Instead, an interface of the generator that is defined in terms of a
descriptive SPECIFICATION explicitly constrains the generator's
products. This approach has several advantages.

The generator's implementation is decoupled from its interface.
The SPECIFICATION declares the requirements for the output but
does not define how that result is reached.

The interface communicates its rules explicitly, so developers
can know what to expect from the generator without
understanding all details of its operation. The only way to predict
the behavior of a procedurally defined generator is to run cases
or to understand every line of code.

The interface is more flexible, or can be enhanced with more
flexibility, because the statement of the request is in the hands
of the client, while the generator is only obligated to fulfill the
letter of the SPECIFICATION.

Last, but not least, this kind of interface is easier to test,
because the model contains an explicit way to define input into
the generator that is also a validation of the output. That is, the
same SPECIFICATION that is passed into the generator's interface
to constrain the creation process can also be used, in its
validation role (if the implementation supports it) to confirm that
the created object is correct. (This is an example of an
ASSERTION, discussed in Chapter 10.)

Building to order can mean creation of an object from scratch, but it
can also be a configuration of preexisting objects to satisfy the SPEC.



Example
 Chemical Warehouse Packer

There is a warehouse in which various chemicals are stored in
stacks of large containers, similar to boxcars. Some chemicals are
inert and can be stored just about anywhere. Some are volatile and
have to be stored in specially ventilated containers. Some are
explosive and have to be stored in specially armored containers.
There are also rules about the combinations allowed in a container.

The goal is to write software that will find an efficient and safe way to
put the chemicals in the containers.

Figure 9.16. A model for warehouse storage

We could start by writing a procedure to take a chemical and place it
in a container, but instead, let's start with the validation problem. This
will force us to make the rules explicit, and it will give us a way to test
the final implementation.

Each chemical will have a container SPECIFICATION:

Chemical Container Specification



Chemical Container Specification

TNT Armored container

Sand
 

Biological Samples Must not share container with explosives

Ammonia Ventilated container

Now, if we write these as Container Specifications, we should be
able to take a configuration of packed containers and test to see if it
meets these constraints.

Container Features Contents Specification Satisfied?

Armored 20 lbs. TNT

500 lbs. sand

 
50 lbs. biological samples

 
Ammonia

A method on Container Specification, isSatisfied(), would
have to be implemented to check for needed ContainerFeatures.
For example, the SPEC attached to an explosive chemical would
look for the "armored" feature:

public class ContainerSpecification { 
   private ContainerFeature requiredFeature; 
   public ContainerSpecification(ContainerFeature 
required) { 
      requiredFeature = required; 
   } 



 
   boolean isSatisfiedBy(Container aContainer){ 
      return 
aContainer.getFeatures().contains(requiredFeature)
; 
   } 
} 

Here is sample client code to set up an explosive chemical:

tnt.setContainerSpecification( 
      new ContainerSpecification(ARMORED)); 

A method on a Container object, isSafelyPacked(), will confirm
that Container has all the features specified by the Chemicals it
contains:

boolean isSafelyPacked(){ 
   Iterator it = contents.iterator(); 
   while (it.hasNext()) { 
      Drum drum = (Drum) it.next(); 
      if 
(!drum.containerSpecification().isSatisfiedBy(this
)) 
         return false; 
   } 
   return true; 
} 

At this point, we could write a monitoring application that would take
the inventory database and report any unsafe situations.

Iterator it = containers.iterator(); 
while (it.hasNext()) { 
   Container container = (Container) it.next(); 
   if (!container.isSafelyPacked()) 
      unsafeContainers.add(container); 
} 



This is not the software we've been asked to write. It would be good
to let the business people know about the opportunity, but we have
been charged with designing a packer. What we have is a test for a
packer. This understanding of the domain and our SPECIFICATION-
based model put us in a position to define a clear and simple
interface for a SERVICE that will take collections of Drums and
Containers and pack them in compliance with the rules.

public interface WarehousePacker { 
   public void pack(Collection containersToFill, 
      Collection drumsToPack) throws 
NoAnswerFoundException; 
 
      /* ASSERTION: At end of pack(), the 
ContainerSpecification 
      of each Drum shall be satisfied by its 
Container. 
      If no complete solution can be found, an 
exception shall 
      be thrown. */ 
 
} 

Now the task of designing an optimized constraint solver to fulfill the
responsibilities of the Packer service has been decoupled from the
rest of the application, and those mechanisms will not clutter the part
of the design that expresses the model. (See "Declarative Style of
Design," Chapter 10, and COHESIVE MECHANISM, Chapter 15.) Yet the
rules governing packing have not been pulled out of the domain
objects.

Example
 A Working Prototype of the Warehouse

Packer



Writing the optimization logic to make the warehouse packing
software work is a big job. A small team of developers and business
experts have split off and have set to work on it, but they haven't
even begun to code. Meanwhile, another small team is developing
the application that will allow users to pull inventory from the
database, feed it to the Packer, and interpret the results. They are
trying to design for the anticipated Packer. But all they can do is
mock up a UI and work on some database integration code. They
can't show the users an interface with meaningful behavior to get
good feedback. For the same reason, the Packer team is working in
a vacuum too.

With the domain objects and SERVICE interface made in the
warehouse packer example, the application team realizes they could
build a very simple implementation of a Packer that could help the
development process move along, allowing work to go forward in
parallel and closing the feedback loop, which only reaches full effect
with a working end-to-end system.

public class Container { 
   private double capacity; 
   private Set contents; //Drums 
 
   public boolean hasSpaceFor(Drum aDrum) { 
      return remainingSpace() >= aDrum.getSize(); 
   } 
 
   public double remainingSpace() { 
      double totalContentSize = 0.0; 
      Iterator it = contents.iterator(); 
      while (it.hasNext()) { 
         Drum aDrum = (Drum) it.next(); 
         totalContentSize = totalContentSize + 
aDrum.getSize(); 
      } 
      return capacity � totalContentSize; 
   } 



 
   public boolean canAccommodate(Drum aDrum) { 
      return hasSpaceFor(aDrum) && 
         
aDrum.getContainerSpecification().isSatisfiedBy(th
is); 
   } 
 
} 
 
 
public class PrototypePacker implements 
WarehousePacker { 
 
   public void pack(Collection containers, 
Collection drums) 
                                throws 
NoAnswerFoundException { 
 
      /* This method fulfills the ASSERTION as 
written. However, 
         when an exception is thrown, Containers' 
contents may 
         have changed. Rollback must be handled at 
a higher 
         level. */ 
 
      Iterator it = drums.iterator(); 
      while (it.hasNext()) { 
         Drum drum = (Drum) it.next(); 
         Container container = 
            findContainerFor(containers, drum); 
         container.add(drum); 
      } 
   } 
   public Container findContainerFor( 
                 Collection containers, Drum drum) 



                 throws NoAnswerFoundException { 
      Iterator it = containers.iterator(); 
      while (it.hasNext()) { 
         Container container = (Container) 
it.next(); 
         if (container.canAccommodate(drum)) 
            return container; 
      } 
      throw new NoAnswerFoundException(); 
   } 
 
} 

Granted that this code leaves a lot to be desired. It might pack sand
into specialty containers and then run out of room before it packs the
hazardous chemicals. It certainly doesn't optimize revenues. But a
lot of optimization problems are never solved perfectly anyway. This
implementation does follow the rules that have been stated so far.



Clearing Development Logjams with Working
Prototypes

One team has to wait for working code from another in order to move forward. Both
teams have to wait for full integration to exercise their components or get feedback
from users. This kind of congestion can often be eased by a MODEL-DRIVEN prototype of
a key component, even if it does not satisfy all requirements. When implementation is
decoupled from interface, then having any working implementation at all allows
flexibility for project work to go in parallel. When the time is right, the prototype can be
replaced by a more effective implementation. In the meantime, all other parts of the
system have something to interact with during development.

Having this prototype lets the application developers move at full
speed, including all integrations with external systems. The Packer
development team also gets feedback as domain experts interact
with the prototype and firm up their ideas, helping clarify
requirements and priorities. The Packer team decides to take over
the prototype and tweak it to test ideas.

They also keep the interface up-to-date with their latest design,
forcing refactoring of the application, and some domain objects,
thereby tackling the integration problems early.

As soon as the sophisticated Packer is ready, integration is a breeze
because it has been written to a well-characterized interface�the
same interface and ASSERTIONS that the application was written for
when interacting with the prototype.

It took specialists in optimization algorithms months to get it right.
They benefited from the feedback they could get from users
interacting with the prototype. In the meantime, all other parts of the
system have something to interact with during development.

Here we have an example of a "simplest thing that could possibly
work" that actually becomes possible because of a more
sophisticated model. We can have a functioning prototype of a very
complex component in a couple dozen lines of easily understood



code. A less MODEL-DRIVEN approach would be harder to understand,
would be harder to upgrade (because the Packer would be more
coupled to the rest of the design), and in this case, would likely take
longer to prototype.



Chapter Ten. Supple Design

The ultimate purpose of software is to serve users. But first, that
same software has to serve developers. This is especially true in a
process that emphasizes refactoring. As a program evolves,
developers will rearrange and rewrite every part. They will integrate
the domain objects into the application and with new domain objects.
Even years later, maintenance programmers will be changing and
extending the code. People have to work with this stuff. But will they
want to?

When software with complex behavior lacks a good design, it
becomes hard to refactor or combine elements. Duplication starts to
appear as soon as a developer isn't confident of predicting the full
implications of a computation. Duplication is forced when design
elements are monolithic, so that the parts cannot be recombined.
Classes and methods can be broken down for better reuse, but it
gets hard to keep track of what all the little parts do. When software
doesn't have a clean design, developers dread even looking at the
existing mess, much less making a change that could aggravate the



tangle or break something through an unforeseen dependency. In
any but the smallest systems, this fragility places a ceiling on the
richness of behavior it is feasible to build. It stops refactoring and
iterative refinement.

To have a project accelerate as development proceeds�rather than
get weighed down by its own legacy�demands a design that is a
pleasure to work with, inviting to change. A supple design.

Supple design is the complement to deep modeling. Once you've
dug out implicit concepts and made them explicit, you have the raw
material. Through the iterative cycle, you hammer that material into a
useful shape, cultivating a model that simply and clearly captures the
key concerns, and shaping a design that allows a client developer to
really put that model to work. Development of the design and code
leads to insight that refines model concepts. Round and round�we're
back to the iterative cycle and refactoring toward deeper insight. But
what kind of design are you trying to arrive at? What kind of
experiments should you try along the way? That is what this chapter
is about.

A lot of overengineering has been justified in the name of flexibility.
But more often than not, excessive layers of abstraction and
indirection get in the way. Look at the design of software that really
empowers the people who handle it; you will usually see something
simple. Simple is not easy. To create elements that can be
assembled into elaborate systems and still be understandable, a
dedication to MODEL-DRIVEN DESIGN has to be joined with a moderately
rigorous design style. It may well require relatively sophisticated
design skill to create or to use.

Developers play two roles, each of which must be served by the
design. The same person might well play both roles�even switch
back and forth in minutes�but the relationship to the code is different
nonetheless. One role is the developer of a client, who weaves the
domain objects into the application code or other domain layer code,
utilizing capabilities of the design. A supple design reveals a deep
underlying model that makes its potential clear. The client developer



can flexibly use a minimal set of loosely coupled concepts to express
a range of scenarios in the domain. Design elements fit together in a
natural way with a result that is predictable, clearly characterized,
and robust.

Equally important, the design must serve the developer working to
change it. To be open to change, a design must be easy to
understand, revealing that same underlying model that the client
developer is drawing on. It must follow the contours of a deep model
of the domain, so most changes bend the design at flexible points.
The effects of its code must be transparently obvious, so the
consequences of a change will be easy to anticipate.

Early versions of a design are usually stiff. Many never acquire any
suppleness in the time frame or budget of the project. I've never
seen a large program that had this quality throughout. But when
complexity is holding back progress, honing the most crucial,
intricate parts to a supple design makes the difference between
getting sucked down into legacy maintenance and punching through
the complexity ceiling.

There is no formula for designing software like this, but I have culled
a set of patterns that, in my experience, tend to lend suppleness to a
design when they fit. These patterns and examples should give a
feel for what a supple design is like and the kind of thinking that goes
into it.

Figure 10.1. Some patterns that contribute to supple
design





Intention-Revealing Interfaces

In domain-driven design, we want to think about meaningful domain
logic. Code that produces the effect of a rule without explicitly stating
the rule forces us to think of step-by-step software procedures. The
same applies to a calculation that just results from running some
code, but isn't explicit. Without a clear connection to the model, it is
difficult to understand the effect of the code or anticipate the effect of
a change. The previous chapter delved into modeling rules and
calculations explicitly. Implementing such objects requires a lot of
understanding of the gritty details of the calculation or the fine print
of the rule. The beauty of objects is their ability to encapsulate all
that, so that client code is simple and can be interpreted in terms of
higher-level concepts.

But if the interface doesn't tell the client developer what he needs to
know in order to use the object effectively, he will have to dig into the
internals to understand the details anyway. A reader of the client
code will have to do the same. Then most of the value of the
encapsulation is lost. We are always fighting cognitive overload: If
the client developer's mind is flooded with detail about how a
component does its job, his mind isn't clear to work out the
intricacies of the client design. This is true even when the same
person is playing both roles, developing and using his own code,
because even if he doesn't have to learn those details, there is a limit
to how many factors he can consider at once.

If a developer must consider the implementation of a
component in order to use it, the value of encapsulation is lost.
If someone other than the original developer must infer the
purpose of an object or operation based on its implementation,
that new developer may infer a purpose that the operation or
class fulfills only by chance. If that was not the intent, the code
may work for the moment, but the conceptual basis of the



design will have been corrupted, and the two developers will be
working at cross-purposes.

To obtain the value of explicitly modeling a concept in the form of a
class or method, we must give these program elements names that
reflect those concepts. The names of classes and methods are great
opportunities for improving communication between developers, and
for improving the abstraction of the system.

Kent Beck wrote of making method names communicate their
purpose with an INTENTION-REVEALING SELECTOR (Beck 1997). All public
elements of a design together make up its interface, and the name of
each of those elements presents an opportunity to reveal the
intention of the design. Type names, method names, and argument
names all combine to form an INTENTION-REVEALING INTERFACE.

Therefore:

Name classes and operations to describe their effect and
purpose, without reference to the means by which they do what
they promise. This relieves the client developer of the need to
understand the internals. These names should conform to the
UBIQUITOUS LANGUAGE so that team members can quickly infer
their meaning. Write a test for a behavior before creating it, to
force your thinking into client developer mode.

All the tricky mechanism should be encapsulated behind abstract
interfaces that speak in terms of intentions, rather than means.

In the public interfaces of the domain, state relationships and rules,
but not how they are enforced; describe events and actions, but not
how they are carried out; formulate the equation but not the
numerical method to solve it. Pose the question, but don't present
the means by which the answer shall be found.



Example
 Refactoring: A Paint-Mixing Application

A program for paint stores can show a customer the result of mixing
standard paints. Here is the initial design, which has a single domain
class.

 

Figure 10.2.

 
The only way to even guess what the paint(Paint) method does
is to read the code.

public void paint(Paint paint) { 
   v = v + paint.getV(); //After mixing, volume is 
summed 
   // Omitted many lines of complicated color 
mixing logic 
   // ending with the assignment of new r, b, and 
y values. 
} 



OK, so it looks like this method combines two Paints together, the
result having a larger volume and a mixed color.

To shift our perspective, let's write a test for this method. (This code
is based on the JUnit test framework.)

public void testPaint() { 
    // Create a pure yellow paint with volume=100 
    Paint yellow = new Paint(100.0, 0, 50, 0); 
    // Create a pure blue paint with volume=100 
    Paint blue = new Paint(100.0, 0, 0, 50); 
 
    // Mix the blue into the yellow 
    yellow.paint(blue); 
 
    // Result should be volume of 200.0 of green 
paint 
    assertEquals(200.0, yellow.getV(), 0.01); 
    assertEquals(25, yellow.getB()); 
    assertEquals(25, yellow.getY()); 
    assertEquals(0, yellow.getR()); 
} 

The passing test is the starting point. It is unsatisfying at this point
because the code in the test doesn't tell us what it is doing. Let's
rewrite the test to reflect the way we would like to use the Paint
objects if we were writing a client application. Initially, this test will
fail. In fact, it won't even compile. We are writing it to explore the
interface design of the Paint object from the client developer's point
of view.

public void testPaint() { 
    // Start with a pure yellow paint with 
volume=100 
    Paint ourPaint = new Paint(100.0, 0, 50, 0); 
    // Take a pure blue paint with volume=100 
    Paint blue = new Paint(100.0, 0, 0, 50); 
 



    // Mix the blue into the yellow 
    ourPaint.mixIn(blue); 
 
    // Result should be volume of 200.0 of green 
paint 
    assertEquals(200.0, ourPaint.getVolume(), 
0.01); 
    assertEquals(25, ourPaint.getBlue()); 
    assertEquals(25, ourPaint.getYellow()); 
    assertEquals(0, ourPaint.getRed()); 
} 

We should take our time to write a test that reflects the way we
would like to talk to these objects. After that, we refactor the Paint
class to make the test pass.

 

Figure 10.3.

 
The new method name may not tell the reader everything about the
effect of "mixing in" another Paint (for that we'll need ASSERTIONS,
coming up in a few pages). But it will clue the reader in enough to
get started using the class, especially with the example the test



provides. And it will allow the reader of the client code to interpret the
client's intent. In the next few examples in this chapter, we'll refactor
this class again to make it even clearer.

  

Entire subdomains can be carved off into separate modules and
encapsulated behind INTENTION-REVEALING INTERFACES. Using such
whittling to focus a project and manage the complexity of a large
system will be discussed more in Chapter 15, "Distillation," with
COHESIVE MECHANISMS and GENERIC SUBDOMAINS.

But in the next two patterns, we'll set out to make the consequences
of using a method very predictable. Complex logic can be done
safely in SIDE-EFFECT-FREE FUNCTIONS. Methods that change system
state can be characterized with ASSERTIONS.



Side -Effect-Free Functions

Operations can be broadly divided into two categories, commands
and queries. Queries obtain information from the system, possibly by
simply accessing data in a variable, possibly performing a calculation
based on that data. Commands (also known as modifiers) are
operations that affect some change to the systems (for a simple
example, by setting a variable). In standard English, the term side
effect implies an unintended consequence, but in computer science,
it means any effect on the state of the system. For our purposes,
let's narrow that meaning to any change in the state of the system
that will affect future operations.

Why was the term side effect adopted and applied to quite
intentional changes affected by operations? I assume this was based
on experience with complex systems. Most operations call on other
operations, and those called invoke still other operations. As soon as
this arbitrarily deep nesting is involved, it becomes very hard to
anticipate all the consequences of invoking an operation. The
developer of the client may not have intended the effects of the
second-tier and third-tier operations�they've become side effects in
every sense of the phrase. Elements of a complex design interact in
other ways that are likely to produce the same unpredictability. The
use of the term side effect underlines the inevitability of that
interaction.

Interactions of multiple rules or compositions of calculations
become extremely difficult to predict. The developer calling an
operation must understand its implementation and the
implementation of all its delegations in order to anticipate the
result. The usefulness of any abstraction of interfaces is limited
if the developers are forced to pierce the veil. Without safely
predictable abstractions, the developers must limit the
combinatory explosion, placing a low ceiling on the richness of
behavior that is feasible to build.



Operations that return results without producing side effects are
called functions. A function can be called multiple times and return
the same value each time. A function can call on other functions
without worrying about the depth of nesting. Functions are much
easier to test than operations that have side effects. For these
reasons, functions lower risk.

Obviously, you can't avoid commands in most software systems, but
the problem can be mitigated in two ways. First, you can keep the
commands and queries strictly segregated in different operations.
Ensure that the methods that cause changes do not return domain
data and are kept as simple as possible. Perform all queries and
calculations in methods that cause no observable side effects (Meyer
1988).

Second, there are often alternative models and designs that do not
call for an existing object to be modified at all. Instead, a new VALUE

OBJECT, representing the result of the computation, is created and
returned. This is a common technique, which will be illustrated in the
example that follows. A VALUE OBJECT can be created in answer to a
query, handed off, and forgotten�unlike an ENTITY, whose life cycle is
carefully regulated.

VALUE OBJECTS are immutable, which implies that, apart from
initializers called only during creation, all their operations are
functions. VALUE OBJECTS, like functions, are safer to use and easier
to test. An operation that mixes logic or calculations with state
change should be refactored into two separate operations (Fowler
1999, p. 279). But by definition, this segregation of side effects into
simple command methods only applies to ENTITIES. After completing
the refactoring to separate modification from querying, consider a
second refactoring to move the responsibility for the complex
calculations into a VALUE OBJECT. The side effect often can be
completely eliminated by deriving a VALUE OBJECT instead of changing
existing state, or by moving the entire responsibility into a VALUE

OBJECT.

Therefore:



Place as much of the logic of the program as possible into
functions, operations that return results with no observable
side effects. Strictly segregate commands (methods that result
in modifications to observable state) into very simple
operations that do not return domain information. Further
control side effects by moving complex logic into VALUE OBJECTS
when a concept fitting the responsibility presents itself.

SIDE-EFFECT-FREE FUNCTIONS, especially in immutable VALUE OBJECTS,
allow safe combination of operations. When a FUNCTION is presented
through an INTENTION-REVEALING INTERFACE, a developer can use it
without understanding the detail of its implementation.

Example
 Refactoring the Paint-Mixing Application

Again

A program for paint stores can show a customer the result of mixing
standard paints. Picking up where we left off in the last example,
here is the single domain class.

 

Figure 10.4.



 
public void mixIn(Paint other) { 
   volume = volume.plus(other.getVolume()); 
   // Many lines of complicated color-mixing logic 
   // ending with the assignment of new red, blue, 
   // and yellow values. 
} 

Figure 10.5. The side effects of the mixIn() method

A lot is happening in the mixIn() method, but this design does
follow the rule of separating modification from querying. One



concern, which we'll take up later, is that the volume of the paint 2
object, the argument of the mixIn() method, has been left in limbo.
Paint 2's volume is unchanged by the operation, which doesn't seem
quite logical in the context of this conceptual model. This was not a
problem for the original developers because, as near as we can tell,
they had no interest in the paint 2 object after the operation, but it is
hard to anticipate the consequences of side effects or their absence.
We'll return to this question soon in the discussion of ASSERTIONS. For
now, let's look at color.

Color is an important concept in this domain. Let's try the experiment
of making it an explicit object. What should it be called? "Color"
comes to mind first, but earlier knowledge crunching had already
yielded the important insight that color mixing is different for paint
than it is for the more familiar RGB light display. The name needs to
reflect this.

 

Figure 10.6.

 
Factoring out Pigment Color does communicate more than the
earlier version, but the computation is the same, still in the mixIn()
method. When we moved out the color data, we should have taken
related behavior with it. Before we do, note that Pigment Color is a
VALUE OBJECT. Therefore, it should be treated as immutable. When we
mixed paint, the Paint object itself was changed. It was an ENTITY

with an ongoing life story. In contrast, a Pigment Color representing



a particular shade of yellow is always exactly that. Instead, mixing
will result in a new Pigment Color object representing the new color.

 

Figure 10.7.

 
public class PigmentColor { 
 
   public PigmentColor mixedWith(PigmentColor 
other, 
                                       double 
ratio) { 
      // Many lines of complicated color-mixing 
logic 
      // ending with the creation of a new 
PigmentColor object 
      // with appropriate new red, blue, and 
yellow values. 
   } 
} 
 
public class Paint { 
 
   public void mixIn(Paint other) { 
      volume = volume + other.getVolume(); 
      double ratio = other.getVolume() / volume; 



      pigmentColor = 
         
pigmentColor.mixedWith(other.pigmentColor(), 
ratio); 
   } 
} 

 

Figure 10.8.

 
Now the modification code in Paint is as simple as possible. The
new Pigment Color class captures knowledge and communicates it
explicitly, and it provides a SIDE-EFFECT-FREE FUNCTION whose result is
easy to understand, easy to test, and safe to use or combine with
other operations. Because it is so safe, the complex logic of color
mixing is truly encapsulated. Developers using this class don't have
to understand the implementation.



  



Assertions

Separating complex computations into SIDE-EFFECT-FREE FUNCTIONS

cuts the problem down to size, but there is still a residue of
commands on the ENTITIES that produce side effects, and anyone
using them must understand their consequences. ASSERTIONS make
side effects explicit and easier to deal with.

  

True, a command containing no complex computations may be fairly
easy to interpret by inspection. But in a design where larger parts are
built of smaller ones, a command may invoke other commands. The
developer using the high-level command must understand the
consequences of each underlying command. So much for
encapsulation. And because object interfaces do not restrict side
effects, two subclasses that implement the same interface can have
different side effects. The developer using them will want to know
which is which to anticipate the consequences. So much for
abstraction and polymorphism.

When the side effects of operations are only defined implicitly
by their implementation, designs with a lot of delegation
become a tangle of cause and effect. The only way to
understand a program is to trace execution through branching
paths. The value of encapsulation is lost. The necessity of
tracing concrete execution defeats abstraction.

We need a way of understanding the meaning of a design element
and the consequences of executing an operation without delving into
its internals. INTENTION-REVEALING INTERFACES carry us part of the way
there, but informal suggestions of intentions are not always enough.
The "design by contract" school goes the next step, making
"assertions" about classes and methods that the developer
guarantees will be true. This style is discussed in detail in Meyer
1988. Briefly, "post-conditions" describe the side effects of an



operation, the guaranteed outcome of calling a method.
"Preconditions" are like the fine print on the contract, the conditions
that must be satisfied in order for the post-condition guarantee to
hold. Class invariants make assertions about the state of an object at
the end of any operation. Invariants can also be declared for entire
AGGREGATES, rigorously defining integrity rules.

All these assertions describe state, not procedures, so they are
easier to analyze. Class invariants help characterize the meaning of
a class, and simplify the client developer's job by making the objects
more predictable. If you trust the guarantee of a post-condition, you
don't have to worry about how a method works. The effects of
delegations should already be incorporated into the assertions.

Therefore:

State post-conditions of operations and invariants of classes
and AGGREGATES. If ASSERTIONS cannot be coded directly in your
programming language, write automated unit tests for them.
Write them into documentation or diagrams where it fits the
style of the project's development process.

Seek models with coherent sets of concepts, which lead a
developer to infer the intended ASSERTIONS, accelerating the
learning curve and reducing the risk of contradictory code.

Even though many object-oriented languages don't currently support
ASSERTIONS directly, ASSERTIONS are still a powerful way of thinking
about a design. Automated unit tests can partially compensate for
the lack of language support. Because ASSERTIONS are all in terms of
states, rather than procedures, they make tests easy to write. The
test setup puts the preconditions in place; then, after execution, the
test checks to see if the post-conditions hold.

Clearly stated invariants and pre- and post-conditions allow a
developer to understand the consequences of using an operation or
object. Theoretically, any noncontradictory set of assertions would
work. But humans don't just compile predicates in their heads. They



will be extrapolating and interpolating the concepts of the model, so
it is important to find models that make sense to people as well as
satisfying the needs of the application.

Example
 Back to Paint Mixing

Recall that in the previous example I was concerned about the
ambiguity of what happens to the argument of the mixIn(Paint)
operation on the Paint class.

 

Figure 10.9.

 
The receiver's volume is increased by the amount of the argument's
volume. Drawing on our general understanding of physical paint, this
mixing process should deplete the other paint by the same amount,
draining it to zero volume, or eliminating it completely. The current
implementation does not modify the argument, and modifying
arguments is a particularly risky kind of side effect anyway.

To start on a solid footing, let's state the post-condition of the
mixIn() method as it is:



After p1.mixIn(p2):

p1.volume is increased by amount of p2.volume.

p2.volume is unchanged.

The trouble is, developers are going to make mistakes, because
these properties don't fit the concepts we have invited them to think
about. The straightforward fix would be change the volume of the
other paint to zero. Changing an argument is a bad practice, but it
would be easy and intuitive. We could state an invariant:

Total volume of paint is unchanged by mixing.

But wait! While developers were pondering this option, they made a
discovery. It turns out that there was a compelling reason the original
designers made it this way. At the end, the program reports the list of
unmixed paints that were added. After all, the ultimate purpose of
this application is to help a user figure out which paints to put into a
mixture.

So, to make the volume model logically consistent would make it
unsuitable for its application requirements. There seems to be a
dilemma. Are we stuck with documenting the weird post-condition
and trying to compensate with good communication? Not everything
in this world is intuitive, and sometimes that is the best answer. But
in this case, the awkwardness seems to point to missing concepts.
Let's look for a new model.

We Can See Clearly Now

As we search for a better model, we have significant advantages
over the original designers, because of the knowledge crunching and
refactoring to deeper insight that has happened in the interim. For



example, we compute color using a SIDE-EFFECT-FREE FUNCTION on a
VALUE OBJECT. This means we can repeat the calculation any time we
need to. We should take advantage of that.

We seem to be giving Paint two different basic responsibilities. Let's
try splitting them.

Now there is only one command, mixIn(). It just adds an object to
a collection, an effect apparent from an intuitive understanding of the
model. All other operations are SIDE-EFFECT-FREE FUNCTIONS.

A test method confirming one of the ASSERTIONS listed in Figure 10.10
could look something like this (using the JUnit test framework):

public void testMixingVolume { 
   PigmentColor yellow = new PigmentColor(0, 50, 
0); 
   PigmentColor blue = new PigmentColor(0, 0, 50); 
 
   StockPaint paint1 = new StockPaint(1.0, 
yellow); 
   StockPaint paint2 = new StockPaint(1.5, blue); 
   MixedPaint mix = new MixedPaint(); 
 
   mix.mixIn(paint1); 
   mix.mixIn(paint2); 
   assertEquals(2.5, mix.getVolume(), 0.01); 
} 

 

Figure 10.10.



 
This model captures and communicates more of the domain. The
invariants and post-conditions make common sense, which will make
them easier to maintain and use.

  

The communicativeness of the INTENTION-REVEALING INTERFACES,
combined with the predictability given by SIDE-EFFECT-FREE FUNCTIONS

and ASSERTIONS, should make encapsulation and abstraction safe.



The next ingredient in recombinable elements is effective
decomposition. . . .



Conceptual Contours

Sometimes people chop functionality fine to allow flexible
combination. Sometimes they lump it large to encapsulate
complexity. Sometimes they seek a consistent granularity, making all
classes and operations to a similar scale. These are
oversimplifications that don't work well as general rules. But they are
motivated by a basic set of problems.

When elements of a model or design are embedded in a
monolithic construct, their functionality gets duplicated. The
external interface doesn't say everything a client might care
about. Their meaning is hard to understand, because different
concepts are mixed together.

On the other hand, breaking down classes and methods can
pointlessly complicate the client, forcing client objects to
understand how tiny pieces fit together. Worse, a concept can
be lost completely. Half of a uranium atom is not uranium. And
of course, it isn't just grain size that counts, but just where the
grain runs.

Cookbook rules don't work. But there is a logical consistency deep in
most domains, or else they would not be viable in their own sphere.
This is not to say that domains are perfectly consistent, and certainly
the ways people talk about them are not consistent. But there is
rhyme and reason somewhere, or else modeling would be pointless.
Because of this underlying consistency, when we find a model that
resonates with some part of the domain, it is more likely to be
consistent with other parts that we discover later. Sometimes the
new discovery isn't easy for the model to adapt to, in which case we
refactor to deeper insight, and hope to conform to the next discovery.

This is one reason why repeated refactoring eventually leads to
suppleness. The CONCEPTUAL CONTOURS emerge as the code is
adapted to newly understood concepts or requirements.



The twin fundamentals of high cohesion and low coupling play a role
in design at all scales, from individual methods up through classes
and MODULES to large-scale structures (see Chapter 16). These two
principles apply to concepts as much as to code. To avoid slipping
into a mechanistic view of them, temper your technical thinking by
frequently touching base with your intuition for the domain. With
each decision, ask yourself, "Is this an expedient based on a
particular set of relationships in the current model and code, or does
it echo some contour of the underlying domain?"

Find the conceptually meaningful unit of functionality, and the
resulting design will be both flexible and understandable. For
example, if an "addition" of two objects has a coherent meaning in
the domain, then implement methods at that level. Don't break the
add() into two steps. Don't proceed to the next step within the same
operation. On a slightly larger scale, each object should be a single
complete concept, a "WHOLE VALUE."[1]

[1] The WHOLE VALUE pattern, by Ward Cunningham.

By the same token, there are areas in any domain where detail isn't
interesting to the kind of people the software serves. The users of
our hypothetical paint mixing application don't add red pigment or
blue pigment; they combine complete paints, which contain all three
pigments. Clumping things that don't need to be dissected or
rearranged avoids clutter and makes it easier to see the elements
that really are meant to recombine. If our users' physical equipment
allowed individual pigments to be added, the domain would be
altered, and the individual pigments might be manipulated. A paint
chemist would need still finer control, which would involve a whole
other analysis, probably producing a much more detailed model of
the makeup of paint than our abstracted pigment color that serves
paint mixing. But it is simply irrelevant to anyone involved in the paint
mixing application project.

Therefore:



Decompose design elements (operations, interfaces, classes,
and AGGREGATES) into cohesive units, taking into consideration
your intuition of the important divisions in the domain. Observe
the axes of change and stability through successive
refactorings and look for the underlying CONCEPTUAL CONTOURS
that explain these shearing patterns. Align the model with the
consistent aspects of the domain that make it a viable area of
knowledge in the first place.

The goal is a simple set of interfaces that combine logically to make
sensible statements in the UBIQUITOUS LANGUAGE, and without the
distraction and maintenance burden of irrelevant options. This is
typically an outcome of refactoring: it's hard to produce up front. But
it may never emerge from technically oriented refactoring; it emerges
from refactoring toward deeper insight.

Even when the design follows CONCEPTUAL CONTOURS, there will need
to be modifications and refactoring. When successive refactoring
tends to be localized, not shaking multiple broad concepts of the
model, it is an indicator of model fit. Encountering a requirement that
forces extensive changes in the breakdown of the objects and
methods is a message: Our understanding of the domain needs
refinement. It presents an opportunity to deepen the model and
make the design more supple.

Example
 The CONTOURS of Accruals

In Chapter 9, a loan tracking system was refactored based on
deeper insight into accounting concepts:

 

Figure 10.11.



 
The new model contained only one more object than the old one, yet
the partitioning of responsibility had been greatly changed.

Schedules, which had been worked out through case logic in the
Calculator classes, were exploded into discrete classes for different
types of fees and interest. On the other hand, payments of fees and
interest, previously kept separate, were lumped together.

Because of the resonance of the newly explicit concepts and the
cohesiveness of the Accrual Schedule hierarchy, the developer
believed that this model better follows some of the domain's
CONCEPTUAL CONTOURS.



Figure 10.12. This model accommodates adding new
kinds of Accrual Schedules.

The one change the developer could confidently predict was the
addition of new Accrual Schedules. Those requirements were
already waiting in the wings. So in addition to making existing
functionality clearer and simpler, she chose a model that would make
it easy to introduce new schedules. But had she found a CONCEPTUAL

CONTOUR that will help the domain design change and grow as the
application and the business evolve? There can be no guarantees
about how a design will handle unanticipated change, but she
thought it had improved the odds.

An Unanticipated Change

As the project proceeded, a requirement emerged for detailed rules
for handling early and late payments. As she studied the problem,
the developer was pleased to see that virtually the same rules
applied to payments on interest and to payments on fees. This
meant that the new model elements would connect naturally to the
single Payment class.

 



Figure 10.13.

 
The old design would have forced duplication between the two
Payment History classes. (This difficulty might have triggered an
insight that the Payment class should be shared, leading by another
path to a similar model.) This ease of extension did not come
because she anticipated the change. Nor did it come because she
made a design so versatile it could accommodate any conceivable
change. It happened because in the previous refactoring, the design
was aligned with underlying concepts of the domain.

  

INTENTION-REVEALING INTERFACES allow clients to present objects as
units of meaning rather than just mechanisms. SIDE-EFFECT-FREE

FUNCTIONS and ASSERTIONS make it safe to use those units and make
complex combinations. The emergence of CONCEPTUAL CONTOURS

stabilizes parts of the model and also makes the units more intuitive
to use and combine.



We can still run into conceptual overload when interdependencies
force us to think about too many of these things at a time. . . .



Standalone Classes

Interdependencies make models and designs hard to understand.
They also make them hard to test and maintain. And
interdependencies pile up easily.

Every association is, of course, a dependency, and understanding a
class requires understanding what it is attached to. Those attached
things will be attached to still more things, and they have to be
understood too. The type of every argument of every method is also
a dependency. So is every return value.

With one dependency, you have to think about two classes at the
same time, and the nature of their relationship. With two
dependencies, you have to think about each of the three classes, the
nature of the class's relationship to each of them, and any
relationship they might have to each other. If they in turn have
dependencies, you have to be wary of those also. With three
dependencies . . . it snowballs.

Both MODULES and AGGREGATES are aimed at limiting the web of
interdependencies. When a highly cohesive subdomain is carved out
into a MODULE, a set of objects are decoupled from the rest of the
system, so there are a finite number of interrelated concepts. But
even a MODULE can be a lot to think about without an almost fanatical
commitment to controlling dependencies within it.

Even within a MODULE, the difficulty of interpreting a design
increases wildly as dependencies are added. This adds to
mental overload, limiting the design complexity a developer can
handle. Implicit concepts contribute to this load even more than
explicit references.

Refined models are distilled until every remaining connection
between concepts represents something fundamental to the
meaning of those concepts. In an important subset, the number of



dependencies can be reduced to zero, resulting in a class that can
be fully understood all by itself, along with a few primitives and basic
library concepts.

In every programming environment, a few basics are so pervasive
that they are always in mind. For example, in Java development,
primitives and a few standard libraries provide basics like numbers,
strings, and collections. Practically speaking, "integers" don't add to
the intellectual load. Beyond that, every additional concept that has
to be held in mind in order to understand an object contributes to
mental overload.

Implicit concepts, recognized or unrecognized, count just as much as
explicit references. Although we can generally ignore dependencies
on primitive values such as integers and strings, we can't ignore
what they represent. For example, in the first paint mixing examples,
the Paint object held three public integers representing red, yellow,
and blue color values. The creation of the Pigment Color object did
not increase the number of concepts involved or the dependencies.
It did make the ones that were already there more explicit and easier
to understand. On the other hand, the Collection size() operation
returns an int that is simply a count, the basic meaning of an
integer, so no new concept is implied.

Every dependency is suspect until proven basic to the concept
behind the object. This scrutiny starts with the factoring of the model
concepts themselves. Then it requires attention to each individual
association and operation. Model and design choices can chip away
at dependencies�often to zero.

Low coupling is fundamental to object design. When you can,
go all the way. Eliminate all other concepts from the picture.
Then the class will be completely self-contained and can be
studied and understood alone. Every such self-contained class
significantly eases the burden of understanding a MODULE.

Dependencies on other classes within the same module are less
harmful than those outside. Likewise, when two objects are naturally



tightly coupled, multiple operations involving the same pair can
actually clarify the nature of the relationship. The goal is not to
eliminate all dependencies, but to eliminate all nonessential ones. If
every dependency can't be eliminated, each one that is removed
frees the developer to concentrate on the remaining conceptual
dependencies.

Try to factor the most intricate computations into STANDALONE CLASSES,
perhaps by modeling VALUE OBJECTS held by the more connected
classes.

The concept of paint is fundamentally related to the concept of color.
But color, even of pigment, can be considered without paint. By
making these two concepts explicit and distilling the relationship, the
remaining one-way association says something important, and the
Pigment Color class, where most of the computational complexity
lies, can be studied and tested alone.

  

Low coupling is a basic way to reduce conceptual overload. A
STANDALONE CLASS is an extreme of low coupling.

Eliminating dependencies should not mean dumbing down the model
by arbitrarily reducing everything to primitives. The final pattern of
this chapter, CLOSURE OF OPERATIONS, is an example of a technique for
reducing dependency while keeping a rich interface. . . .



Closure of Operations

If we take two real numbers and multiply them together, we
get another real number. [The real numbers are all the rational
numbers and all the irrational numbers.] Because this is
always true, we say that the real numbers are "closed under
the operation of multiplication": there is no way to escape the
set. When you combine any two elements of the set, the result
is also included in the set.

�The Math Forum, Drexel University

Of course, there will be dependencies, and that isn't a bad thing
when the dependency is fundamental to the concept. Stripping
interfaces down to deal with nothing but primitives can impoverish
them. But a lot of unnecessary dependencies, and even entire
concepts, get introduced at interfaces.

Most interesting objects end up doing things that can't be
characterized by primitives alone.

Another common practice in refined designs is what I call "CLOSURE

OF OPERATIONS." The name comes from that most refined of
conceptual systems, mathematics. 1 + 1 = 2. The addition operation
is closed under the set of real numbers. Mathematicians are fanatical
about not introducing extraneous concepts, and the property of
closure provides them a way of defining an operation without
involving any other concepts. We are so accustomed to the
refinement of mathematics that it can be hard to grasp how powerful
its little tricks are. But this one is used extensively in software
designs as well. The basic use of XSLT is to transform one XML
document into another XML document. This sort of XSLT operation
is closed under the set of XML documents. The property of closure
tremendously simplifies the interpretation of an operation, and it is



easy to think about chaining together or combining closed
operations.

Therefore:

Where it fits, define an operation whose return type is the same
as the type of its argument(s). If the implementer has state that
is used in the computation, then the implementer is effectively
an argument of the operation, so the argument(s) and return
value should be of the same type as the implementer. Such an
operation is closed under the set of instances of that type. A
closed operation provides a high-level interface without
introducing any dependency on other concepts.

This pattern is most often applied to the operations of a VALUE OBJECT.
Because the life cycle of an ENTITY has significance in the domain,
you can't just conjure up a new one to answer a question. There are
operations that are closed under an ENTITY type. You could ask an
Employee object for its supervisor and get back another Employee.
But in general, ENTITIES are not the sort of concepts that are likely to
be the result of a computation. So, for the most part, this is an
opportunity to look for in the VALUE OBJECTS.

An operation can be closed under an abstract type, in which case
specific arguments can be of different concrete classes. After all,
addition is closed under real numbers, which can be either rational or
irrational.

As you're experimenting, looking for ways to reduce
interdependence and increase cohesion, you sometimes get halfway
to this pattern. The argument matches the implementer, but the
return type is different, or the return type matches the receiver and
the argument is different. These operations are not closed, but they
do give some of the advantages of CLOSURE. When the extra type is a
primitive or basic library class, it frees the mind almost as much as
CLOSURE.



In the earlier example, the Pigment Color mixedWith() operation
was closed under Pigment Colors, and there are several other
examples scattered through the book. Here's an example that shows
how useful this idea can be, even when true CLOSURE isn't reached.

Example
 Selecting from Collections

In Java, if you want to select a subset of elements from a
Collection, you request an Iterator. Then you iterate through the
elements, testing each one, probably accumulating the matches into
a new Collection.

Set employees = (some Set of Employee objects); 
Set lowPaidEmployees = new HashSet(); 
Iterator it = employees.iterator(); 
while (it.hasNext()) { 
   Employee anEmployee = it.next(); 
   if (anEmployee.salary() < 40000) 
lowPaidEmployees.add(anEmployee); 
} 

Conceptually, I've selected a subset of a set. What do I need with
this extra concept, Iterator, and all its mechanical complexity? In
Smalltalk, I would call the "select" operation on the Collection,
passing in the test as an argument. The return would be a new
Collection containing just the elements that passed the test.

employees := (some Set of Employee objects). 
lowPaidEmployees := employees select: 
         [:anEmployee | anEmployee salary < 
40000]. 

The Smalltalk Collections provide other such FUNCTIONS that return
derived Collections, which can be of several concrete classes. The



operations are not closed, because they take a "block" as an
argument. But blocks are a basic library type in Smalltalk, so they
don't add to the developer's mental load. Because the return value
matches the implementer, they can be strung together, like a series
of filters. They are easy to write and easy to read. They do not
introduce extraneous concepts that are irrelevant to the problem of
selecting subsets.

  

The patterns presented in this chapter illustrate a general style of
design and a way of thinking about design. Making software obvious,
predictable, and communicative makes abstraction and
encapsulation effective. Models can be factored so that objects are
simple to use and understand yet still have rich, high-level interfaces.

These techniques require fairly advanced design skills to apply and
sometimes even to write a client. The usefulness of a MODEL-DRIVEN

DESIGN is sensitive to the quality of the detailed design and
implementation decisions, and it only takes a few confused
developers to derail a project from the goal.

That said, for the team willing to cultivate its modeling and design
skills, these patterns and the way of thinking they reflect yield
software that developers can work and rework to create complex
software.



Declarative Design

ASSERTIONS can lead to much better designs, even with our relatively
informal way of testing them. But there can be no real guarantees in
handwritten software. To name just one way of evading ASSERTIONS,
code could have additional side effects that were not specifically
excluded. No matter how MODEL-DRIVEN our design is, we still end up
writing procedures to produce the effect of the conceptual
interactions. And we spend so much of our time writing boilerplate
code that doesn't really add any meaning or behavior. This is tedious
and fraught with error, and the bulk of it obscures the meaning of our
model. (Some languages are better than others, but all require us to
do a lot of grunt work.) INTENTION-REVEALING INTERFACES and the other
patterns in this chapter help, but they can never give conventional
object-oriented programs formal rigor.

These are some of the motivations behind declarative design. This
term means many things to many people, but usually it indicates a
way to write a program, or some part of a program, as a kind of
executable specification. A very precise description of properties
actually controls the software. In its various forms, this could be done
through a reflection mechanism or at compile time through code
generation (producing conventional code automatically, based on the
declaration). This approach allows another developer to take the
declaration at face value. It is an absolute guarantee.

Generating a running program from a declaration of model properties
is a kind of Holy Grail of MODEL-DRIVEN DESIGN, but it does have its
pitfalls in practice. For example, here are just two particular problems
I've encountered more than once.

A declaration language not expressive enough to do everything
needed, but a framework that makes it very difficult to extend
the software beyond the automated portion



Code-generation techniques that cripple the iterative cycle by
merging generated code into handwritten code in a way that
makes regeneration very destructive

The unintended consequence of many attempts at declarative
design is the dumbing-down of the model and application, as
developers, trapped by the limitations of the framework, enact design
triage in order to get something delivered.

Rule-based programming with an inference engine and a rule base
is another promising approach to declarative design. Unfortunately,
subtle issues can undermine this intention.

Although a rules-based program is declarative in principle, most
systems have "control predicates" that were added to allow
performance tuning. This control code introduces side effects, so that
the behavior is no longer dictated completely by the declared rules.
Adding, removing, or reordering the rules can cause unexpected,
incorrect results. Therefore, a logic programmer has to be careful to
keep the effect of code obvious, just as an object programmer does.

Many declarative approaches can be corrupted if the developers
bypass them intentionally or unintentionally. This is likely when the
system is difficult to use or overly restrictive. Everyone has to follow
the rules of the framework in order to get the benefits of a declarative
program.

The greatest value I've seen delivered has been when a narrowly
scoped framework automates a particularly tedious and error-prone
aspect of the design, such as persistence and object-relational
mapping. The best of these unburden developers of drudge work
while leaving them complete freedom to design.

Domain-Specific Languages



An interesting approach that is sometimes declarative is the domain-
specific language. In this style, client code is written in a
programming language tailored to a particular model of a particular
domain. For example, a language for shipping systems might include
terms such as cargo and route, along with syntax for associating
them. The program is then compiled, often into a conventional
object-oriented language, where a library of classes provides
implementations for the terms in the language.

In such a language, programs can be extremely expressive, and
make the strongest connection with the UBIQUITOUS LANGUAGE. This is
an exciting concept, but domain-specific languages also have their
drawbacks in the approaches I've seen based on object-oriented
technology.

To refine the model, a developer needs to be able to modify the
language. This may involve modifying grammar declarations and
other language-interpreting features, as well as modifying underlying
class libraries. I'm all in favor of learning advanced technology and
design concepts, but we have to soberly assess the skills of a
particular team, as well as the likely skills of future maintenance
teams. Also, there is value in the seamlessness of an application
and a model implemented in the same language. Another drawback
is that it can be difficult to refactor client code to conform to a revised
model and its associated domain-specific language. Of course,
someone may come up with a technical fix for the refactoring
problems.



From the Ground Up

A different paradigm might handle domain-specific languages better than objects. In
the Scheme programming language, a representative of the "functional programming"
family, something very similar is part of standard programming style, so that the
expressiveness of a domain-specific language can be created without bifurcating the
system.

This technique might be most useful for very mature models,
perhaps where client code is being written by a different team.
Generally, such setups lead to the poisonous distinction between
highly technical framework builders and technically unskilled
application builders, but it doesn't have to be that way.

In the scheme programming language, something very similar is part
of standard programming style, so that the expressiveness of a
domain-specific language can be created without bifurcating the
system.



A Declarative Style of Design

Once your design has INTENTION-REVEALING INTERFACES, SIDE-EFFECT-

FREE FUNCTIONS, and ASSERTIONS, you are edging into declarative
territory. Many of the benefits of declarative design are obtained
once you have combinable elements that communicate their
meaning, and have characterized or obvious effects, or no
observable effects at all.

A supple design can make it possible for the client code to use a
declarative style of design. To illustrate, the next section will bring
together some of the patterns in this chapter to make the
SPECIFICATION more supple and declarative.

Extending SPECIFICATIONS in a Declarative
Style

Chapter 9 covered the basic concept of SPECIFICATION, the roles it can
play in a program, and some sense of what is involved in
implementation. Now let's take a look at a few bells and whistles that
can be very useful in some situations with complicated rules.

SPECIFICATION is an adaptation of an established formalism, the
predicate. Predicates have other useful properties that we can draw
on, selectively.

Combining SPECIFICATIONS Using Logical Operators

When using SPECIFICATIONS, you quickly come across situations in
which you would like to combine them. As just mentioned, a
SPECIFICATION is an example of a predicate, and predicates can be
combined and modified with the operations "AND," "OR," and "NOT."



These logical operations are closed under predicates, so
SPECIFICATION combinations will exhibit CLOSURE OF OPERATIONS.

As significant generalized capability is built into SPECIFICATIONS, it
becomes very useful to create an abstract class or interface that can
be used for SPECIFICATIONS of all sorts. This means typing arguments
as some high-level abstract class.

public interface Specification { 
   boolean isSatisfiedBy(Object candidate); 
} 

This abstraction calls for a guard clause at the beginning of the
method, but otherwise it does not affect functionality. For example,
the Container Specification (from the example in Chapter 9, on
page 236) would be modified this way:

public class ContainerSpecification implements 
Specification { 
   private ContainerFeature requiredFeature; 
 
   public ContainerSpecification(ContainerFeature 
required) { 
      requiredFeature = required; 
   } 
 
   boolean isSatisfiedBy(Object candidate){ 
      if (!candidate instanceof Container) return 
false; 
 
      return 
(Container)aContainer.getFeatures().contains(requi
redFeature); 
   } 
} 

Now, let's extend the Specification interface by adding the three
new operations:



public interface Specification { 
   boolean isSatisfiedBy(Object candidate); 
 
   Specification and(Specification other); 
   Specification or(Specification other); 
   Specification not(); 
} 

Recall that some Container Specifications were configured to
require ventilated Containers and others to require armored
Containers. A chemical that is both volatile and explosive would,
presumably, need both of these SPECIFICATIONS. Easily done, using
the new methods.

Specification ventilated = new 
ContainerSpecification(VENTILATED); 
Specification armored = new 
ContainerSpecification(ARMORED); 
 
Specification both = ventilated.and(armored); 

The declaration defines a new Specification object with the
expected properties. This combination would have required a more
complicated Container Specification, and would still have been
special purpose.

Suppose we had more than one kind of ventilated Container. It
might not matter for some items which kind they were packed into.
They could be placed in either type.

Specification ventilatedType1 = 
      new 
ContainerSpecification(VENTILATED_TYPE_1); 
Specification ventilatedType2 = 
      new 
ContainerSpecification(VENTILATED_TYPE_2); 
 



Specification either = 
ventilatedType1.or(ventilatedType2); 

If it was considered wasteful to store sand in specialized containers,
we could prohibit it by SPECIFYING a "cheap" container with no special
features.

Specification cheap = 
(ventilated.not()).and(armored.not()); 

This constraint would have prevented some of the suboptimal
behavior of the prototype warehouse packer discussed in Chapter 9.

The ability to build complex specifications out of simple elements
increases the expressiveness of the code. The combinations are
written in a declarative style.

Depending on how SPECIFICATIONS are implemented, these operators
may be easy or difficult to provide. What follows is a very simple
implementation, which would be inefficient in some situations and
quite practical in others. It is meant as an explanatory example. Like
any pattern, there are many ways to implement it.

public abstract class AbstractSpecification 
implements 
      Specification { 
   public Specification and(Specification other) { 
      return new AndSpecification(this, other); 
   } 
   public Specification or(Specification other) { 
      return new OrSpecification(this, other); 
   } 
   public Specification not() { 
      return new NotSpecification(this); 
   } 
} 
 
public class AndSpecification extends 



AbstractSpecification { 
   Specification one; 
   Specification other; 
   public AndSpecification(Specification x, 
Specification y) { 
      one = x; 
      other = y; 
   } 
   public boolean isSatisfiedBy(Object candidate) 
{ 
      return one.isSatisfiedBy(candidate) && 
         other.isSatisfiedBy(candidate); 
   } 
} 
 
public class OrSpecification extends 
AbstractSpecification { 
   Specification one; 
   Specification other; 
   public OrSpecification(Specification x, 
Specification y) { 
      one = x; 
      other = y; 
   } 
   public boolean isSatisfiedBy(Object candidate) 
{ 
      return one.isSatisfiedBy(candidate) || 
         other.isSatisfiedBy(candidate); 
   } 
} 
 
public class NotSpecification extends 
AbstractSpecification { 
   Specification wrapped; 
 
   public NotSpecification(Specification x) { 
      wrapped = x; 



   } 
   public boolean isSatisfiedBy(Object candidate) 
{ 
      return !wrapped.isSatisfiedBy(candidate); 
   } 
} 

Figure 10.14. COMPOSITE design of SPECIFICATION

This code was written to be as easy as possible to read in a book.
As I said, there may be situations in which this is inefficient.
However, other implementation options are possible that would
minimize object count or boost speed, or perhaps be compatible with
idiosyncratic technologies present in some project. The important
thing is a model that captures the key concepts of the domain, along
with animplementation that is faithful to that model. That leaves a lot
of room to solve performance problems.

Also, this full generality is not needed in many cases. In particular,
AND tends to be used a lot more than the others, and it also tends to
create less implementation complexity. Don't be afraid to implement
only AND, if that is all you need.



Way back in Chapter 2, in the example dialog on page 30, the
developers had apparently not implemented the "satisfied by"
behavior of their SPECIFICATION. Up to that point, the SPECIFICATION had
been used only for building to order. Even so, the abstraction was
intact, and adding functionality was relatively easy. Using a pattern
doesn't mean building features you don't need. They can be added
later, as long as the concepts don't get muddled.

Example
 One Alternative Implementation of COMPOSITE

SPECIFICATION

Some implementation environments don't accommodate very fine
grained objects very well. I once worked on a project with an object
database that insisted on giving an object ID to every object and
then tracking it. Each object had lots of overhead in memory space
and performance, and total address space was a limiting factor. I
employed SPECIFICATIONS at some important points in the domain
design, which I think was a good decision. But I used a slightly more
elaborate version of the implementation described in this chapter,
which was definitely a mistake. It resulted in millions of very fine
grained objects that contributed to bogging the system down.

Here is an example of an alternative implementation that encodes
the composite SPECIFICATION as a string or array encoding the logical
expression, to be interpreted at runtime.

(Don't worry if you do not see how you would implement this. The
important thing is to realize that there are many ways of
implementing a SPECIFICATION with logical operators, and so if the
simple one is not practical in your situation, you have options.)

SPECIFICATION Stack Content for "Cheap Container"



SPECIFICATION Stack Content for "Cheap Container"

Top AndSpecificationOperator (FLY WEIGHT)

NotSpecificationOperator (FLY WEIGHT)

Armored

NotSpecificationOperator

Ventilated

When you want to test a candidate, you have to interpret this
structure, which can be done by popping off each element, then
evaluating it or popping off the next as required by an operator. You
would end up with this:

and(not(armored), not(ventilated)) 

This design has pros (+) and cons (�):

+ Low object count

+ Efficient use of memory

� Requires more sophisticated developers

You have to find an implementation with trade-offs that work for your
circumstances. The same pattern and model can underlie very
different implementations.

Subsumption

This final feature is not usually needed and can be difficult to
implement, but every now and then it solves a really hard problem. It



also elucidates the meaning of a SPECIFICATION.

Consider again the chemical warehouse packer from the example on
page 235. Recall that each Chemical had a Container
Specification, and the Packer SERVICE guaranteed that all these
would be satisfied when Drums are assigned to Containers. All is
well... until someone changes the regulations.

Every few months a new set of rules is issued, and our users would
like to be able to produce a list of the chemical types that now have
more stringent requirements.

Of course, we could give a partial answer (and one the users
probably also want) by running a validation of each Drum in the
inventory, with the new SPECIFICATIONS in place, and finding all those
that no longer meet the SPEC. This would tell the users which Drums
in the existing inventory they need to move.

But what they asked for was a list of chemicals whose handling has
become more stringent. Perhaps there are none in-house right now,
or perhaps they just happened to be packed into a more stringent
container. In either case, the report just described would not list
them.

Let's introduce a new operation for directly comparing two
SPECIFICATIONS.

boolean subsumes(Specification other); 

A more stringent SPEC subsumes a less stringent one. It could take
its place without any previous requirement being neglected.

Figure 10.15. The SPECIFICATION for a gasoline container
has been tightened.



In the language of SPECIFICATION, we would say that the new
SPECIFICATION subsumes the old SPECIFICATION, because any
candidate that would satisfy the new SPEC would also satisfy the
old.

If each of these SPECIFICATIONS is viewed as a predicate, subsumption
is equivalent to logical implication. Using conventional notation, A
B means that statement A implies statement B, so that if A is true, B
is also true.

Let's apply this logic to our container-matching needs. When a
SPECIFICATION is being changed, we would like to know if the
proposed new SPEC meets all the conditions of the old one.

New Spec  Old Spec

That is, if the new spec is true, then the old spec is also true. Proving
a logical implication in a general way is very difficult, but special
cases can be easy. For example, particular parameterized SPECS can
define their own subsumption rule.

public class MinimumAgeSpecification { 
   int threshold; 



 
   public boolean isSatisfiedBy(Person candidate) 
{ 
      return candidate.getAge() >= threshold; 
   } 
 
   public boolean subsumes(MinimumAgeSpecification 
other) { 
      return threshold >= other.getThreshold(); 
   } 
} 

A JUnit test might contain this:

drivingAge = new MinimumAgeSpecification(16); 
votingAge = new MinimumAgeSpecification(18); 
assertTrue(votingAge.subsumes(drivingAge)); 

Another practical special case, one suited to address the Container
Specification problem, is a SPECIFICATION interface combining
subsumption with the single logical operator AND.

public interface Specification { 
   boolean isSatisfiedBy(Object candidate); 
   Specification and(Specification other); 
   boolean subsumes(Specification other); 
} 

Proving implication with only the AND operator is simple:

A AND B  A

or, in a more complicated case:

A AND B AND C  A AND B



So if the Composite Specification is able to collect all the leaf
SPECIFICATIONS that are "ANDed" together, then all we have to do is
check that the subsuming SPECIFICATION has all the leaves that the
subsumed one has, and maybe some extra ones as well�its leaves
are a superset of the other SPEC's set of leaves.

public boolean subsumes(Specification other) { 
  if (other instanceof CompositeSpecification) { 
     Collection otherLeaves = 
        (CompositeSpecification) 
other.leafSpecifications(); 
     Iterator it = otherLeaves.iterator(); 
     while (it.hasNext()) { 
        if 
(!leafSpecifications().contains(it.next())) 
           return false; 
     } 
   } else { 
      if (!leafSpecifications().contains(other)) 
         return false; 
   } 
   return true; 
} 

This interaction could be enhanced to compare carefully chosen
parameterized leaf SPECIFICATIONS and some other complications.
Unfortunately, when OR and NOT are included, these proofs become
much more involved. In most situations it is best to avoid such
complexity by making a choice, either forgoing some of the operators
or forgoing subsumption. If both are needed, consider carefully if the
benefit is great enough to justify the difficulty.

Socrates on SPECIFICATIONS



Socrates on SPECIFICATIONS

All men are mortal. Specification manSpec = new ManSpecification(); 
Specification mortalSpec = new 
MortalSpecification(); 
assert manSpec.subsumes(mortalSpec); 

Socrates is a man. Man socrates = new Man(); 
assert manSpec.isSatisfiedBy(socrates); 

Therefore, Socrates is
mortal.

assert mortalSpec.isSatisfiedBy(socrates); 



Angles of Attack

This chapter has presented a raft of techniques to clarify the intent of
code, to make the consequences of using it transparent, and to
decouple model elements. Even so, this kind of design is difficult.
You can't just look at an enormous system and say, "Let's make this
supple." You have to choose targets. Here are a couple of broad
approaches, followed by an extended example showing how the
patterns are fit together and used to take on a bigger design.

Carve Off Subdomains

You just can't tackle the whole design at once. Pick away at it. Some
aspects of the system will suggest approaches to you, and they can
be factored out and worked over. You may see a part of the model
that can be viewed as specialized math; separate that. Your
application enforces complex rules restricting state changes; pull this
out into a separate model or simple framework that lets you declare
the rules. With each such step, not only is the new module clean, but
also the part left behind is smaller and clearer. Part of what's left is
written in a declarative style, a declaration in terms of the special
math or validation framework, or whatever form the subdomain
takes.

It is more useful to make a big impact on one area, making a part of
the design really supple, than to spread your efforts thin. Chapter 15
discusses in more depth how to choose and manage subdomains.

Draw on Established Formalisms, When You
Can



Creating a tight conceptual framework from scratch is something you
can't do every day. Sometimes you discover and refine one of these
over the course of the life of a project. But you can often use and
adapt conceptual systems that are long established in your domain
or others, some of which have been refined and distilled over
centuries. Many business applications involve accounting, for
example. Accounting defines a well-developed set of ENTITIES and
rules that make for an easy adaptation to a deep model and a supple
design.

There are many such formalized conceptual frameworks, but my
personal favorite is math. It is surprising how useful it can be to pull
out some twist on basic arithmetic. Many domains include math
somewhere. Look for it. Dig it out. Specialized math is clean,
combinable by clear rules, and people find it easy to understand.
One example from my past is "Shares Math," which will end this
chapter.

Example
 Integrating the Patterns: Shares Math

Chapter 8 told the story of a model breakthrough on a project to build
a syndicated loan system. Now this example will go into detail,
focusing on just one feature of a design comparable to the one on
that project.

One requirement of that application was that when the borrower
makes a principal payment, the money is, by default, prorated
according to the lenders' shares in the loan.

Initial Design for Payment Distribution

As we refactor it, this code will get easier to understand, so don't get
stuck on this version.



 

Figure 10.16.

 
public class Loan { 
   private Map shares; 
 
   //Accessors, constructors, and very simple 
methods are excluded 
 
   public Map distributePrincipalPayment(double 
paymentAmount) { 
      Map paymentShares = new HashMap(); 
      Map loanShares = getShares(); 
      double total = getAmount(); 
      Iterator it = 
loanShares.keySet().iterator(); 
      while(it.hasNext()) { 
         Object owner = it.next(); 
         double initialLoanShareAmount = 
getShareAmount(owner); 
         double paymentShareAmount = 
            initialLoanShareAmount / total * 
paymentAmount; 
         Share paymentShare = 
            new Share(owner, paymentShareAmount); 
         paymentShares.put(owner, paymentShare); 
 



         double newLoanShareAmount = 
            initialLoanShareAmount - 
paymentShareAmount; 
         Share newLoanShare = 
            new Share(owner, newLoanShareAmount); 
         loanShares.put(owner, newLoanShare); 
      } 
      return paymentShares; 
   } 
 
   public double getAmount() { 
      Map loanShares = getShares(); 
      double total = 0.0; 
      Iterator it = 
loanShares.keySet().iterator(); 
      while(it.hasNext()) { 
         Share loanShare = (Share) 
loanShares.get(it.next()); 
         total = total + loanShare.getAmount(); 
      } 
      return total; 
   } 
} 

Separating Commands and SIDE-EFFECT-FREE
FUNCTIONS

This design already has INTENTION-REVEALING INTERFACES. But the
distributePaymentPrincipal() method does a dangerous
thing: It calculates the shares for distribution and also modifies the
Loan. Let's refactor to separate the query from the modifier.

 

Figure 10.17.



 
public void applyPrincipalPaymentShares(Map 
paymentShares) { 
   Map loanShares = getShares(); 
   Iterator it = 
paymentShares.keySet().iterator(); 
   while(it.hasNext()) { 
      Object lender = it.next(); 
      Share paymentShare = (Share) 
paymentShares.get(lender); 
      Share loanShare = (Share) 
loanShares.get(lender); 
      double newLoanShareAmount = 
loanShare.getAmount() - 
         paymentShare.getAmount(); 
      Share newLoanShare = new Share(lender, 
newLoanShareAmount); 
      loanShares.put(lender, newLoanShare); 
   } 
} 
 
public Map calculatePrincipalPaymentShares(double 
paymentAmount) { 
   Map paymentShares = new HashMap(); 
   Map loanShares = getShares(); 
   double total = getAmount(); 
   Iterator it = loanShares.keySet().iterator(); 
   while(it.hasNext()) { 
      Object lender = it.next(); 
      Share loanShare = (Share) 
loanShares.get(lender); 



      double paymentShareAmount = 
         loanShare.getAmount() / total * 
paymentAmount; 
      Share paymentShare = new Share(lender, 
paymentShareAmount); 
      paymentShares.put(lender, paymentShare); 
   } 
   return paymentShares; 
} 

Client code now looks like this:

Map distribution = 
   
aLoan.calculatePrincipalPaymentShares(paymentAmoun
t); 
aLoan.applyPrincipalPaymentShares(distribution); 

Not too bad. The FUNCTIONS have encapsulated a lot of complexity
behind INTENTION-REVEALING INTERFACES. But the code does begin to
multiply some when we add applyDrawdown(),
calculateFeePaymentShares(), and so on. Each extension
complicates the code and weighs it down. This might be a point
where the granularity is too coarse. The conventional approach
would be to break the calculation methods down into subroutines.
That could well be a good step along the way, but we ultimately want
to see the underlying conceptual boundaries and deepen the model.
The elements of a design with such a CONCEPT-CONTOURING grain
could be combined to produce the needed variations.

Making an Implicit Concept Explicit

There are enough pointers now to start probing for that new model.
The Share objects are passive in this implementation, and they are
being manipulated in complex, low-level ways. This is because most
of the rules and calculations about shares don't apply to single



shares, but to groups of them. There is a missing concept: shares
are related to each other as parts making up a whole. Making this
concept explicit will let us express those rules and calculations more
succinctly.

 

Figure 10.18.

 
The Share Pie represents the total distribution of a specific Loan. It
is an ENTITY whose identity is local within the AGGREGATE of the Loan.
The actual distribution calculations can be delegated to the Share
Pie.

 

Figure 10.19.



 
public class Loan { 
   private SharePie shares; 
 
   //Accessors, constructors, and straightforward 
methods 
   //are omitted 
 
   public Map 
calculatePrincipalPaymentDistribution( 
                                         double 
paymentAmount) { 
      return getShares().prorated(paymentAmount); 
   } 
   public void applyPrincipalPayment(Map 
paymentShares) { 
      shares.decrease(paymentShares); 
   } 
} 

The Loan is simplified, and the Share calculations are centralized in
a VALUE OBJECT focused on that responsibility. Still, the calculations
haven't really become more versatile or easier to use.



Share Pie Becomes a VALUE OBJECT: Cascade of
Insights

Often, the hands-on experience of implementing a new design will
trigger a new insight into the model itself. In this case, the tight
coupling of the Loan and Share Pie seems to be obscuring the
relationship of the Share Pie and the Shares. What would happen if
we made Share Pie a VALUE OBJECT?

This would mean that increase(Map) and decrease(Map) would
not be allowed, because the Share Pie would have to be immutable.
To change the Share Pie's value, the whole Pie would have to be
replaced. So you could have operations such as addShares(Map)
that would return a whole new, larger Share Pie.

Let's go all the way to CLOSURE OF OPERATIONS. Instead of "increasing"
a Share Pie or adding Shares to it, just add two Share Pies
together: the result is the new, larger Share Pie.

We can partially close the prorate() operation over Share Pie just
by changing the return type. Renaming it to prorated()
emphasizes its lack of side effects. "Shares Math" starts to take
shape, initially with four operations.

 

Figure 10.20.



 
We can make some well-defined ASSERTIONS about our new VALUE

OBJECTS, the Share Pies. Each method means something.

public class SharePie { 
   private Map shares = new HashMap(); 
 
   //Accessors and other straightforward methods 
are omitted 
 
 
   public double getAmount() { 
      double total = 0.0; 
      Iterator it = shares.keySet().iterator(); 
      while(it.hasNext()) { The whole is equal to 
the sum of its parts. 
         Share loanShare = getShare(it.next()); 
         total = total + loanShare.getAmount(); 
      } 
      return total; 
} 
 
public SharePie minus(SharePie otherShares) { 
   SharePie result = new SharePie(); 
   Set owners = new HashSet(); 



   owners.addAll(getOwners()); 
   owners.addAll(otherShares.getOwners()); The 
difference between two Pies is the difference 
between each owner's share. 
   Iterator it = owners.iterator(); 
   while(it.hasNext()) { 
      Object owner = it.next(); 
      double resultShareAmount = 
getShareAmount(owner) � 
            otherShares.getShareAmount(owner); 
      result.add(owner, resultShareAmount); 
   } 
   return result; 
} 
 
public SharePie plus(SharePie otherShares) { The 
combination of two Pies is the 
 combination of each owner's share. 
   //Similar to implementation of minus() 
} 
 
public SharePie prorated(double amountToProrate) { 
   SharePie proration = new SharePie(); 
   double basis = getAmount(); An amount can be 
divided proportionately among all 
 shareholders. 
   Iterator it = shares.keySet().iterator(); 
   while(it.hasNext()) { 
      Object owner = it.next(); 
      Share share = getShare(owner); 
         double proratedShareAmount = 
            share.getAmount() / basis * 
amountToProrate; 
         proration.add(owner, 
proratedShareAmount); 
      } 
      return proration; 



   } 
 
} 

The Suppleness of the New Design

At this point, the methods in the all-important Loan class could be as
simple as this:

public class Loan { 
   private SharePie shares; 
 
   //Accessors, constructors, and straightforward 
methods 
   //are omitted 
 
   public SharePie 
calculatePrincipalPaymentDistribution( 
                                        double 
paymentAmount) { 
      return shares.prorated(paymentAmount); 
   } 
 
   public void applyPrincipalPayment(SharePie 
paymentShares) { 
      setShares(shares.minus(paymentShares)); 
   } 

Each of these short methods states its meaning. Applying a principal
payment means that you subtract the payment from the loan, share
by share. Distributing a principal payment is done by dividing the
amount pro rata among the shareholders. The design of the Share
Pie has allowed us to use a declarative style in the Loan code,
producing code that begins to read like a conceptual definition of the
business transaction, rather than a calculation.



Other transaction types (too complicated to list before) can be
declared easily now. For example, loan drawdowns are divided
among lenders based on their shares of the Facility. The new draw-
down is added to the outstanding Loan. In our new domain
language:

public class Facility { 
   private SharePie shares; 
   . . . 
   public SharePie 
calculateDrawdownDefaultDistribution( 
                                         double 
drawdownAmount) { 
      return shares.prorated(drawdownAmount); 
   } 
} 
 
public class Loan { 
   . . . 
   public void applyDrawdown(SharePie 
drawdownShares) { 
      setShares(shares.plus(drawdownShares)); 
   } 
} 

To see the deviation of each lender from its agreed contribution, take
the theoretical distribution of the outstanding Loan amount and
subtract it from the Loan's actual shares:

SharePie originalAgreement = 
   
aFacility.getShares().prorated(aLoan.getAmount()); 
SharePie actual = aLoan.getShares(); 
SharePie deviation = 
actual.minus(originalAgreement); 

Certain characteristics of the Share Pie design make for this easy
recombination and communication in the code.



Complex logic is encapsulated in specialized VALUE OBJECTS with
SIDE-EFFECT-FREE FUNCTIONS. Most complex logic has been
encapsulated in these immutable objects. Because Share Pies
are VALUE OBJECTS, the math operations can create new
instances, which we can use freely to replace outdated
instances.

None of the Share Pie methods causes any change to any
existing object. This allows us to use plus(), minus(), and
pro-rated() freely in intermediate calculations, combining
them, expecting them to do what their names suggest, and
nothing more. It also allows us to build analytical features based
on the same methods. (Before, they could be called only when
an actual distribution was made, because the data would
change after each call.)

State-modifying operations are simple and characterized with
ASSERTIONS. The high-level abstractions of Shares Math allow
invariants of transactions to be written concisely in a declarative
style. For example, the deviation is the actual pie minus the
Loan amount prorated based on the Facility's Share Pie.

Model concepts are decoupled; operations entangle a minimum
of other types. Some methods on Share Pie exhibit CLOSURE OF

OPERATIONS (the methods to add or subtract are closed under
Share Pies). Others take simple amounts as arguments or
return values; they are not closed, but they add little to the
conceptual load. The Share Pie interacts closely with only one
other class, Share. As a result, the Share Pie is self-contained,
easily understood, easily tested, and easily combined to form
declarative transactions. These properties were inherited from
the math formalism.

Familiar formalism makes the protocol easy to grasp. A wholly
original protocol for manipulating shares could have been
devised based on financial terminology. In principle, it could



have been made supple. But it would have had two
disadvantages. First, it would have to be invented, a difficult and
uncertain task. Second, it would have to be learned by each
person who dealt with it. People who see Shares Math
recognize a system they already know, and because the design
has been kept carefully consistent with the rules of arithmetic,
those people are not misled.

Pulling out the part of the problem that corresponded to the
formalism of math, we arrived at a supple design for Shares that
further distills the core Loan and Facility methods. (See Chapter 15
for discussion of the CORE DOMAIN.)

Supple design has a profound effect on the ability of software to
cope with change and complexity. As the examples in this chapter
have shown, it often hinges on quite detailed modeling and design
decisions. The impact can go beyond a specific modeling and design
problem. Chapter 15 will discuss the strategic value of supple design
as one of several tools for distilling a domain model to make large
and complex projects more tractable.



Chapter Eleven. Applying Analysis
Patterns
Deep models and supple designs don't come easily. Progress comes
from lots of learning about the domain, lots of talking, and lots of trial
and error. Sometimes, though, we can get a leg up.

When an experienced developer looking at a domain problem sees a
familiar sort of responsibility or a familiar web of relationships, he or
she can draw on the memory of how the problem was solved before.
What models were tried and which worked? What difficulties arose in
implementation and how were they resolved? The trial and error of
that earlier experience is suddenly relevant to the new situation.
Some of these patterns have been documented and shared, allowing
the rest of us to draw on the accumulated experience.

In contrast to the fundamental building block patterns presented in
Part II, and the supple design principles of Chapter 10, these
patterns are higher level and more specialized, involving the use of a
few objects to represent some concept. They let us cut through
expensive trial and error to start with a model that is already
expressive and implementable and addresses subtleties that might
be costly to learn. From that starting point, we refactor and
experiment. These are not outofthe-box solutions.

In Analysis Patterns: Reusable Object Models, Martin Fowler defined
his patterns this way:

Analysis patterns are groups of concepts that represent a
common construction in business modeling. It may be relevant
to only one domain or it may span many domains. [Fowler
1997, p. 8]



The analysis patterns Fowler presents arose from experience in the
field, and so they are practical, in the right situation. Such patterns
provide someone facing a challenging domain with very valuable
starting points for their iterative development process. The name
emphasizes their conceptual nature. Analysis patterns are not
technological solutions; they are guides to help you work out a model
in a particular domain.

What the name unfortunately does not convey is that there is
significant discussion of implementation in these patterns, including
some code. Fowler understands the pitfalls of analysis without
thought for practical design. Here is an interesting example where he
is looking even beyond deployment, to the implications of specific
model choices on the long-term maintenance of the system in the
field:

When we build a new [accounting] practice, we create a
network of new instances of the posting rule. We can do this
without any recompilation or rebuilding of the system, while it
is still up and running. There will be unavoidable occasions
when we need a new subtype of posting rule, but these will be
rare. [p. 151]

On a mature project, model choices are often informed by
experience with the application. Multiple implementations of various
components will have been tried. Some of these will have been
carried into production and even will have faced the maintenance
phase. Many problems can be avoided when such experience is
available. Analysis patterns at their best can carry that kind of
experience from other projects, combining model insights with
extensive discussions of design directions and implementation
consequences. To discuss model ideas out of that context makes
them harder to apply and risks opening the deadly divide between
analysis and design, which is antithetical to MODEL-DRIVEN DESIGN.

The principle and application of analysis patterns can be explained
better by example than through abstract description. In this chapter, I



will give two examples of developers making use of a small,
representative sample of models from the chapter "Inventory and
Accounting" in Fowler 1997. The analysis patterns will be
summarized just enough to support the examples. This is obviously
not an attempt to catalog patterns of this kind or even to fully explain
the sample patterns. The point is to illustrate their integration into the
domain-driven design process.



Example
 Earning Interest with Accounts

Chapter 10 showed various possible ways that a developer might
search for a deeper model for a particular specialty accounting
application. Here is yet another scenario. This time, the developers
will mine Fowler's Analysis Patterns book for useful ideas.

To review, an application for tracking loans and other interest-bearing
assets calculates the interest and fees generated and tracks
payments from the borrower. A nightly batch process takes those
figures and passes them to the legacy accounting system, indicating
the specific ledger each amount should be posted to. The design
works, but it is awkward to use, tricky to change, and does not
communicate well.

Figure 11.1. The initial class diagram

The developer decides to read Chapter 6 in Analysis Patterns,
"Inventory and Accounting." Here is a summary of the part she found
most relevant.

Accounting Models in Analysis Patterns



Business applications of all sorts track accounts, which hold
things of value, typically money. In a lot of applications, it isn't
enough to keep track of the amount in an account. It is
essential to account for and control each change to that
amount. That is the motivation for the most basic of the
accounting models.

Figure 11.2. A basic accounting model

Value can be added by inserting an Entry. Value can be
removed by inserting a negative Entry. Entries are never
removed, so the whole history is retained. The balance is the
combined effect of all Entries. This balance could be
computed on demand or cached, an implementation decision
that is encapsulated by the Account interface.

A basic principle of accounting is conservation. Money doesn't
appear out of nowhere, nor does it disappear without a trace.
It is only moved from one Account to another.

Figure 11.3. A transaction model



This is the well-established concept of double-entry book-
keeping: Every credit has a matching debit. Of course, like
other conservation principles, it applies only to a closed
system, one that includes all sources and sinks. Many simple
applications do not require this rigor.

In his book, Fowler includes more elaborate forms of these
models and considerable discussion of the trade-offs.

This reading gives the developer (Developer 1) several new ideas.
She shows the chapter to a colleague (Developer 2) who has been
working on some of the interest calculation logic with her and who
wrote the nightly batch program. Together, they rough out a change
to their model, incorporating some of the model elements they've
read about.

Figure 11.4. The new model proposal



Then they pull in their domain expert (Expert) for a discussion of
their new model ideas.

Developer 1: With this new model, we make an Entry into the
Interest Account for the interest earned, rather than just adjusting
the interestDueAmount. Then, another Entry for the payment
balances it out.

Expert: So now we'd be able to see a history of all the interest
accruals as well as the payment history? That's something we've
been wanting.

Developer 2: I'm not sure we've used "Transaction" quite right. The
definition talks about moving money from one Account to another,
not two entries that balance each other in the same Account.

Developer 1: That's a good point. I was also worried that the book
seems to make quite a point about the transaction being created all
at once. The interest payments can be several days late.

Expert: Those payments aren't necessarily late. There is a lot of
flexibility in when they pay.

Developer 1: So this may be a blind alley. I was thinking we might
have identified some implicit concepts. Having the Interest
Calculator create Entry objects does seem to communicate better.
And Transaction seemed to neatly tie together the calculated
interest with the payment.

Expert: Why do we need to tie together the accrual to the payment?
They are separate postings in the accounting system. The balance
on the Account is the main thing. Along with the individual Entries,
we really have what we need.

Developer 2: You mean you don't track whether they've made the
interest payment?



Expert: Well, of course we do. But it isn't as simple as this one-
accrual/one-payment scheme of yours.

Developer 2: It could actually simplify a lot of things to stop worrying
about that connection.

Developer 1: OK, how about this? [Takes copy of old class diagram
and starts sketching modifications] By the way, you used the word
accruals a few times. Could you clarify what it means?

Expert: Sure. An accrual is just when you account for an expense or
income at the time it is incurred, never mind when money actually
changes hands. So, we accrue interest every day, but at the end of
the month (for example) we receive a payment against it.

Developer 1: Yes, we really needed a word like that. OK, how does
this look?

Figure 11.5. Original class diagram, accruals separated
from payment

Developer 1: Now we can get rid of all the complications that were
in the calculator from relating payments, and we've introduced the
term accruals, which reveals the intent better.

Expert: So we're not going to have the Account object? I was
looking forward to being able to see everything together there, with
the accruals and the payments and a balance.



Developer 1: Really?! Well in that case, maybe this would work.
[Takes other diagram and sketches]

Figure 11.6. The account-based diagram, without
Transaction

Expert: That actually looks pretty good!

Developer 2: The batch script will be easy to change to use these
new objects.

Developer 1: It will take a few days to get the new Interest
Calculator working. There are quite a few tests to change. But the
test will read clearer afterward.

The two developers went off and started refactoring based on the
new model. As they got their hands on the code, tightening up the
design, they had insights that refined the model.

Entries were subclassed into Payment and Accrual because closer
inspection revealed slightly different responsibilities in the application
for these, and because they were both important domain concepts.
On the other hand, there was no conceptual or behavioral distinction
between Entries based on whether they resulted from fees or
interest. They simply appeared in the appropriate Account.



Yet, unfortunately, the developers found they had to give up this last
abstraction for the implementation. Data was stored in relational
tables, and the project standard was to make those tables
interpretable without running the program. This meant keeping fee
entries and interest entries in separate tables. The only way for
developers to do this, using their particular object-relational mapping
framework, was to make concrete subclasses (Fee Payments,
Interest Payments, and so on). With different infrastructure, they
might have avoided this clumsy expansion.

I threw this twist into this largely fictitious story to represent the rub of
reality that we encounter all the time. We have to make calculated
compromises and then move on without letting it throw us off our
MODEL-DRIVEN DESIGN.

Figure 11.7. The class diagram after the implementation

The new design was much easier to analyze and test because the
most complex functionality is in SIDE-EFFECT-FREE FUNCTIONS. The
remaining command has simple code (because it calls various
FUNCTIONS) and is characterized by ASSERTIONS.



Sometimes there are parts of our programs that we don't even
suspect have the potential to benefit from a domain model. They
may have started very simply and evolved mechanistically. They
seem like complicated application code, rather than domain logic.
Analysis patterns can be particularly helpful in showing us these
blind spots.

In the following example, a developer has a new insight into the
black box of the nightly batch, which had not been considered
domain oriented.



Example
 Insight into the Nightly Batch

After a few weeks, the improved Account-based model had started
to settle in. As often happens, the clarity of the new design made
other problems more visible. The developer (Developer 2) who was
adapting the nightly batch to interact with the new design began to
see connections between the behavior of the batch and some of the
concepts in Analysis Patterns. Here is a summary of some of the
concepts he found most relevant.

Posting Rules

Accounting systems often provide multiple views of the same
basic financial information. One account might track income
while another might track an estimated tax on that income. If
the system is expected to automatically update the estimated
tax account, the implementation of those two accounts
becomes very intertwined. There are systems in which the
majority of account entries result from such rules; in such a
system, the dependency logic gets to be a mess. Even in
more modest systems, such cross-posting can be tricky. The
first step toward taming the tangle of dependencies is to make
these rules explicit by introducing a new object.

Figure 11.8. The class diagram of the basic posting
rule



A posting rule is triggered by a new Entry in its "input"
account. It then derives a new Entry (based on its own
calculation Method) and inserts the new Entry into its "output"
Account . In a payroll system, an Entry in a salary Account
might trigger a Posting Rule that would calculate a 30 percent
estimated income tax and insert it as an Entry in the tax with-
holding Account.

Executing Posting Rules

The Posting Rule has established the conceptual
dependency between Accounts, but if the pattern stopped
there, it could be difficult to follow. One of the trickiest parts of
dependency designs is the timing and control of updates.
Fowler discusses three options.

1. "Eager firing" is the most obvious, but typically the
least practical. Whenever an Entry is inserted into an
Account, it immediately triggers the Posting Rules
and all updates are made immediately.

"Account-based firing" allows processing to be deferred. At
some point, a message is sent to an Account and it triggers
its Posting Rules to process all Entries inserted since its last
firing.

Finally, "Posting-Rule-based firing" is initiated by an external
agent, which tells the Posting Rule to fire. The Posting Rule
is responsible for looking up all Entries made to its input
Accounts since the last time it fired.

Although firing modes can be mixed in a system, each
particular set of rules needs to have one clearly defined point



of initiation and responsibility for identifying input Account
Entries. The addition of the three firing modes to the
UBIQUITOUS LANGUAGE is as important to the success of the
pattern as the model object definitions themselves. It
eliminates ambiguity and guides decision making directly to a
clearly defined set of choices. These modes identify an easily
overlooked challenge and provide vocabulary to support clear
discussion.

Developer 2 needed a sounding board to discuss his new ideas. He
met up his colleague (Developer 1), the developer who had been
primarily responsible for modeling the accruals.

Developer 2: At some point, the nightly batch started being a place
where we swept stuff under the rug. There is domain logic implicit in
what the script does, and it's been getting more and more
complicated. For a long time I've wanted to do a model-driven design
for the batch, separate out a domain layer, and make the script itself
a simple layer on top of the domain. But I could never figure out what
that domain model would be like. It seemed like maybe it was just
some procedures that didn't really make sense as objects. As I've
been reading the section in Analysis Patterns on Posting Rules, I've
been getting some ideas. Here's what I had in mind. [Hands over a
sketch]

Figure 11.9. A shot at using Posting Rules in the batch



Developer 1: What is this "Posting Service"?

Developer 2: That is a FACADE that exposes the accounting
application's API and presents it as a SERVICE. I actually made that a
while back to simplify the batch code, and it also gave me an
INTENTION-REVEALING INTERFACE for posting to the legacy system.

Developer 1: Interesting. So, which firing style do you plan to use for
these Posting Rules?

Developer 2: I hadn't really gotten that far.

Developer 1: Eager Firing would work for Accruals, since the batch
actually tells the Asset to insert them, but it wouldn't work for
Payments, which get entered during the day.

Developer 2: I don't think we would want to couple the calculation
method that tightly to the batch anyway. If we ever decided to trigger
interest calculations at a different time, it would mess things up. And
it just doesn't seem right, conceptually.

Developer 1: It sounds like Posting-Rule-based firing. The batch
tells each Posting Rule to execute, and the rule goes and looks for
appropriate new Entries and then does its thing. That's pretty much
the way you've drawn it.



Developer 2: So then we avoid creating a lot of dependencies on
the batch design, and the batch keeps control. That sounds right.

Developer 1: I'm still a little vague on the interaction of these objects
with the Accounts and Entries.

Developer 2: You and me both. The examples in the book create a
direct link between the Accounts and the Posting Rules. That is
kind of logical, but I don't think it will work very well for us. We have
to instantiate these objects from data each time, so we would have
to figure out which rule applies in order to associate it. Meanwhile,
the Asset object is the one that knows the content of each Account,
and therefore which rule to apply. Anyway, what about the rest of
this?

Developer 1: I hate to nitpick, but I don't think that we're using
"Method" right. I think the concept is that the Method computes the
amount to be posted�like, say, a 20 percent tax with-holding on
income. But in our case, that's simple: it's always the full amount
being posted. I think the Posting Rule itself is supposed to know
which Account to post to, which corresponds to our "ledger name."

Developer 2: Oh. So if the Posting Rule is responsible for knowing
the correct ledger name, we probably don't need Method at all.

Actually, this whole business of choosing the right ledger name is
getting more and more complicated. It is already a combination of
the type of income (fee or interest) with the "asset class" (a category
the business applies to each Asset). That is one place I'm hoping
this new model will help.

Developer 1: OK, let's focus there. The Posting Rule is responsible
for choosing the Ledger based on attributes of the Account. For
now, we can make it a straightforward way to handle asset class and
the distinction between interest and fees. In the future, you'll have an
OBJECT MODEL you can enhance to handle more complex cases.



Developer 2: I need to think about this some more. Let me mull it
over, and reread the patterns, and then I'll take another stab at it.
Could I talk with you about this again tomorrow afternoon?

Over the next few days, the two developers worked out a model and
refactored the code so that the batch simply iterated through the
Assets, sending a few self-explanatory messages to each and then
committing the database transactions. The complexity was shifted
into the domain layer, where an object model made it both more
explicit and more abstract.

Figure 11.10. The class diagram with Posting Rules

Figure 11.11. Sequence diagram showing rule firing



The developers departed considerably from the details of the models
presented in Analysis Patterns, yet they felt they had preserved the
essence of the concepts. They were a little uncomfortable about
involving the Asset in the selection of the Posting Rule. They went
that way because the Asset had the knowledge of the nature of
each Account (fee or interest) and was also the natural access point
for the script. To have associated the rule object directly with the
Account would have required a collaboration with the Asset object
on each instantiation of the objects (each time the batch was run).
Instead, they let the Asset object look up the two relevant rules
through their SINGLETON access and pass them the appropriate
Account. It seemed to make the code much more direct and so they
made a pragmatic decision.

They both felt that conceptually it would have been better to
associate Posting Rules only with Accounts, while keeping the
Asset focused on its job of generating Accruals. They hoped that
subsequent refactorings and deeper insight would bring them back
to this and show them a way to make this clean division without
losing the obviousness of the code.



Analysis Patterns Are Knowledge to Draw
On

When you are lucky enough to have an analysis pattern, it hardly
ever is the answer to your particular needs. Yet it offers valuable
leads in your investigation, and it provides cleanly abstracted
vocabulary. It should also give you guidance about implementation
consequences that will save you pain down the road.

All this feeds into the dynamo of knowledge crunching and
refactoring toward deeper insight and stimulates development. The
result often resembles the form documented in the analysis pattern,
but adapted to circumstances. Sometimes the result doesn't even
obviously relate to the analysis pattern itself, yet was stimulated by
the insights from the pattern.

There is one kind of change you should avoid. When you use a term
from a well-known analysis pattern, take care to keep the basic
concept it designates intact, however much the superficial form
might change. There are two reasons for this. First, the pattern may
embed understanding that will help you avoid problems. Second,
and more important, your UBIQUITOUS LANGUAGE is enhanced when it
includes terms that are widely understood or at least well explained.
If your model definitions change through the natural evolution of the
model, take the trouble to change the names too.

Quite a lot of object models have been written about, some
specialized for one kind of application in one industry and some quite
general. Most of them provide the seed of an idea, but only a few
have captured the reasoning behind the choices and the
consequences that follow, which are the most useful parts of an
analysis pattern. More of these refined analysis patterns would be
valuable, to help save us from reinventing the wheel again and
again. I'd be surprised ever to see a comprehensive catalog, but



industry-specific catalogs might arise. And patterns for some
domains that cross many applications could be widely shared.

This kind of reapplication of organized knowledge is completely
different from attempts to reuse code through frameworks or
components, except that either could provide the seed of an idea
that is not obvious. A model, even a generalized framework, is a
complete working whole, while an analysis is a kit of model
fragments. Analysis patterns focus on the most critical and difficult
decisions and illuminate alternatives and choices. They anticipate
downstream consequences that are expensive if you have to
discover them for yourself.



Chapter Twelve. Relating Design
Patterns to the Model
The patterns explored in this book so far are intended specifically for
solving problems in a domain model in the context of a MODEL-DRIVEN

DESIGN. Actually, though, most of the patterns published to date are
more technical in focus. What is the difference between a design
pattern and a domain pattern? For starters, the authors of the
seminal book, Design Patterns, had this to say:

Point of view affects one's interpretation of what is and isn't a
pattern. One person's pattern can be another person's
primitive building block. For this book we have concentrated
on patterns at a certain level of abstraction. Design patterns
are not about designs such as linked lists and hash tables that
can be encoded in classes and reused as is. Nor are they
complex, domain-specific designs for an entire application or
subsystem. The design patterns in this book are descriptions
of communicating objects and classes that are customized to
solve a general design problem in a particular context.
[Gamma et al. 1995, p. 3]

Some, not all, of the patterns in Design Patterns can be used as
domain patterns. Doing so requires a shift in emphasis. Design
Patterns presents a catalog of design elements that have solved
problems commonly encountered in a variety of contexts. The
motivations of these patterns and the patterns themselves are
presented in purely technical terms. But a subset of these elements
can be applied in the broader context of domain modeling and
design, because they correspond to general concepts that emerge in
many domains.

In addition to those in Design Patterns, there have been many other
technical design patterns presented over the years. Some of them



correspond to deep concepts that emerge in domains. It would be
nice to draw on this work. To make use of such patterns in domain-
driven design, we have to look at the patterns on two levels
simultaneously. On one level, they are technical design patterns in
the code. On the other level, they are conceptual patterns in the
model.

A sample of specific patterns from Design Patterns will show how a
pattern conceived as a design pattern can be applied in the domain
model, and it will clarify the distinction between a technical design
pattern and a domain pattern. COMPOSITE and STRATEGY demonstrate
how some of the classic design patterns can be applied to domain
problems by thinking about them in a different way. . . .



Strategy (A.K.A.Policy)

Define a family of algorithms, encapsulate each one, and
make them interchangeable. STRATEGY lets the algorithm vary
independently from clients that use it. [Gamma et al. 1995]

Domain models contain processes that are not technically
motivated but actually meaningful in the problem domain. When
alternative processes must be provided, the complexity of
choosing the appropriate process combines with the
complexity of the multiple processes themselves, and things
get out of hand.

When we model processes, we often realize that there is more than
one legitimate way of doing them. As we start to describe these
options, our definition of the process becomes clumsy and
complicated. The actual behavioral alternatives we are choosing
between are obscured as they are mixed in with the rest of the
behavior.

We would like to separate this variation from the main concept of the
process. Then we would be able to see both the main process and
the options more clearly. The STRATEGY pattern, already well



established in the software design community, addresses this very
issue, though the focus is technical. Here it is being applied as a
concept in a model and reflected in the code implementation of that
model. There is the same need to decouple the highly variable part
of the process from the more stable part.

Therefore:

Factor the varying part of a process into a separate "strategy"
object in the model. Factor apart a rule and the behavior it
governs. Implement the rule or substitutable process following
the STRATEGY design pattern. Multiple versions of the strategy
object represent different ways the process can be done.

Whereas the conventional view of STRATEGY as a design pattern
focuses on the ability to substitute different algorithms, its use as a
domain pattern focuses on its ability to express a concept, usually a
process or a policy rule.

Example
 Route-Finding Policies

A Route Specification is being passed to a Routing Service,
whose job is to construct a detailed Itinerary that satisfies the
SPECIFICATION. This SERVICE is an optimization engine that can be
tuned to find either the fastest route or the cheapest one.

Figure 12.1. A SERVICE interface with options will need
conditional logic.



This setup looks OK, but a detailed look at the routing code would
reveal conditionals in every computation, making the decision
between fastest or cheapest appear all over the place. More trouble
will come when new criteria are added to make more subtle choices
between routes.

One approach is to separate those tuning parameters into
STRATEGIES. Then they can be represented explicitly, passed into the
Routing Service as a parameter.

The Routing Service now handles all requests in the same,
unconditional way, looking for a sequence of Legs with a low
magnitude, as computed by the Leg Magnitude Policy.

This design has the advantages that motivate the STRATEGY pattern in
Design Patterns. On the level of application versatility and flexibility,
the behavior of the Routing Service can now be controlled and
extended by installing an appropriate Leg Magnitude Policy. The
STRATEGIES illustrated in Figure 12.2 (fastest or cheapest) are only the
most obvious ones. Combinations that balance speed and cost are
likely. There may be other factors altogether, such as a bias toward
booking cargo on the company's own transports rather than
subcontracting to carry them on the transports of other shipping
companies. These modifications could have been made without
resorting to STRATEGIES, but the logic would have wound through the
internals of the Routing Service and bloated its interface. The
decoupling does make it clear and easily testable.



Figure 12.2. Options determined by choice of STRATEGY
(POLICY) passed as argument

A fundamentally important rule in the domain, the basis of choosing
one Leg over another when building an Itinerary, is now explicit and
distinct. It conveys the knowledge that a specific attribute (potentially
derived) of an individual leg, boiled down to a single number, is the
basis for routing. This makes possible a simple statement in the
language of the domain that defines the Routing Service's
behavior: The Routing Service chooses an Itinerary with a
minimum total magnitude of the Legs based on the chosen
STRATEGY.

Note: This discussion implies that the Routing Service is actually
evaluating Legs as it searches for an Itinerary. This approach is
conceptually straightforward, and it could make a reasonable
prototype implementation, but it is probably unacceptably inefficient.
This application will be taken up again in Chapter 14, "Maintaining
Model Integrity," where the same interface will be used with a
completely different implementation of the Routing Service.

  



When we use the technical design pattern in the domain layer, we
have to add an additional motivation, another layer of meaning.
When the STRATEGY corresponds to an actual business strategy or
policy, the pattern becomes more than just a useful implementation
technique (though that too is valuable as far as it goes).

The consequences of the design pattern fully apply. For example, in
Design Patterns, Gamma et al. point out that clients must be aware
of different STRATEGIES, which is also a modeling concern. A concern
purely of implementation is that STRATEGIES can increase the number
of objects in the application. If that is a problem, the overhead can be
reduced by implementing STRATEGIES as stateless objects that
contexts can share. The extensive discussion of implementation
approaches in Design Patterns all applies here. This is because we
are still using a STRATEGY. Our motivations are partially different,
which will affect some choices, but the experience embedded in the
design pattern is at our disposal.



Composite

Compose objects into tree structures to represent part-whole
hierarchies. COMPOSITE lets clients treat individual objects and
compositions of objects uniformly. [Gamma et al. 1995]

We often encounter, while modeling complex domains, an important
object that is composed of parts, which are themselves made up of
parts, which are made up of parts�occasionally even nesting to
arbitrary depth. In some domains, each of these levels is
conceptually distinct, but in other cases, there is a sense in which
the parts are the same kind of thing as the whole, only smaller.

When the relatedness of nested containers is not reflected in
the model, common behavior has to be duplicated at each level
of the hierarchy, and nesting is rigid (for example, containers
can't usually contain other containers at their own level, and the
number of levels is fixed). Clients must deal with different levels
of the hierarchy through different interfaces, even though there
may be no conceptual difference they care about. Recursion
through the hierarchy to produce aggregated information is
very complicated.



When applying any design pattern in the domain, the first concern
should be whether the pattern idea really is a good fit for the domain
concept. It might be convenient to move recursively through some
associated objects, but is there a true whole-part hierarchy? Have
you found an abstraction under which all the parts truly are the same
conceptual type? If you have, COMPOSITE will make those aspects of
the model clearer, while allowing you to tap into the carefully
thought-out design and implementation considerations of the design
pattern.

Therefore:

Define an abstract type that encompasses all members of the
COMPOSITE. Methods that return information are implemented on
containers to return aggregated information about their
contents. "Leaf" nodes implement those methods based on
their own values. Clients deal with the abstract type and have
no need to distinguish leaves from containers.

This is a relatively obvious pattern on the structural level, but
designers often do not push themselves to flesh out the operational
level of the pattern. The COMPOSITE offers the same behavior at every
structural level, and meaningful questions can be asked of small or
large parts that transparently reflect their makeup. That rigorous
symmetry is the key to the power of the pattern.

Example
 Shipment Routes Made of Routes

A complete cargo shipment route is complicated. First the container
must be trucked to a railhead, then carried to a port, then transported
on a ship to another port, possibly transferred to other ships, and
finally transported by ground on the other end.

Figure 12.3. A schematic of a "route" made up of "legs"



An application development team has created an object model to
express these arbitrarily long strings of legs that assemble into a
route.

Figure 12.4. A class diagram of a Route made up of Legs



Using this model, the developers are able to create Route objects
based on booking requests. They are able to process the Legs into
the operational plan for the step-by-step handling of the cargo. Then
they discover something.

The developers had always thought of a route as an arbitrary, un-
differentiated string of legs.

Figure 12.5. The developers' conception of a route

It turns out the domain experts see the route as a sequence of five
logical segments.

Figure 12.6. The business experts' conception of a route

Among other things, these subroutes may be planned at different
times by different people, so they have to be viewed as distinct. And
on closer inspection, the "door legs" are quite different from the other
legs, involving locally hired trucks or even customer haulage, in
contrast to the elaborately scheduled rail and ship transports.

An object model reflecting all these distinctions starts to get
complicated.



Figure 12.7. The elaborated class diagram of Route

Structurally the model isn't so bad, but the uniformity of processing
the operational plan is lost, so the code, or even a description of
behavior, becomes much more complicated. Other complications
begin to surface, too. Any traversal of a route involves multiple
collections of different types of objects.

Enter COMPOSITE. It would be nice, for certain clients, to treat the
different levels in this construct uniformly, as routes made up of
routes. Conceptually this view is sound. Every level of Route is a
movement of a container from one point to another, all the way down
to an individual leg. (See Figure 12.8.)

Figure 12.8. A class diagram using COMPOSITE



Now, the static class diagram does not tell us as much about how
door legs and other segments fit together as the previous one did.
But the model is more than a static class diagram. We'll convey
assembly information through other diagrams (see Figure 12.9) and
through the (now much simpler) code. This model captures the deep
relatedness of all these different kinds of "Route ." Generating the
operational plan is simple again, as are other route-traversing
operations.

Figure 12.9. Instances representing a complete Route



With a route made of other routes, pieced together end to end to get
from one place to another, you can have route implementations of
varying detail. You can chop off the end of a route and splice on a
new ending, you can have arbitrary nesting of detail, and you can
exploit all sorts of possibly useful options.

Of course, we don't yet need such options. And before we needed
those route segments and distinct door legs, we were doing just fine
without COMPOSITE. A design pattern should be applied only when it is
needed.

  



Why Not FLYWEIGHT?

Because I referred to the FLYWEIGHT pattern earlier (in Chapter 5),
you might have assumed that it is an example of a pattern to be
applied to domain models. In fact, FLYWEIGHT is a good example of a
design pattern that has no correspondence to the domain model.

When a limited set of VALUE OBJECTS is used many times (as in the
example of electrical outlets in a house plan), it may make sense to
implement them as FLYWEIGHTS. This is an implementation option
available for VALUE OBJECTS and not for ENTITIES. Contrast this with
COMPOSITE, in which conceptual objects are composed of other
conceptual objects. In that case, the pattern applies to both model
and implementation, which is an essential trait of a domain pattern.

I'm not going to try to compile a list of the design patterns that can be
used as domain patterns. Although I can't think of an example of
using an interpreter as a domain pattern, I'm not prepared to say that
there is no conception of any domain that would fit. The only
requirement is that the pattern should say something about the
conceptual domain, not just be a technical solution to a technical
problem.



Chapter Thirteen. Refactoring Toward
Deeper Insight
Refactoring toward deeper insight is a multifaceted process. It will be
helpful to stop for a moment to pull together the major points. There
are three things you have to focus on.

1. Live in the domain.

Keep looking at things a different way.

Maintain an unbroken dialog with domain experts.

Seeking insight into the domain creates a broader context for the
process of refactoring.

The classic refactoring scenario involves a developer or two sitting at
the keyboard, recognizing that some code can be improved, and
then changing it on the fly (with unit tests to verify their results, of
course). This practice should happen all the time, but it isn't the
whole story.

The previous five chapters present an expanded view of refactoring,
superimposed on the conventional micro-refactoring approach.



Initiation

Refactoring toward deeper insight can begin in many ways. It may
be a response to a problem in the code�some complexity or
awkwardness. Rather than apply a standard transformation of the
code, the developers sense that the root of the problem is in the
domain model. Perhaps a concept is missing. Maybe some
relationship is wrong.

In a departure from the conventional view of refactoring, this same
realization could come when the code looks tidy, if the language of
the model seems disconnected from the domain experts, or if new
requirements are not fitting in naturally. Refactoring might result from
learning, as a developer who has gained deeper understanding sees
an opportunity for a more lucid or useful model.

Seeing the trouble spot is often the hardest and most uncertain part.
After that, developers can systematically seek out the elements of a
new model. They can brainstorm with colleagues and domain
experts. They can draw on systematized knowledge written as
analysis patterns or design patterns.



Exploration Teams

Whatever the source of dissatisfaction, the next step is to seek a
refinement that will make the model communicate clearly and
naturally. This might require only some modest change that is
immediately evident and can be accomplished in a few hours. In that
case, the change resembles traditional refactoring. But the search
for a new model may well call for more time and the involvement of
more people.

The initiators of the change pick a couple of other developers who
are good at thinking through that kind of problem, who know that
area of the domain, or who have strong modeling skills. If there are
subtleties, they make sure a domain expert is involved. This group of
four or five people goes to a conference room or a coffee shop and
brainstorms for half an hour to an hour and a half. They sketch UML
diagrams; they try walking through scenarios using the objects. They
make sure the subject matter expert understands the model and
finds it useful. When they find something they are happy with, they
go back and code it. Or they decide to mull it over for a few days,
and they go back and work on something else. A couple of days
later, the group reconvenes and goes through the exercise again.
This time they are more confident, having slept on their earlier
thoughts, and they reach some conclusions. They go back to their
computers and code the new design.

There are a few keys to keeping this process productive.

Self-determination. A small team can be assembled on the fly to
explore a design problem. The team can operate for a few days
and then disband. There is no need for long-term, elaborate
organizational structures.



Scope and sleep. Two or three short meetings spaced out over
a few days should produce a design worth trying. Dragging it out
doesn't help. If you get stuck, you may be taking on too much at
once. Pick a smaller aspect of the design and focus on that.

Exercising the UBIQUITOUS LANGUAGE. Involving the other team
members�particularly the subject matter expert�in the brain-
storming session creates an opportunity to exercise and refine
the UBIQUITOUS LANGUAGE. The end result of the effort is a
refinement of that LANGUAGE which the original developer(s) will
take back and formalize in code.

Earlier chapters in this book have presented several dialogs in which
developers and domain experts probe for better models. A full-blown
brainstorming session is dynamic, unstructured, and in-credibly
productive.



Prior Art

It isn't always necessary to reinvent the wheel. The process of brain-
storming for missing concepts and better models has a great
capacity to absorb ideas from any source, combine them with local
knowledge, and continue crunching to find answers to the current
situation.

You can get ideas from books and other sources of knowledge about
the domain itself. Although the people in the field may not have
created a model suitable for running software, they may well have
organized the concepts and found some useful abstractions.
Feeding the knowledge-crunching process this way leads to richer,
quicker results that also will probably seem more familiar to domain
experts.

Sometimes you can draw on the experience of others in the form of
analysis patterns. This kind of input has some of the effect of reading
about the domain, but in this case it is geared specifically toward
software development, and it should be based directly on experience
implementing software in your domain. Analysis patterns can give
you subtle model concepts and help you avoid lots of mistakes. But
they don't give you a cookbook recipe. They feed the knowledge-
crunching process.

As the pieces are fit together, model concerns and design concerns
must be dealt with in parallel. Again, it doesn't always mean
inventing everything from scratch. Design patterns can often be
employed in the domain layer when they fit both an implementation
need and the model concept.

Likewise, when a common formalism, such as arithmetic or predicate
logic, fits some part of a domain, you can factor that part out and
adapt the rules of the formal system. This provides very tight and
readily understood models.





A Design for Developers

Software isn't just for users. It's also for developers. Developers
have to integrate code with other parts of the system. In an iterative
process, developers change the code again and again. Refactoring
toward deeper insight both leads to and benefits from a supple
design.

A supple design communicates its intent. The design makes it easy
to anticipate the effect of running code�and therefore it easy to
anticipate the consequences of changing it. A supple design helps
limit mental overload, primarily by reducing dependencies and side
effects. It is based on a deep model of the domain that is fine-
grained only where most critical to the users. This makes for
flexibility where change is most common, and simplicity elsewhere.



Timing

If you wait until you can make a complete justification for a change,
you've waited too long. Your project is already incurring heavy costs,
and the postponed changes will be harder to make because the
target code will have been more elaborated and more embedded in
other code.

Continuous refactoring has come to be considered a "best practice,"
but most project teams are still too cautious about it. They see the
risk of changing code and the cost of developer time to make a
change; but what's harder to see is the risk of keeping an awkward
design and the cost of working around that design. Developers who
want to refactor are often asked to justify the decision. Although this
seems reasonable, it makes an already difficult thing impossibly
difficult, and tends to squelch refactoring (or drive it underground).
Software development is not such a predictable process that the
benefits of a change or the costs of not making a change can be
accurately calculated.

Refactoring toward deeper insight needs to become part of the
ongoing exploration of the subject matter of the domain, the
education of the developers, and the meeting of the minds of
developers and domain experts. Therefore, refactor when

The design does not express the team's current understanding
of the domain;

Important concepts are implicit in the design (and you see a way
to make them explicit); or

You see an opportunity to make some important part of the
design suppler.



This aggressive attitude does not justify any change at any time.
Don't refactor the day before a release. Don't introduce "supple
designs" that are just demonstrations of technical virtuosity but fail to
cut to the core of the domain. Don't introduce a "deeper model" that
you couldn't convince a domain expert to use, no matter how elegant
it seems. Don't be absolute about things, but push beyond the
comfort zone in the direction of favoring refactoring.



Crisis as Opportunity

For over a century after Charles Darwin introduced it, the standard
model of evolution was that species changed gradually, somewhat
steadily, over time. Suddenly, in the 1970s, this model was displaced
by the "punctuated equilibrium" model. In this expanded view of
evolution, long periods of gradual change or stability are interrupted
by relatively short bursts of rapid change. Then things settle down
into a new equilibrium. Software development has an intentional
direction behind it that evolution lacks (although it may not be
evident on some projects), but nonetheless it follows this kind of
rhythm.

Classical descriptions of refactoring sound very steady. Refactoring
toward deeper insight usually isn't. A period of steady refinement of a
model can suddenly bring you to an insight that shakes up
everything. These breakthroughs don't happen every day, yet a large
proportion of the changes that lead to a deep model and supple
design emerge from them.

Such a situation often does not look like an opportunity; it seems
more like a crisis. Suddenly there is some obvious inadequacy in the
model. There is a gaping hole in what it can express, or some critical
area where it is opaque. Maybe it makes statements that are just
wrong.

This means the team has reached a new level of understanding.
From their now-elevated viewpoint, the old model looks poor. From
that viewpoint, they can conceive a far better one.

Refactoring toward deeper insight is a continuing process. Implicit
concepts are recognized and made explicit. Parts of the design are
made suppler, perhaps taking on a declarative style. Development
suddenly comes to the brink of a breakthrough and plunges through
to a deep model�and then steady refinement starts again.





Part IV: Strategic Design
As systems grow too complex to know completely at the level
of individual objects, we need techniques for manipulating and
comprehending large models. This part of the book presents
principles that enable the modeling process to scale up to very
complicated domains. Most such decisions must be made at
team level or even negotiated between teams. These are the
decisions where design and politics often intersect.

The goal of the most ambitious enterprise system is a tightly
integrated system spanning the entire business. Yet the entire
business model for almost any such organization is too large
and complex to manage or even understand as a single unit.
The system must be broken into smaller parts, in both concept
and implementation. The challenge is to accomplish this
modularity without losing the benefits of integration, allowing
different parts of the system to interoperate to support the
coordination of various business operations. A monolithic, all-
encompassing domain model will be unwieldy and loaded with
subtle duplications and contradictions. A set of small, distinct
subsystems glued together with ad hoc interfaces will lack the
power to solve enterprise-wide problems and allows
consistency problems to arise at every integration point. The
pitfalls of both extremes can be avoided with a systematic,
evolving design strategy.

Even at this scale, domain-driven design does not produce
models unconnected to the implementation. Every decision
must have a direct impact on system development, or else it is
irrelevant. Strategic design principles must guide design
decisions to reduce the interdependence of parts and improve
clarity without losing critical interoperability and synergy. They
must focus the model to capture the conceptual core of the
system, the "vision" of the system. And they must do all this



without bogging the project down. To help accomplish these
goals, Part IV explores three broad themes: context,
distillation, and large-scale structure.

Context, the least obvious of the principles, is actually the
most fundamental. A successful model, large or small, has to
be logically consistent throughout, without contradictory or
overlapping definitions. Enterprise systems sometimes
integrate subsystems with varying origins or have applications
so distinct that very little in the domain is viewed in the same
light. It may be asking too much to unify the models implicit in
these disparate parts. By explicitly defining a BOUNDED CONTEXT

within which a model applies and then, when necessary,
defining its relationship with other contexts, the modeler can
avoid bastardizing the model.

Distillation reduces the clutter and focuses attention
appropriately. Often a great deal of effort is spent on
peripheral issues in the domain. The overall domain model
needs to make prominent the most value-adding and special
aspects of your system and be structured to give that part as
much power as possible. While some supporting components
are critical, they must be put into their proper perspective. This
focus not only helps to direct efforts toward vital parts of the
system, but it keeps the vision of the system from being lost.
Strategic distillation can bring clarity to a large model. And
with a clearer view, the design of the CORE DOMAIN can be
made more useful.

Large-scale structure completes the picture. In a very complex
model, you may not see the forest for the trees. Distillation
helps, by focusing the attention on the core and presenting the
other elements in their supporting roles, but the relationships
can still be too confusing without an overarching theme,
applying some system-wide design elements and patterns. I'll
give an overview of a few approaches to large-scale structure
and then go into depth on one such pattern, RESPONSIBILITY



LAYERS, to explore the implications of using such a structure.
The specific structures discussed are only examples; they are
not a comprehensive catalog. New ones should be invented
as needed, or these should be modified, through a process of
EVOLVING ORDER. Some such structure can bring a uniformity to
the design that accelerates development and improves
integration.

These three principles, useful separately but particularly
powerful taken together, help to produce good designs�even
in a sprawling system that no one completely understands.
Large-scale structure brings consistency to disparate parts to
help those parts mesh. Structure and distillation make the
complex relationships between parts comprehensible while
keeping the big picture in view. BOUNDED CONTEXTS allow work
to proceed in different parts without corrupting the model or
unintentionally fragmenting it. Adding these concepts to the
team's UBIQUITOUS LANGUAGE helps developers work out their
own solutions.



Chapter Fourteen. Maintaining Model
Integrity
I once worked on a project where several teams were working in
parallel on a major new system. One day, the team working on the
customer-invoicing module was ready to implement an object they
called Charge, when they discovered that another team had already
built one. Diligently, they set out to reuse the existing object. They
discovered it didn't have an "expense code," so they added one. It
already had the "posted amount" attribute they needed. They had
been planning to call it "amount due," but�what's in a name?�they
changed it. Adding a few more methods and associations, they got
something that looked like what they wanted, without disturbing what
was there. They had to ignore many associations they didn't need,
but their application module ran.

A few days later, mysterious problems surfaced in the bill-payment
application module for which the Charge had originally been written.
Strange Charges appeared that no one remembered entering and
that didn't make any sense. The program began to crash when some
functions were used, particularly the month-to-date tax report.
Investigation revealed that the crash resulted when a function was
used that summed up the amount deductible for all the current
month's payments. The mystery records had no value in the "percent
deductible" field, although the validation of the data-entry application
required it and even put in a default value.

The problem was that these two groups had different models, but
they did not realize it, and there were no processes in place to detect
it. Each made assumptions about the nature of a charge that were
useful in their context (billing customers versus paying vendors).
When their code was combined without resolving these
contradictions, the result was unreliable software.



If only they had been more aware of this reality, they could have
consciously decided how to deal with it. That might have meant
working together to hammer out a common model and then writing
an automated test suite to prevent future surprises. Or it might
simply have meant an agreement to develop separate models and
keep hands off each other's code. Either way, it starts with an explicit
agreement on the boundaries within which each model applies.

What did they do once they knew about the problem? They created
separate Customer Charge and Supplier Charge classes and
defined each according to the needs of the corresponding team. The
immediate problem having been solved, they went back to doing
things just as before. Oh well.

Although we seldom think about it explicitly, the most fundamental
requirement of a model is that it be internally consistent; that its
terms always have the same meaning, and that it contain no
contradictory rules. The internal consistency of a model, such that
each term is unambiguous and no rules contradict, is called
unification. A model is meaningless unless it is logically consistent.
In an ideal world, we would have a single model spanning the whole
domain of the enterprise. This model would be unified, without any
contradictory or overlapping definitions of terms. Every logical
statement about the domain would be consistent.

But the world of large systems development is not the ideal world. To
maintain that level of unification in an entire enterprise system is
more trouble than it is worth. It is necessary to allow multiple models
to develop in different parts of the system, but we need to make
careful choices about which parts of the system will be allowed to
diverge and what their relationship to each other will be. We need
ways of keeping crucial parts of the model tightly unified. None of
this happens by itself or through good intentions. It happens only
through conscious design decisions and institution of specific
processes. Total unification of the domain model for a large
system will not be feasible or cost-effective.



Sometimes people fight this fact. Most people see the price that
multiple models exact by limiting integration and making
communication cumbersome. On top of that, having more than one
model somehow seems inelegant. This resistance to multiple models
sometimes leads to very ambitious attempts to unify all the software
in a large project under a single model. I know I've been guilty of this
kind of overreaching. But consider the risks.

1. Too many legacy replacements may be attempted at once.

Large projects may bog down because the coordination over-head
exceeds their abilities.

Applications with specialized requirements may have to use models
that don't fully satisfy their needs, forcing them to put behavior
elsewhere.

Conversely, attempting to satisfy everyone with a single model may
lead to complex options that make the model difficult to use.

What's more, model divergences are as likely to come from political
fragmentation and differing management priorities as from technical
concerns. And the emergence of different models can be a result of
team organization and development process. So even when no
technical factor prevents full integration, the project may still face
multiple models.

Given that it isn't feasible to maintain a unified model for an entire
enterprise, we don't have to leave ourselves at the mercy of events.
Through a combination of proactive decisions about what should be
unified and pragmatic recognition of what is not unified, we can



create a clear, shared picture of the situation. With that in hand, we
can set about making sure that the parts we want to unify stay that
way, and the parts that are not unified don't cause confusion or
corruption.

We need a way to mark the boundaries and relationships between
different models. We need to choose our strategy consciously and
then follow our strategy consistently.

This chapter lays out techniques for recognizing, communicating,
and choosing the limits of a model and its relationships to others. It
all starts with mapping the current terrain of the project. A BOUNDED

CONTEXT defines the range of applicability of each model, while a
CONTEXT MAP gives a global overview of the project's contexts and the
relationships between them. This reduction of ambiguity will, in and
of itself, change the way things happen on the project, but it isn't
necessarily enough. Once we have a CONTEXT BOUNDED, a process of
CONTINUOUS INTEGRATION will keep the model unified.

Then, starting from this stable situation, we can start to migrate
toward more effective strategies for BOUNDING CONTEXTS and relating
them, ranging from closely allied contexts with SHARED KERNELS to
loosely coupled models that go their SEPARATE WAYS.

Figure 14.1. A navigation map for model integrity
patterns





Bounded Context

Cells can exist because their membranes define what is in and out
and determine what can pass.

Multiple models coexist on big projects, and this works fine in many
cases. Different models apply in different contexts. For example, you
may have to integrate your new software with an external system
over which your team has no control. A situation like this is probably
clear to everyone as a distinct context where the model under
development doesn't apply, but other situations can be more vague
and confusing. In the story that opened this chapter, two teams were
working on different functionality for the same new system. Were
they working on the same model? Their intention was to share at
least part of what they did, but there was no demarcation to tell them
what they did or did not share. And they had no process in place to
hold a shared model together or quickly detect divergences. They
realized they had diverged only after their system's behavior
suddenly became unpredictable.



Even a single team can end up with multiple models. Communication
can lapse, leading to subtly conflicting interpretations of the model.
Older code often reflects an earlier conception of the model that is
subtly different from the current model.

Everyone is aware that the data format of another system is different
and calls for a data conversion, but this is only the mechanical
dimension of the problem. More fundamental is the difference in the
models implicit in the two systems. When the discrepancy is not with
an external system, but within the same code base, it is even less
likely to be recognized. Yet this happens on all large team projects.

Multiple models are in play on any large project. Yet when code
based on distinct models is combined, software becomes
buggy, unreliable, and difficult to understand. Communication
among team members becomes confused. It is often unclear in
what context a model should not be applied.

Failure to keep things straight is ultimately revealed when the
running code doesn't work right, but the problem starts in the way
teams are organized and the way people interact. Therefore, to
clarify the context of a model, we have to look at both the project and
its end products (code, database schemas, and so on).

A model applies in a context. The context may be a certain part of
the code, or the work of a particular team. For a model invented in a
brainstorming session, the context could be limited to that particular
conversation. The context of a model used in an example in this
book is that particular example section and any later discussion of it.
The model context is whatever set of conditions must apply in order
to be able to say that the terms in a model have a specific meaning.

To begin to solve the problems of multiple models, we need to define
explicitly the scope of a particular model as a bounded part of a
software system within which a single model will apply and will be
kept as unified as possible. This definition has to be reconciled with
the team organization.



Therefore:

Explicitly define the context within which a model applies.
Explicitly set boundaries in terms of team organization, usage
within specific parts of the application, and physical
manifestations such as code bases and database schemas.
Keep the model strictly consistent within these bounds, but
don't be distracted or confused by issues outside.

A BOUNDED CONTEXT delimits the applicability of a particular model so
that team members have a clear and shared understanding of what
has to be consistent and how it relates to other CONTEXTS. Within that
CONTEXT, work to keep the model logically unified, but do not worry
about applicability outside those bounds. In other CONTEXTS, other
models apply, with differences in terminology, in concepts and rules,
and in dialects of the UBIQUITOUS LANGUAGE. By drawing an explicit
boundary, you can keep the model pure, and therefore potent, where
it is applicable. At the same time, you avoid confusion when shifting
your attention to other CONTEXTS. Integration across the boundaries
necessarily will involve some translation, which you can analyze
explicitly.



BOUNDED CONTEXTS Are Not MODULES

The issues are confused sometimes, but these are different patterns with different
motivations. True, when two sets of objects are recognized as making up different
models, they are almost always placed in separate MODULES. Doing so does provide
different name spaces (essential for different CONTEXTS) and some demarcation.

But MODULES also organize the elements within one model; they don't necessarily
communicate an intention to separate CONTEXTS. The separate name spaces that
MODULES create within a BOUNDED CONTEXT actually make it harder to spot accidental
model fragmentation.

Example
 Booking Context

A shipping company has an internal project to develop a new
application for booking cargo. This application is to be driven by an
object model. What is the BOUNDED CONTEXT within which this model
applies? To answer this question, we have to look at what is
happening on the project. Keep in mind, this is a look at the project
as it is, not as it ideally should be.

One project team is working on the booking application itself. They
are not expected to modify the model objects, but the application
they are building has to display and manipulate those objects. This
team is a consumer of the model. The model is valid within the
application (its primary consumer), and therefore the booking
application is in bounds.

The completed bookings have to be passed to the legacy
cargotracking system. A decision was made up front that the new
model would depart from that of the legacy, so the legacy
cargotracking system is outside the boundary. Necessary translation
between the new model and the legacy is to be the responsibility of
the legacy maintenance team. The translation mechanism is not



driven by the model. It is not in the BOUNDED CONTEXT. (It is part of the
boundary itself, which will be discussed in CONTEXT MAP.) It is good
that translation is out of CONTEXT (not based on the model). It would
be unrealistic to ask the legacy team to make any real use of the
model because their primary work is out of CONTEXT.

The team responsible for the model deals with the whole life cycle of
each object, including persistence. Because this team has control of
the database schema, they've been deliberately keeping the object-
relational mapping straightforward. In other words, the schema is
being driven by the model and therefore is in bounds.

Yet another team is working on a model and application for
scheduling the voyages of the cargo ships. The scheduling and
booking teams were initiated together, and both teams had intended
to produce a single, unified system. The two teams have casually
coordinated with each other, and they occasionally share objects, but
they are not systematic about it. They are not working in the same
BOUNDED CONTEXT. This is a risk, because they do not think of
themselves as working on separate models. To the extent they
integrate, there will be problems unless they put in place processes
to manage the situation. (The SHARED KERNEL, discussed later in this
chapter, might be a good choice.) The first step, though, is to
recognize the situation as it is. They are not in the same CONTEXT and
should stop trying to share code until some changes are made.

This BOUNDED CONTEXT is made up of all those aspects of the system
that are driven by this particular model: the model objects, the
database schema that persists the model objects, and the booking
application. Two teams work primarily in this CONTEXT: the modeling
team and the application team. Information has to be exchanged
with the legacy tracking system, and the legacy team has primary
responsibility for the translation at this boundary, with cooperation
from the modeling team. There is no clearly defined relationship
between the booking model and the voyage schedule model, and
defining that relationship should be one of those teams' first actions.



In the meantime, they should be very careful about sharing code or
data.

So, what has been gained by defining this BOUNDED CONTEXT? For the
teams working in CONTEXT: clarity. Those two teams know they must
stay consistent with one model. They make design decisions in that
knowledge and watch for fractures. For the teams outside: freedom.
They don't have to walk in the gray zone, not using the same model,
yet somehow feeling they should. But the most concrete gain in this
particular case is probably realizing the risk of the informal sharing
between the booking model team and the voyage schedule team. To
avoid problems, they really need to decide on the cost/benefit trade-
offs of sharing and put in processes to make it work. This won't
happen unless everyone understands where the bounds of the
model contexts are.

  

Of course, boundaries are special places. The relationships between
a BOUNDED CONTEXT and its neighbors require care and attention. The
CONTEXT MAP charts the territory, giving the big picture of the CONTEXTS

and their connections, while several patterns define the nature of the
various relationships between CONTEXTS. And a process of
CONTINUOUS INTEGRATION preserves unity of the model within a
BOUNDED CONTEXT.

But before proceeding to all that, what does it look like when
unification of a model is breaking down? How do you recognize
conceptual splinters?

Recognizing Splinters Within a BOUNDED
CONTEXT

Many symptoms may indicate unrecognized model differences.
Some of the most obvious are when coded interfaces don't match



up. More subtly, unexpected behavior is a likely sign. The
CONTINUOUS INTEGRATION process with automated tests can help catch
these kinds of problems. But the early warning is usually a confusion
of language.

Combining elements of distinct models causes two categories of
problems: duplicate concepts and false cognates. Duplication of
concepts means that there are two model elements (and attendant
implementations) that actually represent the same concept. Every
time this information changes, it has to be updated in two places with
conversions. Every time new knowledge leads to a change in one of
the objects, the other has to be reanalyzed and changed too. Except
the reanalysis doesn't happen in reality, so the result is two versions
of the same concept that follow different rules and even have
different data. On top of that, the team members must learn not one
but two ways of doing the same thing, along with all the ways they
are being synchronized.

False cognates may be slightly less common, but more insidiously
harmful. This is the case when two people who are using the same
term (or implemented object) think they are talking about the same
thing, but really are not. The example in the beginning of this chapter
(two different business activities both called Charge) is typical, but
conflicts can be even subtler when the two definitions are actually
related to the same aspect in the domain, but have been
conceptualized in slightly different ways. False cognates lead to
development teams that step on each other's code, databases that
have weird contradictions, and confusion in communication within
the team. The term false cognate is ordinarily applied to natural
languages. For example, English speakers learning Spanish often
misuse the word embarazada. This word does not mean
"embarrassed"; it means "pregnant." Oops.

When you detect these problems, your team will have to make a
decision. You may want to pull the model back together and refine
the processes to prevent fragmentation. Or the fragmentation may
be a result of groups who want to pull the model in different



directions for good reasons, and you may decide to let them develop
independently. Dealing with these issues is the subject of the
remaining patterns in this chapter.



Continuous Integration

Having defined a BOUNDED CONTEXT, we must keep it sound.

  

When a number of people are working in the same BOUNDED
CONTEXT, there is a strong tendency for the model to fragment.
The bigger the team, the bigger the problem, but as few as three
or four people can encounter serious problems. Yet breaking
down the system into ever-smaller CONTEXTS eventually loses a
valuable level of integration and coherency.

Sometimes developers do not fully understand the intent of some
object or interaction modeled by someone else, and they change it in
a way that makes it unusable for its original purpose. Sometimes
they don't realize that the concepts they are working on are already
embodied in another part of the model and they duplicate (inexactly)
those concepts and behavior. Sometimes they are aware of those
other expressions but are afraid to tamper with them, for fear of
corrupting the existing functionality, and so they proceed to duplicate
concepts and functionality.



It is very hard to maintain the level of communication needed to
develop a unified system of any size. We need ways of increasing
communication and reducing complexity. We also need safety nets
that prevent overcautious behavior, such as developers duplicating
functionality because they are afraid they will break existing code.

It is in this environment that Extreme Programming (XP) really
comes into its own. Many XP practices are aimed at this specific
problem of maintaining a coherent design that is being constantly
changed by many people. XP in its purest form is a nice fit for
maintaining model integrity within a single BOUNDED CONTEXT.
However, whether or not XP is being used, it is essential to have
some process of CONTINUOUS INTEGRATION.

CONTINUOUS INTEGRATION means that all work within the context is
being merged and made consistent frequently enough that when
splinters happen they are caught and corrected quickly. CONTINUOUS

INTEGRATION, like everything else in domain-driven design, operates
at two levels: (1) the integration of model concepts and (2) the
integration of the implementation.

Concepts are integrated by constant communication among team
members. The team must cultivate a shared understanding of the
ever-changing model. Many practices help, but the most
fundamental is constantly hammering out the UBIQUITOUS LANGUAGE.
Meanwhile, the implementation artifacts are being integrated by a
systematic merge/build/test process that exposes model splinters
early. Many processes for integration are used, but most of the
effective ones share these characteristics:

A step-by-step, reproducible merge/build technique;

Automated test suites; and

Rules that set some reasonably small upper limit on the lifetime
of unintegrated changes.



The other side of the coin in effective processes, although it is
seldom formally included, is conceptual integration.

Constant exercise of the UBIQUITOUS LANGUAGE in discussions of
the model and application

Most Agile projects have at least daily merges of each developer's
code changes. The frequency can be adjusted to the pace of
change, as long as any unintegrated change would be merged
before a significant amount of incompatible work could be done by
other team members.

In a MODEL-DRIVEN DESIGN, the integration of concepts smooths the
way for the integration of the implementation, while the integration of
the implementation proves the validity and consistency of the model
and exposes splinters.

Therefore:

Institute a process of merging all code and other
implementation artifacts frequently, with automated tests to flag
fragmentation quickly. Relentlessly exercise the UBIQUITOUS
LANGUAGE to hammer out a shared view of the model as the
concepts evolve in different people's heads.

Finally, do not make the job any bigger than it has to be. CONTINUOUS

INTEGRATION is essential only within a BOUNDED CONTEXT. Design
issues involving neighboring CONTEXTS, including translation, don't
have to be dealt with at the same pace.

  

CONTINUOUS INTEGRATION would be applied within any individual
BOUNDED CONTEXT that is larger than a two-person task. It maintains
the integrity of that single model. When multiple BOUNDED CONTEXTS

coexist, you have to decide on their relationships and design any
necessary interfaces. . . .





Context Map

An individual BOUNDED CONTEXT still does not provide a global
view. The context of other models may still be vague and in flux.

  

People on other teams won't be very aware of the CONTEXT
bounds and will unknowingly make changes that blur the edges
or complicate the interconnections. When connections must be
made between different contexts, they tend to bleed into each
other.

Code reuse between BOUNDED CONTEXTS is a hazard to be avoided.
Integration of functionality and data must go through a translation.
You can reduce confusion by defining the relationship between the
different contexts and creating a global view of all the model contexts
on the project.

A CONTEXT MAP is in the overlap between project management and
software design. The natural course of events is for the boundaries
to follow the contours of team organization. People who work closely
will naturally share a model context. People on different teams, or
those that don't talk, even if they are on the same team, will split off



into different contexts. Physical office space can have an impact too,
as team members on opposite ends of a building�not to mention
different cities�will probably diverge without extra integration effort.
Most project managers intuitively recognize these factors and
broadly organize teams around subsystems. But the interrelationship
between team organization and software model and design is still
not prominent enough. Both managers and team members need a
clear view into the ongoing conceptual subdivision of the software
model and design.

Therefore:

Identify each model in play on the project and define its BOUNDED
CONTEXT. This includes the implicit models of non-object-
oriented subsystems. Name each BOUNDED CONTEXT, and make
the names part of the UBIQUITOUS LANGUAGE.

Describe the points of contact between the models, outlining
explicit translation for any communication and highlighting any
sharing.

Map the existing terrain. Take up transformations later.

Within each BOUNDED CONTEXT, you will have a coherent dialect of the
UBIQUITOUS LANGUAGE. The names of the BOUNDED CONTEXTS will
themselves enter that LANGUAGE so that you can speak
unambiguously about the model of any part of the design by making
your CONTEXT clear.

The MAP does not have to be documented in any particular form. I
find diagrams like the ones in this chapter to be helpful in visualizing
and communicating the map. Others may prefer a more textual
description or a different graphical representation. In some situaions,
discussion among teammates may be sufficient. The level of detail
can vary according to need. Whatever form the MAP takes, it must be
shared and understood by everyone on the project. It must provide a
clear name for each BOUNDED CONTEXT, and it must make the points of
contact and their natures clear.



  

The relationships between BOUNDED CONTEXTS take many forms
depending on both design issues and project organizational issues.
Later, this chapter will lay out various patterns of relationships
between CONTEXTS that are effective in different situations, and that
can provide terms to describe the relationships you find in your own
MAP. Keeping in mind that the CONTEXT MAP always represents the
situation as it stands, the relationships you find may not fit these
patterns initially. If they fall close, you may wish to use the pattern
name, but don't force it. Just describe the relationships you find.
Later you can begin to migrate toward more standardized
relationships.

So, what do you do if you've discovered a splinter�a model that is
completely entangled but contains inconsistencies? Put a dragon on
the map and finish describing everything. Then, with an accurate
global view, address the points of confusion. A minor splinter can be
repaired, and processes can be put in place to shore it up. If a
relationship is vague, you can choose the nearest pattern and move
toward it. Your first order of business is to arrive at a clear CONTEXT

MAP, and this may mean fixing real problems you have found. But
don't let this necessary repair lead to wholesale reorganization. Until
you have an unambiguous CONTEXT MAP that places all your work into
some BOUNDED CONTEXT, with explicit relationships between all
connected models, change only the outright contradictions.

Once you have a coherent CONTEXT MAP, you'll see things you want to
change. You can make considered changes to the organization of
teams or to the design. Remember, don't change the map until the
change in reality is done.

Example
 Two CONTEXTS in a Shipping Application



We return again to the shipping system. One of the application's
major features was to be the automatic routing of cargos at booking
time. The model was something like this:

 

Figure 14.2.

 
The Routing Service is a SERVICE that encapsulates a mechanism
behind an INTENTION-REVEALING INTERFACE made up of SIDEEFFECT-FREE

FUNCTIONS. The results of those functions are characterized with
ASSERTIONS.

1. The interface declares that when a Route Specification is
passed in, an Itinerary will be returned.

The ASSERTION states that the returned Itinerary will satisfy the
Route Specification that was passed in.



Nothing is stated about how this very difficult task is performed. Now
let's go behind the curtain to see the mechanism.

Initially on the project on which this example is based, I was too
dogmatic about the internals of the Routing Service. I wanted the
actual routing operation to be done with an extended domain model
that would represent vessel voyages and directly relate them to the
Legs in the Itinerary. But the team working on the routing problem
pointed out that, to make it perform well and to draw on well-
established algorithms, the solution needed to be implemented as an
optimized network, with each leg of a voyage represented as an
element in a matrix. They insisted on a distinct model of shipping
operations for this purpose.

They were clearly right about the computational demands of the
routing process as then designed, and so, lacking any better idea, I
yielded. In effect, we created two separate BOUNDED CONTEXTS, each
of which had its own conceptual organization of shipping operations.
(See Figure 14.3.)

Figure 14.3. Two BOUNDED CONTEXTS formed to allow
efficient routing algorithms to be applied



Our requirement was to take a Routing Service request, translate it
into terms the Network Traversal Service could understand, then
take the result and translate it into the form a Routing Service is
expected to give.

This means it was not necessary to map everything in these two
models, but only to be able to make two specific translations:

Route Specification  List of location codes

List of Node IDs  Itinerary

To do this, we have to look at the meaning of an element of one
model and figure out how to express it in terms of the other.

Starting with the first translation (Route Specification  List of
location codes), we have to think about the meaning of the sequence
of locations in the list. The first in the list will be the beginning of the
path, which will then be forced to pass through each location in turn



until it reaches the last location in the list. So the origin and
destination are the first and last in the list, with the customs
clearance location (if there is one) in the middle.

Figure 14.4. Translation of a query to the Network
Traversal Service

(Mercifully, the two teams used the same location codes, so we don't
have to deal with that level of translation.)

Notice that the reverse translation would be ambiguous, because the
network traversal input allows any number of intermediate points, not
just one specifically designated as customs clearance point.
Fortunately, this is no problem because we don't need to translate in
that direction, but it gives a glimpse of why some translations are
impossible.

Now, let's translate the result (List of Node IDs  Itinerary). We'll
assume that we can use a REPOSITORY to look up the Node and
Shipping Operation objects based on the Node IDs we receive. So,
how do those Nodes map to Legs? Based on the
operationType-Code, we can break the list of Nodes into
departure/arrival pairs. Each pair then relates to one Leg.



Figure 14.5. Translation of a route found by the Network
Traversal Service

The attributes for each Node pair would be mapped as follows:

departureNode.shippingOperation.vesselVoyageId  
leg.vesselVoyageId 
departureNode.shippingOperation.date  
leg.loadDate 
departureNode.locationCode  leg.loadLocationCode 
arrivalNode.shippingOperation.date  
leg.unloadDate 
arrivalNode.locationCode  leg.unloadLocationCode 

This is the conceptual translation map between these two models.
Now we have to implement something that can do the translation for
us. In a simple case like this, I typically create an object for the
purpose, and then find or create another object to provide the
service to the rest of our subsystem.

Figure 14.6. A two-way translator



This is the one object that both teams have to work together to
maintain. The design should make it very easy to unit-test, and it
would be a particularly good idea for the teams to collaborate on a
test suite for it. Other than that, they can go their separate ways.

 

Figure 14.7.

 
The Routing Service implementation now becomes a matter of
delegating to the Translator and the Network Traversal Service. Its
single operation would look something like this:

public Itinerary route(RouteSpecification spec) { 
   Booking_TransportNetwork_Translator translator 



= 
      new Booking_TransportNetwork_Translator();] 
 
   List constraintLocations = 
      translator.convertConstraints(spec); 
 
   // Get access to the NetworkTraversalService 
   List pathNodes = 
      
traversalService.findPath(constraintLocations); 
 
   Itinerary result = 
translator.convert(pathNodes); 
   return result; 
} 

Not bad. The BOUNDED CONTEXTS served to keep each of the models
relatively clean, let the teams work largely independently, and if initial
assumptions had been correct, would probably have served well.
(We'll return to that later in this chapter.)

The interface between the two contexts is fairly small. The interface
of the Routing Service insulates the rest of the Booking CONTEXT's
design from events in the route-finding world. The interface is easy
to test because it is made up of SIDE-EFFECT-FREE FUNCTIONS. One of
the secrets to comfortable coexistence with other CONTEXTS is to
have effective sets of tests for the interfaces. "Trust, but verify," said
President Reagan when negotiating arms reductions.[1]

[1] Reagan translated an old Russian saying that summed up the heart of the matter
for both sides�another metaphor for bridging contexts.

It should be easy to devise a set of automated tests that would feed
Route Specifications into the Routing Service and check the
returned Itinerary.



Model contexts always exist, but without conscious attention they
may overlap and fluctuate. By explicitly defining BOUNDED CONTEXTS

and a CONTEXT MAP, your team can begin to direct the process of
unifying models and connecting distinct ones.

Testing at the CONTEXT Boundaries

Contact points with other BOUNDED CONTEXTS are particularly
important to test. Tests help compensate for the subtleties of
translation and the lower level of communication that typically exist
at boundaries. They can act as a valuable early warning system,
especially reassuring in cases where you depend on the details of a
model you don't control.

Organizing and Documenting CONTEXT MAPS

There are only two important points here:

1. The BOUNDED CONTEXTS should have names so that you can
talk about them. Those names should enter the UBIQUITOUS
LANGUAGE of the team.

Everyone has to know where the boundaries lie, and be able to
recognize the CONTEXT of any piece of code or any situation.

The second requirement could be met in many ways depending on
the culture of the team. Once the BOUNDED CONTEXTS have been
defined, it comes naturally to segregate the code of different
CONTEXTS into different MODULES, which leaves the question of how to
keep track of which MODULE belongs in which CONTEXT. A naming
convention might be used to indicate this, or any other mechanism
that is easy and avoids confusion.



Equally important is communicating the conceptual boundaries in
such a way that everyone on the team understands them the same
way. For this communication purpose, I like informal diagrams like
the ones in the example. More rigorous diagrams or textual lists
could be made, showing all packages in each CONTEXT, along with
the points of contact and the mechanisms responsible for connecting
and translating. Some teams will be more comfortable with this
approach, while others will get by fine based on spoken agreement
and lots of discussion.

In any case, working the CONTEXT MAP into discussions is essential if
the names are to enter the UBIQUITOUS LANGUAGE. Don't say,
"George's team's stuff is changing, so we're going to have to change
our stuff that talks to it." Say instead, "The Transport Network model
is changing, so we're going to have to change the translator for the
Booking context."



Relationships Between BOUNDED
CONTEXTS

The following patterns cover a range of strategies for relating two
models that can be composed to encompass an entire enterprise.
These patterns serve the dual purpose of providing targets for
successfully organizing development work, and supplying vocabulary
for describing the existing organization.

An existing relationship may, by chance or by design, fall near one of
these patterns, in which case you can describe it using that term,
variations duly noted. Then, with each small design change, the
relationship can be drawn closer to the chosen pattern.

On the other hand, you may find that an existing relationship is
muddled or overcomplicated. Some reorganization might be
necessary just to make an unambiguous CONTEXT MAP possible. In
this situation, or any situation in which you are considering
reorganization, these patterns present a range of choices that are
favored in different circumstances. Prominent variables include the
level of control you have over the other model, the level and type of
cooperation between teams, and the degree of integration of
features and data.

The following set of patterns covers some of the most common and
important cases, which should give you a good idea of how to
approach other cases. A crack team working closely on a tightly
integrated product can deploy a large unified model. The need to
serve different user communities or a limitation on the coordination
abilities of the team might lead to a SHARED KERNEL or
CUSTOMER/SUPPLIER relationships. Sometimes a good hard look at the
requirements reveals that integration is not essential and it is best for
systems to go their SEPARATE WAYS. And, of course, most projects
have to integrate to some degree with legacy and external systems,
which can lead to OPEN HOST SERVICES or ANTICORRUPTION LAYERS.





Shared Kernel

When functional integration is limited, the overhead of CONTINUOUS

INTEGRATION may be deemed too high. This may especially be true
when the teams do not have the skill or the political organization to
maintain continuous integration, or when a single team is simply too
big and unwieldy. So separate BOUNDED CONTEXTS might be defined
and multiple teams formed.

  

Uncoordinated teams working on closely related applications
can go racing forward for a while, but what they produce may
not fit together. They can end up spending more on translation
layers and retrofitting than they would have on CONTINUOUS
INTEGRATION in the first place, meanwhile duplicating effort and
losing the benefits of a common UBIQUITOUS LANGUAGE.

On many projects I've seen the infrastructure layer shared among
teams that worked largely independently. An analogy to this can
work well within the domain as well. It may be too much overhead to



fully synchronize the entire model and code base, but a carefully
selected subset can provide much of the benefit for less cost.

Therefore:

Designate some subset of the domain model that the two teams
agree to share. Of course this includes, along with this subset
of the model, the subset of code or of the database design
associated with that part of the model. This explicitly shared
stuff has special status, and shouldn't be changed without
consultation with the other team.

Integrate a functional system frequently, but somewhat less
often than the pace of CONTINUOUS INTEGRATION within the teams.
At these integrations, run the tests of both teams.

It is a careful balance. The SHARED KERNEL cannot be changed as
freely as other parts of the design. Decisions involve consultation
with another team. Automated test suites must be integrated
because all tests of both teams must pass when changes are made.
Usually, teams make changes on separate copies of the KERNEL,
integrating with the other team at intervals. (For example, on a team
that CONTINUOUSLY INTEGRATES daily or better, the KERNEL merger might
be weekly.) Regardless of when code integration is scheduled, the
sooner both teams talk about the changes, the better.

  

The SHARED KERNEL is often the CORE DOMAIN, some set of GENERIC

SUBDOMAINS, or both (see Chapter 15), but it can be any part of the
model that is needed by both teams. The goal is to reduce
duplication (but not to eliminate it, as would be the case if there were
just one BOUNDED CONTEXT) and make integration between the two
subsystems relatively easy.



Customer/Supplier Development Teams

Often one subsystem essentially feeds another; the "downstream"
component performs analysis or other functions that feed back very
little into the "upstream" component, and all dependencies go one
way. The two subsystems commonly serve very different user
communities, who do different jobs, where different models may be
useful. The tool set may also be different, so that program code
cannot be shared.

  

Upstream and downstream subsystems separate naturally into two
BOUNDED CONTEXTS. This is especially true when the two components
require different skills or employ a different tool set for
implementation. Translation is easier for having to operate in one
direction only. But problems can emerge, depending on the political
relationship of the two teams.

The freewheeling development of the upstream team can be
cramped if the downstream team has veto power over changes,
or if procedures for requesting changes are too cumbersome.
The up-stream team may even be inhibited, worried about



breaking the downstream system. Meanwhile, the downstream
team can be helpless, at the mercy of upstream priorities.

Downstream needs things from upstream, but upstream is not
responsible for downstream deliverables. It takes a lot of extra effort
to anticipate what will affect the other team, and human nature being
what it is, and time pressures being what they are, well . . . . It makes
everyone's life easier to formalize the relationship between the
teams. The process can be organized to balance the needs of the
two user communities and schedule work on features needed
downstream.

On an Extreme Programming project, there already is a mechanism
in place for doing just that: the iteration planning process. All we
have to do is define the relationship between the two teams in terms
of the planning process. Representatives of the downstream team
can function much like the user representatives, joining them in
planning sessions, discussing directly with their fellow "customers"
the trade-offs for the tasks they want. The result is an iteration plan
for the supplier team that includes tasks the downstream team needs
most or defers tasks by agreement, so there is no expectation of
delivery.

If a process other than XP is used, whatever analogous method
serves to balance the concerns of different users can be expanded
to include the downstream application's needs.

Therefore:

Establish a clear customer/supplier relationship between the
two teams. In planning sessions, make the downstream team
play the customer role to the upstream team. Negotiate and
budget tasks for downstream requirements so that everyone
understands the commitment and schedule.

Jointly develop automated acceptance tests that will validate
the interface expected. Add these tests to the upstream team's
test suite, to be run as part of its continuous integration. This



testing will free the upstream team to make changes without
fear of side effects downstream.

During the iteration, the downstream team members need to be
available to the upstream developers just as conventional customers
are, to answer questions and help resolve problems.

Automating the acceptance tests is a vital part of this customer
relationship. Even on the most cooperative project, although the
customer can identify and communicate its dependencies, and the
supplier can diligently try to communicate changes, without tests,
surprises will happen. They will disrupt the downstream team's work
and force the upstream team to take on unscheduled, emergency
fixes. Instead, have the customer team, in collaboration with the
supplier team, develop automated acceptance tests that will validate
the interface it expects. The upstream team will run these tests as
part of its standard test suite. Any change to these tests calls for
communication with the other team, because changing the tests
implies changing the interface.

Customer/supplier relationships also emerge between projects in
separate companies, in situations where a single customer is very
important to the business of the supplier. The tail can wag the dog:
an influential customer can make demands that are important to the
up-stream project's success, but those demands can also be
disruptive to the upstream project's development. Both parties
benefit from the formalization of the process of responding to
requirements, because the cost/benefit trade-offs are even harder to
see in external relationships than they are in the internal IT situation.

There are two crucial elements to this pattern.

1. The relationship must be that of customer and supplier,
with the implication that the customer's needs are
paramount. Because the downstream team is not the only
customer, the different customers' demands have to be
balanced in negotiation�but they remain priorities. This
situation is in contrast to the poor-cousin relationship that



often emerges, in which the downstream team has to come
begging to the upstream team for its needs.

There must be an automated test suite that allows the upstream
team to change its code without fear of breaking the downstream,
and lets the downstream team concentrate on its own work without
constantly monitoring the upstream team.

In a relay race, the forward runner can't be looking backward all the
time, checking. He or she has to be able to trust the baton carrier to
make the handoff precisely, or else the team will be hopelessly
slowed down.

Example
 Yield Analysis Versus Booking

Back to our trusty shipping example. A highly specialized team has
been set up to analyze all the bookings that flow through the firm, to
see how to maximize income. Team members might find that ships
have empty space and might recommend more overbooking. They
might find that the ships are filling up with bulk freight early, forcing
the company to turn away more lucrative specialty cargoes. In that
case they might recommend reserving space for these types of
cargo or raising prices on the bulk freight.

To do this analysis, they use their own complex models. For
implementation, they use a data warehouse with tools for building
analytical models. And they need lots of information from the
Booking application.

From the start, it is clear that these are two BOUNDED CONTEXTS,
because they use different implementation tools and, most important,



different domain models. What should the relationship between them
be?

A SHARED KERNEL might seem logical, because yield analysis is
interested in a subset of the Booking's model, and their own model
has some overlapping concepts of cargos, prices, and so on. But
SHARED KERNEL is difficult in a case where different implementation
technologies are being used. Besides, the modeling needs of the
yield analysis team are quite specialized, and they continuously play
with their models and try alternative ones. They may well be better
off translating what they need from the Booking CONTEXT into their
own. (On the other hand, if they can use a SHARED KERNEL, their
translation burden will be much lighter. They will still have to
reimplement the model and translate the data to the new
implementation, but if the model is the same, the transfer should be
simple.)

The Booking application has no dependency on the yield analysis,
because there is no intention of automatically adjusting policies.
Human specialists will make the decisions and convey them to the
needed people and systems. So we have an upstream/downstream
relationship. What downstream needs is this:

1. Some data not needed by any booking operation

Some stability in database schema (or at least reliable notification of
change) or an export utility

Fortunately, the project manager of the Booking application
development team is motivated to help the yield analysis team. This
could have been a problem, because the operations department that
actually does day-to-day booking reports to a different vice president
than the people who actually do yield analysis. But the upper
management cares deeply about yield management and, having
seen past cooperation problems between the two departments,



structured the software development project so that the project
managers of both teams report to the same person.

Therefore, all the requirements are in place to apply
CUSTOMER/SUPPLIER DEVELOPMENT TEAMS.

I've seen this scenario evolve in multiple places, where analysis
software developers and operations software developers had a
customer/supplier relationship. When the upstream team members
thought of their role as serving a customer, things worked out pretty
well. It was almost always organized informally, and in each case it
worked out about as well as the personal relationship of the two
project managers.

On one XP project, I saw this relationship formalized in the sense
that, for each iteration, representatives of the downstream team
played the "planning game" in the role of customers, huddling with
the more conventional customer representatives (of application
functionality) to negotiate which tasks made it into the iteration plan.
This project was at a small company, and so the nearest shared
boss was not far up the chain. It worked very well.

  

CUSTOMER/SUPPLIER TEAMS are more likely to succeed if the two teams
work under the same management, so that ultimately they do share
goals, or where they are in different companies that actually have
those roles. When there is nothing to motivate the upstream team,
the situation is very different. . . .



Conformist

When two teams with an upstream/downstream relationship are not
effectively being directed from the same source, a cooperative
pattern such as CUSTOMER/SUPPLIER TEAMS is not going to work.
Naively trying to apply it will get the downstream team into trouble.
This can be the case in a large company in which the two teams are
far apart in the management hierarchy or where the shared
supervisor is indifferent to the relationship of the two teams. It also
arises between teams in different companies when the customer's
business is not individually important to the supplier. Perhaps the
supplier has many small customers, or perhaps the supplier is
changing market direction and no longer values the old customers.
The supplier may just be poorly run. It may have gone out of
business. Whatever the reason, the reality is that the downstream is
on its own.



When two development teams have an upstream/downstream
relationship in which the upstream has no motivation to provide
for the downstream team's needs, the downstream team is
helpless. Altruism may motivate upstream developers to make
promises, but they are unlikely to be fulfilled. Belief in those
good intentions leads the downstream team to make plans
based on features that will never be available. The downstream
project will be delayed until the team ultimately learns to live
with what it is given. An interface tailored to the needs of the
downstream team is not in the cards.

In this situation, there are three possible paths. One is to abandon
use of the upstream altogether. This option should be evaluated
realistically, making no assumptions that the upstream will
accommodate downstream needs. Sometimes we overestimate the
value or underestimate the cost of such a dependency. If the
downstream team decides to cut the strings, they are going their
SEPARATE WAYS (see the pattern description later in this chapter).

Sometimes the value of using the upstream software is so great that
the dependency has to be maintained (or a political decision has
been made that the team cannot change). In this case, two paths
remain open; the choice depends on the quality and style of the up-
stream design. If the design is very difficult to work with, perhaps for
lack of encapsulation, awkward abstractions, or modeling in a
paradigm the team cannot use, then the downstream team will still
need to develop its own model. They will have to take full
responsibility for a translation layer that is likely to be complex. (See
ANTICORRUPTION LAYER, later in this chapter.).



Following Isn't Always Bad

When using an off-the-shelf component that has a large interface, you should typically
CONFORM to the model implicit in that component. Because the component and the
application are clearly different BOUNDED CONTEXTS, based on team organization and
control, adapters may be needed for minor format changes, but the model should be
equivalent. Otherwise, you should question the value of having the component. If it is
good enough to give you value, there is probably knowledge crunched into its design.
Within its narrow sphere, it may well be much more advanced than your own
understanding. Your model presumably extends beyond the scope of this component,
and your own concepts will evolve for those other parts. But where they connect, your
model is a CONFORMIST, following the lead of the component's model. In effect, you
could be dragged into a better design.

When your interface with a component is small, sharing a unified model is less
essential, and translation is a viable option. But when the interface is large and
integration is more significant, it usually makes sense to follow the leader.

On the other hand, if the quality is not so bad, and the style is
reasonably compatible, then it may be best to give up on an
independent model altogether. This is the circumstance that calls for
a CONFORMIST.

Therefore:

Eliminate the complexity of translation between BOUNDED
CONTEXTS by slavishly adhering to the model of the upstream
team. Although this cramps the style of the downstream
designers and probably does not yield the ideal model for the
application, choosing CONFORMITY enormously simplifies
integration. Also, you will share a UBIQUITOUS LANGUAGE with your
supplier team. The supplier is in the driver's seat, so it is good
to make communication easy for them. Altruism may be
sufficient to get them to share information with you.

This decision deepens your dependency on the upstream and limits
your application to the capabilities of the upstream model� plus
purely additive enhancements. It is very unappealing emotionally,
which is why we choose it less often than we probably should.



If these trade-offs are not acceptable, but the upstream dependency
is indispensable, the second option still remains: Insulate yourself as
much as possible by creating an ANTICORRUPTION LAYER, an
aggressive approach to implementing a translation map that will be
discussed later.

  

CONFORMIST resembles SHARED KERNEL in that both have an
overlapping area where the model is the same, areas where your
model has been extended by addition, and areas where the other
model does not affect you. The difference between the patterns is in
the decision-making and development processes. Where the SHARED

KERNEL is a collaboration between two teams that coordinate tightly,
CONFORMIST deals with integration with a team that is not interested in
collaboration.

We've been proceeding down a spectrum of cooperation in the
integration between BOUNDED CONTEXTS, from highly cooperative
SHARED KERNELS or CUSTOMER/SUPPLIER DEVELOPER TEAMS to the one-
sidedness of the CONFORMIST. Now we'll take the final step to an even
more pessimistic view of the relationship, assuming neither
cooperation nor a usable design on the other side. . . .



Anticorruption Layer

New systems almost always have to be integrated with legacy or
other systems, which have their own models. Translation layers can
be simple, even elegant, when bridging well-designed BOUNDED

CONTEXTS with cooperative teams. But when the other side of the
boundary starts to leak through, the translation layer may take on a
more defensive tone.

  

When a new system is being built that must have a large
interface with another, the difficulty of relating the two models
can eventually overwhelm the intent of the new model
altogether, causing it to be modified to resemble the other
system's model, in an ad hoc fashion. The models of legacy
systems are usually weak, and even the exception that is well
developed may not fit the needs of the current project. Yet there
may be a lot of value in the integration, and sometimes it is an
absolute requirement.

The answer is not to avoid all integration with other systems. I've
been on projects where people enthusiastically set out to replace all



the legacy, but this is just too much to take on at once. Besides,
integrating with existing systems is a valuable form of reuse. On a
large project, one subsystem will often have to interface with several
other, independently developed subsystems. These will reflect the
problem domain differently. When systems based on different
models are combined, the need for the new system to adapt to the
semantics of the other system can lead to a corruption of the new
system's own model. Even when the other system is well designed, it
is not based on the same model as the client. And often the other
system is not well designed.

There are many hurdles in interfacing with an external system. For
example, the infrastructure layer must provide the means to
communicate with another system that might be on a different
platform or use different protocols. The data types of the other
system must be translated into those of your system. But often
overlooked is the certainty that the other system does not use the
same conceptual domain model.

It seems clear enough that errors will result if you take some data
from one system and misinterpret it in another. You may even corrupt
the database. But even so, this problem tends to sneak up on us
because we think that what we are transporting between systems is
primitive data, whose meaning is unambiguous and must be the
same on both sides. This assumption is usually wrong. Subtle yet
important differences in meaning arise from the way the data are
associated in each system. And even if primitive data elements do
have exactly the same meaning, it is usually a mistake to make the
interface to the other system operate at such a low level. A low-level
interface takes away the power of the other system's model to
explain the data and constrain its values and relationships, while
saddling the new system with the burden of interpreting primitive
data that is not in terms of its own model.

We need to provide a translation between the parts that adhere to
different models, so that the models are not corrupted with
undigested elements of foreign models.



Therefore:

Create an isolating layer to provide clients with functionality in
terms of their own domain model. The layer talks to the other
system through its existing interface, requiring little or no
modification to the other system. Internally, the layer translates
in both directions as necessary between the two models.

  

This discussion of a mechanism to link two systems might bring to
mind issues of transporting the data from one program to another or
from one server to another. I'll discuss the incorporation of the
technical communications mechanism shortly. But such details
shouldn't be confused with an ANTICORRUPTION LAYER, which is not a
mechanism for sending messages to another system. Rather, it is a
mechanism that translates conceptual objects and actions from one
model and protocol to another.

An ANTICORRUPTION LAYER can become a complex piece of software in
its own right. Next I'll outline some of the design considerations for
creating one.

Designing the Interface of the
ANTICORRUPTION LAYER

The public interface of the ANTICORRUPTION LAYER usually appears as
a set of SERVICES, although occasionally it can take the form of an
ENTITY. Building a whole new layer responsible for the translation
between the semantics of the two systems gives us an opportunity to
reabstract the other system's behavior and offer its services and
information to our system consistently with our model. It may not
even make sense, in our model, to represent the external system as
a single component. It may be best to use multiple SERVICES (or



occasionally ENTITIES), each of which has a coherent responsibility in
terms of our model.

Implementing the ANTICORRUPTION LAYER

One way of organizing the design of the ANTICORRUPTION LAYER is as a
combination of FACADES, ADAPTERS (both from Gamma et al. 1995),
and translators, along with the communication and transport
mechanisms usually needed to talk between systems.

We often have to integrate with systems that have large,
complicated, messy interfaces. This is an implementation issue, not
an issue of conceptual model differences that motivated the use of
ANTICORRUPTION LAYERS, but it is a problem you'll encounter trying to
create them. Translating from one model to another (especially if one
model is fuzzy) is a hard enough job without simultaneously dealing
with a subsystem interface that is hard to talk to. Fortunately, that is
what FACADES are for.

A FACADE is an alternative interface for a subsystem that simplifies
access for the client and makes the subsystem easier to use.
Because we know exactly what functionality of the other system we
want to use, we can create a FACADE that facilitates and streamlines
access to those features and hides the rest. The FACADE does not
change the model of the underlying system. It should be written
strictly in accordance with the other system's model. Otherwise, you
will at best diffuse responsibility for translation into multiple objects
and overload the FACADE and at worst end up creating yet another
model, one that doesn't belong to the other system or your own
BOUNDED CONTEXT. The FACADE belongs in the BOUNDED CONTEXT of the
other system. It just presents a friendlier face specialized for your
needs.

An ADAPTER is a wrapper that allows a client to use a different
protocol than that understood by the implementer of the behavior.
When a client sends a message to an ADAPTER, it is converted to a



semantically equivalent message and sent on to the "adaptee." The
response is converted and passed back. I'm using the term adapter
a little loosely, because the emphasis in Gamma et al. 1995 is on
making a wrapped object conform to a standard interface that clients
expect, whereas we get to choose the adapted interface, and the
adaptee is probably not even an object. Our emphasis is on
translation between two models, but I think this is consistent with the
intent of ADAPTER.

For each SERVICE we define, we need an ADAPTER that supports the
SERVICE'S interface and knows how to make equivalent requests of
the other system or its FACADE.

The remaining element is the translator. The ADAPTER'S job is to know
how to make a request. The actual conversion of conceptual objects
or data is a distinct, complex task that can be placed in its own
object, making them both much easier to understand. A translator
can be a lightweight object that is instantiated when needed. It needs
no state and does not need to be distributed, because it belongs with
the ADAPTER(S) it serves.

Those are the basic elements I use to create an ANTICORRUPTION

LAYER. There are a few other considerations.

Typically, the system under design (your subsystem) will be
initiating action, as implied by Figure 14.8. There are cases,
however, when the other subsystem may need to request
something of your subsystem or notify it of some event. An
ANTICORRUPTION LAYER can be bidirectional, defining SERVICES on
both interfaces with their own ADAPTERS, potentially using the
same translators with symmetrical translations. Although
implementing the ANTICORRUPTION LAYER doesn't usually require
any change to the other subsystem, it might be necessary in
order to make the other system call on SERVICES of the
ANTICORRUPTION LAYER.



Figure 14.8. The structure of an ANTICORRUPTION
LAYER

You'll usually need some communications mechanism to
connect the two subsystems, and they could well be on
separate servers. In this case, you have to decide where to
place these communication links. If you have no access to the
other subsystem, you may have to put the links between the
FACADE and the other subsystem. However, if the FACADE can be
integrated directly with the other subsystem, then a good option
is to put the communication link between the ADAPTER and
FACADE, because the protocol of the FACADE is presumably
simpler than what it covers. There also will be cases where the
entire ANTICORRUPTION LAYER can live with the other subsystem,
placing communication links or distribution mechanisms
between your subsystem and the SERVICES that make up the
ANTICORRUPTION LAYER's interface. These are implementation and
deployment decisions to be made pragmatically. They have no
bearing on the conceptual role of the ANTICORRUPTION LAYER.

If you do have access to the other subsystem, you may find that
a little refactoring over there can make your job easier. In
particular, try to write more explicit interfaces for the functionality
you'll be using, starting with automated tests, if possible.

Where integration requirements are extensive, the cost of
translation goes way up. It may be necessary to make choices



in the model of the system under design that keep it closer to
the external system, in order to make translation easier. Do this
very carefully, without compromising the integrity of the model. It
is only something to do selectively when translation difficulty
gets out of hand. If this approach seems the most natural
solution for much of the important part of the problem, consider
making your subsystem a CONFORMIST pattern, eliminating
translation.

If the other subsystem is simple or has a clean interface, you
may not need the FACADE.

Functionality can be added to the ANTICORRUPTION LAYER if it is
specific to the relationship of the two subsystems. An audit trail
for use of the external system or trace logic for debugging the
calls to the other interface are two useful features that come to
mind.

Remember, an ANTICORRUPTION LAYER is a means of linking two
BOUNDED CONTEXTS. Ordinarily, we are thinking of a system created by
someone else; we have incomplete understanding of the system and
little control over it. But that is not the only situation where you need
a little padding between subsystems. There are even situations in
which it makes sense to connect two subsystems of your own design
with an ANTICORRUPTION LAYER, if they are based on different models.
Presumably, in such a case, you will have full control over both sides
and typically can use a simple translation layer. However, if two
BOUNDED CONTEXTS have gone SEPARATE WAYS yet still have some need
of functional integration, an ANTICORRUPTION LAYER can reduce the
friction between them.

Example
 The Legacy Booking Application



In order to have a small, quick first release, we will write a minimal
application that can set up a shipment and then pass that to the
legacy system through a translation layer for booking and support
operations. Because we built the translation layer specifically to
protect our developing model from the influence of the legacy
design, this translation is an ANTICORRUPTION LAYER.

Initially, the ANTICORRUPTION LAYER will accept the objects representing
a shipment, convert them, pass them to the legacy system and
request a booking, and then capture the confirmation and translate it
back into the confirmation object of the new design. This isolation will
allow us to develop our new application mostly independently of the
old one, though we'll have to invest quite a bit in translation.

With each successive release, the new system can either take over
more functions of the legacy or simply add new value without
replacing existing capabilities, depending on later decisions. This
flexibility, and the ability to continually operate the combined system
while making a gradual transition, probably makes it worth the
expense to build the ANTICORRUPTION LAYER.

A Cautionary Tale

To protect their frontiers from raids by neighboring nomadic warrior
tribes, the early Chinese built the Great Wall. It was not an
impenetrable barrier, but it allowed a regulated commerce with
neighbors while providing an impediment to invasion and other
unwanted influence. For two thousand years it defined a boundary
that helped the Chinese agricultural civilization to define itself with
less disruption from the chaos outside.

Although China might not have become so distinct a culture without
the Great Wall, the Wall's construction was immensely expensive
and bankrupted at least one dynasty, probably contributing to its fall.
The benefits of isolation strategies must be balanced against their



costs. There is a time to be pragmatic and make measured revisions
to the model, so that it can fit more smoothly with foreign ones.

There is overhead involved in any integration, from full-on
CONTINUOUS INTEGRATION inside a single BOUNDED CONTEXT, through the
lesser commitments of SHARED KERNELS or CUSTOMER/SUPPLIER

DEVELOPER TEAMS, to the one-sidedness of the CONFORMIST and the
defensive posture of the ANTICORRUPTION LAYER. Integration can be
very valuable, but it is always expensive. We should be sure it is
really needed. . . .



Separate Ways

We must ruthlessly scope requirements. Two sets of functionality
with no indispensable relationship can be cut loose from each other.

  

Integration is always expensive. Sometimes the benefit is small.

In addition to the usual expense of coordinating teams, integration
forces compromises. The simple specialized model that can satisfy a
particular need must give way to the more abstract model that can
handle all situations. Perhaps some completely different technology
could provide certain features very easily, but it is difficult to
integrate. Maybe some team is just so hard to get along with that
nothing works very well when other teams try to collaborate with
them.

In many circumstances, integration provides no significant benefit. If
two functional parts do not call upon each other's functionality, or
require interactions between objects that are touched by both, or
share data during their operations, then integration, even through a



translation layer, may not be necessary. Just because features are
related in a use case does not mean they must be integrated.

Therefore:

Declare a BOUNDED CONTEXT to have no connection to the others
at all, allowing developers to find simple, specialized solutions
within this small scope.

The features can still be organized in middleware or the UI layer, but
there will be no sharing of logic, and an absolute minimum of data
transfer through translation layers�preferably none.

Example
 An Insurance Project Slims Down

One project team had set out to develop new software for insurance
claims that would integrate into one system everything a customer
service agent or a claims adjuster needed. After a year of effort,
team members were stuck. A combination of analysis paralysis and
a major up-front investment in infrastructure had found them with
nothing to show an increasingly impatient management. More
seriously, the scope of what they were trying to do was
overwhelming them.

A new project manager forced everyone into a room for a week to
form a new plan. First they made lists of requirements and tried to
estimate their difficulty and assign importance. They ruthlessly
chopped the difficult and unimportant ones. Then they started to
bring order to the remaining list. Many smart decisions were made in
that room that week, but in the end, only one turned out to be
important. At some point it was recognized that there were some
features for which integration provided little added value. For
example, adjusters needed access to some existing databases, and
their current access was very inconvenient. But, although the users



needed to have this data, none of the other features of the proposed
software system would use it.

Team members proposed various ways of providing easy access. In
one case, a key report could be exported as HTML and placed on
the intranet. In another case, adjusters could be provided with a
specialized query written using a standard software package. All
these functions could be integrated by organizing links on an intranet
page or by placing buttons on the user's desktop.

The team launched a set of small projects that attempted no more
integration than launching from the same menu. Several valuable
capabilities were delivered almost overnight. Dropping the baggage
of these extraneous features left a distilled set of requirements that
seemed for a while to give hope for delivery of the main application.

It could have gone that way, but unfortunately the team slipped back
into old habits. They paralyzed themselves again. In the end, their
only legacy turned out to be those small applications that had gone
their SEPARATE WAYS.

  

Taking SEPARATE WAYS forecloses some options. Although continuous
refactoring can eventually undo any decision, it is hard to merge
models that have developed in complete isolation. If integration turns
out to be needed after all, translation layers will be necessary and
may be complex. Of course, this is something you will face anyway.

Now, turning back to more cooperative relationships, let's look at
ways to scale up integration. . . .



Open Host Service

Typically for each BOUNDED CONTEXT, you will define a translation layer
for each component outside the CONTEXT with which you have to
integrate. Where integration is one-off, this approach of inserting a
translation layer for each external system avoids corruption of the
models with a minimum of cost. But when you find your subsystem in
high demand, you may need a more flexible approach.

  

When a subsystem has to be integrated with many others,
customizing a translator for each can bog down the team. There
is more and more to maintain, and more and more to worry
about when changes are made.

The team may be doing the same thing again and again. If there is
any coherence to the subsystem, it is probably possible to describe it
as a set of SERVICES that cover the common needs of other
subsystems.

It is a lot harder to design a protocol clean enough to be understood
and used by multiple teams, so it pays off only when the subsystem's
resources can be described as a cohesive set of SERVICES and when
there are a significant number of integrations. Under those
circumstances, it can make the difference between maintenance
mode and continuing development.

Therefore:

Define a protocol that gives access to your subsystem as a set
of SERVICES. Open the protocol so that all who need to integrate
with you can use it. Enhance and expand the protocol to handle
new integration requirements, except when a single team has
idiosyncratic needs. Then, use a one-off translator to augment



the protocol for that special case so that the shared protocol
can stay simple and coherent.

  

This formalization of communication implies some shared model
vocabulary�the basis of the SERVICE interfaces. As a result, the other
subsystems become coupled to the model of the OPEN HOST, and
other teams are forced to learn the particular dialect used by the
HOST team. In some situations, using a well-known PUBLISHED

LANGUAGE as the interchange model can reduce coupling and ease
understanding. . . .



Published Language

The translation between the models of two BOUNDED CONTEXTS

requires a common language.

  

When two domain models must coexist and information must pass
between them, the translation process itself can become complex
and hard to document and understand. If we are building a new
system, we will typically believe that our new model is the best
available, and so we will think in terms of translating directly into it.
But sometimes we are enhancing a set of older systems and trying
to integrate them. Choosing one messy model over the other may be
choosing the lesser of two evils.

Another situation: When businesses want to exchange information
with one another, how do they do it? Not only is it unrealistic to
expect one to adopt the domain model of the other, it may be
undesirable for both parties. A domain model is developed to solve
problems for its users; such a model may contain features that
needlessly complicate communication with another system. Also, if
the model underlying one of the applications is used as the
communications medium, it cannot be changed freely to meet new
needs, but must be very stable to support the ongoing
communication role.

Direct translation to and from the existing domain models may
not be a good solution. Those models may be overly complex
or poorly factored. They are probably undocumented. If one is
used as a data interchange language, it essentially becomes
frozen and cannot respond to new development needs.

The OPEN HOST SERVICE uses a standardized protocol for multiparty
integration. It employs a model of the domain for interchange
between systems, even though that model may not be used



internally by those systems. Here we go a step further and publish
that language, or find one that is already published. By publish I
simply mean that the language is readily available to the community
that might be interested in using it, and is sufficiently documented to
allow independent interpretations to be compatible.

Recently, the world of e-commerce has become very excited about a
new technology: Extensible Markup Language (XML) promises to
make interchange of data much easier. A very valuable feature of
XML is that, through the document type definition (DTD) or through
XML schemas, XML allows the formal definition of a specialized
domain language into which data can be translated. Industry groups
have begun to form for the purpose of defining a single standard
DTD for their industry so that, say, chemical formula information or
genetic coding can be communicated between many parties.
Essentially these groups are creating a shared domain model in the
form of a language definition.

Therefore:

Use a well-documented shared language that can express the
necessary domain information as a common medium of
communication, translating as necessary into and out of that
language.

The language doesn't have to be created from scratch. Many years
ago, I was contracted by a company that had a software product
written in Smalltalk that used DB2 to store its data. The company
wanted the flexibility to distribute the software to users without a DB2
license and contracted me to build an interface to Btrieve, a lighter-
weight database engine that had a free runtime distribution license.
Btrieve is not fully relational, but my client was using only a small
part of DB2's power and was within the lowest common denominator
of the two databases. The company's developers had built on top of
DB2 some abstractions that were in terms of the storage of objects. I
decided to use this work as the interface for my Btrieve component.



This approach did work. The software smoothly integrated with my
client's system. However, the lack of a formal specification or
documentation of the abstractions of persistent objects in the client's
design meant a lot of work for me to figure out the requirements of
the new component. Also, there wasn't much opportunity to reuse
the component to migrate some other application from DB2 to
Btrieve. And the new software more deeply entrenched the
company's model of persistence, so that refactoring that model of
persistent objects would have been even more difficult.

A better way might have been to identify the subset of the DB2
interface that the company was using and then support that. The
interface of DB2 is made up of SQL and a number of proprietary
protocols. Although it is very complex, the interface is tightly
specified and thoroughly documented. The complexity would have
been mitigated because only a small subset of the interface was
being used. If a component had been developed that emulated the
necessary subset of the DB2 interface, it could have been very
effectively documented for developers simply by identifying the
subset. The application it was integrated into already knew how to
talk to DB2, so little additional work would have been needed. Future
redesign of the persistence layer would have been constrained only
to the use of the DB2 subset, just as before the enhancement.

The DB2 interface is an example of a PUBLISHED LANGUAGE. In this
case, the two models are not in the business domain, but all the
principles apply just the same. Because one of the models in the
collaboration is already a PUBLISHED LANGUAGE, there is no need to
introduce a third language.

Example
 A PUBLISHED LANGUAGE for Chemistry

Innumerable programs are used to catalog, analyze, and manipulate
chemical formulas in industry and academia. Exchanging data has



always been difficult, because almost every program uses a different
domain model to represent chemical structures. And of course, most
of them are written in languages, such as FORTRAN, that do not
express the domain model very fully anyway. Whenever anyone
wanted to share data, they had to unravel the details of the other
system's database and work out some sort of translation scheme.

Enter the Chemical Markup Language (CML), a dialect of XML
intended as a common interchange language for this domain,
developed and managed by a group representing academics and
industry (Murray-Rust et al. 1995).

Chemical information is very complex and diverse, and it changes all
the time with new discoveries. So they developed a language that
could describe the basics, such as the chemical formulas of organic
and inorganic molecules, protein sequences, spectra, or physical
quantities.

Now that the language has been published, tools can be developed
that would never have been worth the trouble to write before, when
they would have only been usable for one database. For example, a
Java application, called the JUMBO Browser, was developed that
creates graphical views of chemical structures stored in CML. So if
you put your data in the CML format, you'll have access to such
visualization tools.

In fact, CML gained a double advantage by using XML, a sort of
"published meta-language." The learning curve of CML is flattened
by people's familiarity with XML; the implementation is eased by
various off-the-shelf tools, such as parsers; and documentation is
helped by the many books written on all aspects of handling XML.

Here is a tiny sample of CML. It is only vaguely intelligible to
nonspecialists like myself, but the principle is clear.

<CML.ARR ID="array3" EL.TYPE=FLOAT NAME="ATOMIC 
ORBITAL ELECTRON POPULATIONS" SIZE=30 GLO 
.ENT=CML.THE.AOEPOPS> 



   1.17947   0.95091   0.97175   1.00000   1.17947  
0.95090   0.97174   1.00000 
   1.17946   0.98215   0.94049   1.00000   1.17946  
0.95091   0.97174   1.00000 
   1.17946   0.95091   0.97174   1.00000   1.17946  
0.98215   0.94049   1.00000 
   0.89789   0.89790   0.89789   0.89789   0.89790  
0.89788 
</CML.ARR> 

  



Unifying an Elephant

 
It was six men of Indostan

 To learning much inclined,
 Who went to see the Elephant

 (Though all of them were blind),
 That each by observation

 Might satisfy his mind.
  

The First approached the Elephant,
 And happening to fall

 Against his broad and sturdy side,
 At once began to bawl:

 "God bless me! but the Elephant
 Is very like a wall!"

                    . . .
  

The Third approached the animal,
 And happening to take

 The squirming trunk within his hands,
 Thus boldly up and spake:

 "I see," quoth he, "the Elephant
 Is very like a snake."

  
The Fourth reached out his eager hand,

 And felt about the knee.
 "What most this wondrous beast is like

 Is mighty plain," quoth he;
 "'Tis clear enough the Elephant

 Is very like a tree!"
                    . . .

  
The Sixth no sooner had begun

 About the beast to grope,
 



Than, seizing on the swinging tail
 That fell within his scope,

 "I see," quoth he, "the Elephant
 Is very like a rope!"

  
And so these men of Indostan

 Disputed loud and long,
 Each in his own opinion
 Exceeding stiff and strong,

 Though each was partly in the right,
 And all were in the wrong!

                  . . .
 

�From "The Blind Men and the Elephant," by John Godfrey
Saxe (1816�1887), based on a story in the Udana, a Hindu
text

Depending on their goals in interacting with the elephant, the various
blind men may still be able to make progress, even if they don't fully
agree on the nature of the elephant. If no integration is required, then
it doesn't matter that the models are not unified. If they require some
integration, they may not actually have to agree on what an elephant
is, but they will get a lot of value from merely recognizing that they
don't agree. This way, at least they don't unknowingly talk at cross-
purposes.

The diagrams in Figure 14.9 are UML representations of the models
the blind men have formed of the elephant. Having established
separate BOUNDED CONTEXTS, the situation is clear enough for them to
work out a way to communicate with each other about the few
aspects they care about in common: the location of the elephant,
perhaps.

Figure 14.9. Four contexts: no integration



Figure 14.10. Four contexts: minimal integration

As the blind men want to share more information about the elephant,
the value of sharing a single BOUNDED CONTEXT goes up. But unifying
the disparate models is a challenge. None of them is likely to give up
his model and adopt one of the others. After all, the man who
touched the tail knows the elephant is not like a tree, and that model
would be meaningless and useless to him. Unifying multiple models
almost always means creating a new model.

With some imagination and continued discussion (probably heated),
the blind men could eventually recognize that they have been
describing and modeling different parts of a larger whole. For many
purposes, a part-whole unification may not require much additional
work. At least the first stage of integration only requires figuring out
how the parts are related. It may be adequate for some needs to
view an elephant as a wall, held up by tree trunks, with a rope at one
end and a snake at the other.

Figure 14.11. One context: crude integration



The unification of the various elephant models is easier than most
such mergers. Unfortunately, it is the exception when two models
purely describe different parts of the whole, although this is often one
aspect of the difference. Matters are more difficult when two models
are looking at the same part in a different way. If two men had
touched the trunk and one described it as a snake and the other
described it as a fire hose, they would have had more difficulty.
Neither can accept the other's model, because it contradicts his own
experience. In fact, they need a new abstraction that incorporates
the "aliveness" of a snake with the water-shooting functionality of a
fire hose, but one that leaves out the inapt implications of the first
models, such as the expectation of possibly venomous fangs, or the
ability to be detached from the body and rolled up into a
compartment in a fire truck.

Even though we have combined the parts into a whole, the resulting
model is crude. It is incoherent, lacking any sense of following
contours of an underlying domain. New insights could lead to a
deeper model in a process of continuous refinement. New
application requirements can also force the move to a deeper model.
If the elephant starts moving, the "tree" theory is out, and our blind
modelers may break through to the concept of "legs."

Figure 14.12. One context: deeper model



This second pass of model integration tends to slough off incidental
or incorrect aspects of the individual models and creates new
concepts�in this case, "animal" with parts "trunk," "leg," "body," and
"tail"�each of which has its own properties and clear relationships to
other parts. Successful model unification, to a large extent, hinges
on minimalism. An elephant trunk is both more and less than a
snake, but the "less" is probably more important than the "more."
Better to lack the water-spewing ability than to have an incorrect
poison-fang feature.

If the goal is simply to find the elephant, then translating between
each model's expression of location will do. When more integration is
needed, the unified model doesn't have to reach full maturity in the
first version. It may be adequate for some needs to view an elephant
as a wall, held up by tree trunks, with a rope at one end and a snake
at the other. Later, driven by new requirements and by improved
understanding and communication, the model can be deepened and
refined.

Recognizing multiple, clashing domain models is really just facing
reality. By explicitly defining a context within which each model
applies, you can maintain the integrity of each and clearly see the
implications of any particular interface you want to create between
the two. There is no way for the blind men to see the whole elephant,
but their problem would be manageable if only they recognized the
incompleteness of their perception.



Choosing Your Model Context Strategy

It is important always to draw the CONTEXT MAP to reflect the current
situation at any given time. Once that's done, though, you may very
well want to change that reality. Now you can begin to consciously
choose CONTEXT boundaries and relationships. Here are some
guidelines.

Team Decision or Higher

First, teams have to make decisions about where to define BOUNDED

CONTEXTS and what sort of relationships to have between them.
Teams have to make these decisions, or at least the decisions have
to be propagated to the entire team and understood by everyone.
Infact, such decisions often involve agreements beyond your own
team. On the merits, decisions about whether to expand or to
partition BOUNDED CONTEXTS should be based on the cost-benefit
trade-off between the value of independent team action and the
value of direct and rich integration. In practice, political relationships
between teams often determine how systems are integrated. A
technically advantageous unification may be impossible because of
reporting structure. Management may dictate an unwieldy merger.
You won't always get what you want, but at least you may be able to
assess and communicate something of the cost incurred, and take
steps to mitigate it. Start with a realistic CONTEXT MAP and be
pragmatic in choosing transformations.

Putting Ourselves in Context

When we are working on a software project, we are interested
primarily in the parts of the system our team is changing (the
"system under design") and secondarily in the systems it will



communicate with. In a typical case, the system under design is
going to get carved into one or two BOUNDED CONTEXTS that the main
development teams will be working on, perhaps with another
CONTEXT or two in a supporting role. In addition to that are the
relationships between these CONTEXTS and the external systems.
This is a simple, typical view, to give some rough expectation for
what you are likely to encounter.

We really are part of that primary CONTEXT we are working in, and
that is bound to be reflected in our CONTEXT MAP. This isn't a problem
if we are aware of the bias and are mindful of when we step outside
the limits of that MAP's applicability.

Transforming Boundaries

There are an unlimited variety of situations and an unlimited number
of options for drawing the boundaries of BOUNDED CONTEXTS. But
typically the struggle is to balance some subset of the following
forces:

Favoring Larger BOUNDED CONTEXTS

Flow between user tasks is smoother when more is handled
with a unified model.

It is easier to understand one coherent model than two distinct
ones plus mappings.

Translation between two models can be difficult (sometimes
impossible).

Shared language fosters clear team communication.



Favoring Smaller BOUNDED CONTEXTS

Communication overhead between developers is reduced.

CONTINUOUS INTEGRATION is easier with smaller teams and code
bases.

Larger contexts may call for more versatile abstract models,
requiring skills that are in short supply.

Different models can cater to special needs or encompass the
jargon of specialized groups of users, along with specialized
dialects of the UBIQUITOUS LANGUAGE.

Deep integration of functionality between different BOUNDED CONTEXTS

is impractical. Integration is limited to those parts of one model that
can be rigorously stated in terms of the other model, and even this
level of integration may take considerable effort. This makes sense
when there will be a small interface between two systems.

Accepting That Which We Cannot Change:
Delineating the External Systems

It is best to start with the easiest decisions. Some subsystems will
clearly not be in any BOUNDED CONTEXT of the system under
development. Examples would be major legacy systems that you are
not immediately replacing and external systems that provide services
you'll need. You can identify these immediately and prepare to
segregate them from your design.

Here we must be careful about our assumptions. It is convenient to
think of each of these systems as constituting its own BOUNDED

CONTEXT, but most external systems only weakly meet the definition.



First, a BOUNDED CONTEXT is defined by an intention to unify the model
within certain boundaries. You may have control of maintenance of
the legacy system, in which case you can declare the intention, or
the legacy team may be well coordinated and be carrying out an
informal form of CONTINUOUS INTEGRATION, but don't take it for granted.
Check into it, and if the development is not well integrated, be
particularly cautious. It is not unusual to find semantic contradictions
in different parts of such systems.

Relationships with the External Systems

There are three patterns that can apply here. First, to consider
SEPARATE WAYS. Yes, you wouldn't have included them if you didn't
need integration. But be really sure. Would it be sufficient to give the
user easy access to both systems? Integration is expensive and
distracting, so unburden your project as much as you can.

If the integration is really essential, you can choose between two
extremes: CONFORMIST or ANTICORRUPTION LAYER. It is not fun to be a
CONFORMIST. Your creativity and your options for new functionality will
be limited. In building a major new system, it is unlikely to be
practical to adhere to the model of a legacy or external system (after
all, why are you building a new system?). However, sticking with the
legacy model may be appropriate in the case of peripheral
extensions to a large system that will continue to be the dominant
system. Examples of this choice include the lightweight decision-
support tools that are often written in Excel or other simple tools. If
your application is really an extension to the existing system and
your interface with that system is going to be large, the translation
between CONTEXTS can easily be a bigger job than the application
functionality itself. And there is still some room for good design work,
even though you have placed yourself in the BOUNDED CONTEXT of the
other system. If there is a discernable domain model behind the
other system, you can improve your implementation by making that
model more explicit than it was in the old system, just as long as you



strictly conform to the old model. If you decide on a CONFORMIST

design, you must do it wholeheartedly. You restrict yourself to
extension only, with no modification of the existing model.

When the functionality of the system under design is going to be
more involved than an extension to an existing system, where your
interface to the other system is small, or where the other system is
very badly designed, you'll really want your own BOUNDED CONTEXT,
which means building a translation layer, or even an ANTICORRUPTION

LAYER.

The System Under Design

The software your project team is actually building is the system
under design. You can declare BOUNDED CONTEXTS within this zone
and apply CONTINUOUS INTEGRATION within each to keep them unified.
But how many should you have? What relationships should they
have to each other? The answers are less cut and dried than with
the external systems because we have more freedom and control.

It could be quite simple: a single BOUNDED CONTEXT for the entire
system under design. For example, this would be a likely choice for a
team of fewer than ten people working on highly interrelated
functionality.

As the team grows larger, CONTINUOUS INTEGRATION may become
difficult (although I have seen it maintained for somewhat larger
teams). You may look for a SHARED KERNEL and break off relatively
independent sets of functionality into separate BOUNDED CONTEXTS,
each with fewer than ten people. If all of the dependencies between
two of these go in one direction, you could set up CUSTOMER/SUPPLIER

DEVELOPMENT TEAMS.

You may recognize that the mindsets of two groups are so different
that their modeling efforts constantly clash. It may be that they
actually need quite different things from the model, it may be just a



difference in background knowledge, or it may be a result of the
management structure the project is embedded in. If the cause of the
clash is something you can't change, or don't want to change, you
may choose to allow the models to go SEPARATE WAYS. Where
integration is needed, a translation layer can be developed and
maintained jointly by the two teams as the single point of CONTINUOUS

INTEGRATION. This is in contrast with integration with external systems,
where the ANTICORRUPTION LAYER typically has to accommodate the
other system as is and without much support from the other side.

Generally speaking, there is a correspondence of one team per
BOUNDED CONTEXT. One team can maintain multiple BOUNDED

CONTEXTS, but it is hard (though not impossible) for multiple teams to
work on one together.

Catering to Special Needs with Distinct
Models

Different groups within the same business have often developed
their own specialized terminologies, which may have diverged from
one another. These local jargons may be very precise and tailored to
their needs. Changing them (for example, by imposing a
standardized, enterprise-wide terminology) requires extensive
training and analysis to resolve the differences. Even then, the new
terminology may not serve as well as the finely tuned version they
already had.

You may decide to cater to these special needs in separate BOUNDED

CONTEXTS, allowing the models to go SEPARATE WAYS, except for
CONTINUOUS INTEGRATION of translation layers. Different dialects of the
UBIQUITOUS LANGUAGE will evolve around these models and the
specialized jargon they are based on. If the two dialects have a lot of
overlap, a SHARED KERNEL may provide the needed specialization
while minimizing the translation cost.



Where integration is not needed, or is relatively limited, this allows
continued use of customary terminology and avoids corruption of the
models. It also has its costs and risks.

The loss of shared language will reduce communication.

There is extra overhead in integration.

There will be some duplication of effort, as different models of
the same business activities and entities evolve.

But perhaps the biggest risk is that it can become an argument
against change and a justification for any quirky, parochial model.
How much do you need to tailor this individual part of the system to
meet specialized needs? Most important, how valuable is the
particular jargon of this user group? You have to weigh the value of
more in-dependent action of teams against the risks of translation,
keeping an eye out for rationalizing terminology variations that have
no value.

Sometimes a deep model emerges that can unify these distinct
languages and satisfy both groups. The catch is that deep models
emerge later in the life cycle, after a lot of development and
knowledge crunching, if at all. You can't plan on a deep model; you
just have to accept the opportunity when it arises, change your
strategy, and refactor.

Keep in mind that, where integration requirements are extensive, the
cost of translation goes way up. Some coordination of the teams,
from the pinpoint modifications of one object that has a complicated
translation ranging up to a SHARED KERNEL, can make translation
easier while still not requiring full unification.

Deployment



Coordinating the packaging and deployment of complex systems is
one of those boring tasks that are almost always a lot harder than
they look. The choice of BOUNDED CONTEXT strategy has an impact on
the deployment. For example, when CUSTOMER/SUPPLIER TEAMS deploy
new versions, they have to coordinate with each other to release
versions that have been tested together. Both code and data
migrations have to work in these combinations. In a distributed
system, it may help to keep the translation layers between CONTEXTS

together within a single process, so that you don't have multiple
versions coexisting.

Even deployment of the components of a single BOUNDED CONTEXT

can be challenging when data migration takes time or when
distributed systems can't be updated instantaneously, resulting in
two versions of the code and data coexisting.

Many technical considerations come into play depending on the
deployment environment and technology. But the BOUNDED CONTEXT

relationships can point you toward the hot spots. The translation
interfaces have been marked out.

The feasibility of a deployment plan should feed back into the
drawing of the CONTEXT boundaries. When two CONTEXTS are bridged
by a translation layer, one CONTEXT can be updated just so a new
translation layer provides the same interface to the other CONTEXT. A
SHARED KERNEL imposes a much greater burden of coordination, not
just in development but also in deployment. SEPARATE WAYS can make
life much simpler.

The Trade-off

To sum up these guidelines, there is a range of strategies for unifying
or integrating models. In general terms, you will trade off the benefits
of seamless integration of functionality against the additional effort of
coordination and communication. You trade more independent action



against smoother communication. More ambitious unification
requires control over the design of the subsystems involved.

Figure 14.13. The relative demands of CONTEXT
relationship patterns

When Your Project Is Already Under Way

Most likely, you are not starting a project but are looking to improve a
project that is already under way. In this case, the first step is to
define BOUNDED CONTEXTS according to the way things are now. This
is crucial. To be effective, the CONTEXT MAP must reflect the true
practice of the teams, not the ideal organization you might decide on
by following the guidelines just described.

Once you have delineated your true current BOUNDED CONTEXTS and
described the relationships they currently have, the next step is to
tighten up the team's practices around that current organization.



Improve your CONTINUOUS INTEGRATION within the CONTEXTS. Refactor
any stray translation code into your ANTICORRUPTION LAYERS. Name the
existing BOUNDED CONTEXTS and make sure they are in the UBIQUITOUS

LANGUAGE of the project.

Now you are ready to consider changes to the boundaries and
relationships themselves. These changes will naturally be driven by
the same principles I've already described for a new project, but they
will have to be bitten off in small pieces, chosen pragmatically to give
the most value for the least effort and disruption.

The next section discusses how to go about actually making
changes to your CONTEXT boundaries once you have decided to.



Transformations

Like any other aspect of modeling and design, decisions about
BOUNDED CONTEXTS are not irrevocable. Inevitably, there will be many
cases in which you have to change your initial decision about the
boundaries and relationships between BOUNDED CONTEXTS. Generally
speaking, breaking up CONTEXTS is pretty easy, but merging them or
changing the relationships between them is challenging. I'll describe
a few representative changes that are difficult yet important. These
transformations are usually much too big to be taken in a single
refactoring or possibly even in a single project iteration. For that
reason, I've outlined game plans for making these transformations as
a series of manageable steps. These are, of course, guidelines that
you will have to adapt to your particular circumstances and events.

Merging CONTEXTS: SEPARATE WAYS  SHARED
KERNEL

Translation overhead is too high. Duplication is too obvious. There
are many motivations for merging BOUNDED CONTEXTS. This is hard to
do. It's not too late, but it takes some patience.

Even if your eventual goal is to merge completely to a single CONTEXT

with CONTINUOUS INTEGRATION, start by moving to a SHARED KERNEL.

1. Evaluate the initial situation. Be sure that the two CONTEXTS
are indeed internally unified before beginning to unify them
with each other.

Set up the process. You'll need to decide how the code will be
shared and what the module naming conventions will be. There must



be at least weekly integration of the SHARED KERNEL code. And it must
have a test suite. Set this up before developing any shared code.
(The test suite will be empty, so it should be easy to pass!)

Choose some small subdomain to start with�something duplicated in
both CONTEXTS, but not part of the CORE DOMAIN. This first merger is
going to establish the process, so it is best to use something simple
and relatively generic or noncritical. Examine the integrations and
translations that already exist. Choosing something that is being
translated has the advantage of starting out with a proven
translation, plus you'll be thinning your translation layer.

At this point, you have two models that address the same
subdomain. There are basically three approaches to merging. You
can choose one model and refactor the other CONTEXT to be
compatible. This decision can be made wholesale, setting the
intention of systematically replacing one CONTEXT'S model and
retaining the coherence of a model that was developed as a unit. Or
you can choose one piece at a time, presumably ending up with the
best of both (but taking care not to end up with a jumble).

The third option is to find a new model, presumably deeper than
either of the originals, capable of assuming the responsibilities of
both.

4. Form a group of two to four developers, drawn from both
teams, to work out a shared model for the subdomain.
Regardless of how the model is derived, it must be ironed
out in detail. This includes the hard work of identifying
synonyms and mapping any terms that are not already
being translated. This joint team outlines a basic set of
tests for the model.



Developers from either team take on the task of implementing the
model (or adapting existing code to be shared), working out details
and making it function. If these developers run into problems with the
model, they reconvene the team from step 3 and participate in any
necessary revisions of the concepts.

Developers of each team take on the task of integrating with the new
SHARED KERNEL.

Remove translations that are no longer needed.

At this point, you will have a very small SHARED KERNEL, with a
process in place to maintain it. In subsequent project iterations,
repeat steps 3 through 7 to share more. As the processes firm up
and the teams gain confidence, you can take on more complicated
subdomains, multiple ones at the same time, or subdomains that are
in the CORE DOMAIN.

A note: As you take on more domain-specific parts of the models,
you may encounter cases where the two models have conformed to
the specialized jargon of different user communities. It is wise to
defer merging these into the SHARED KERNEL unless a breakthrough to
a deep model has occurred, providing you with a language capable
of superseding both specialized ones. An advantage of a SHARED

KERNEL is that you can have some of the advantages of CONTINUOUS

INTEGRATION while retaining some of the advantages of SEPARATE

WAYS.

Those are some guidelines for merging into a SHARED KERNEL. Before
going ahead, consider one alternative that satisfies some of the
needs addressed by this transformation. If one of the two models is
definitely preferred, consider shifting toward it without integrating.
Instead of sharing common subdomains, just systematically transfer



full responsibility for those subdomains from one BOUNDED CONTEXT to
the other by refactoring the applications to call on the model of the
more favored CONTEXT, and making any enhancements that model
needs. Without any ongoing integration overhead, you have
eliminated redundancy. Potentially (but not necessarily), the more
favored BOUNDED CONTEXT could eventually take over completely, and
you'll have created the same effect as a merger. In the transition
(which can be quite long or indefinite), this will have the usual
advantages and disadvantages of going SEPARATE WAYS, and you
have to weigh them against the pros and cons of a SHARED KERNEL.

Merging CONTEXTS: SHARED KERNEL 
CONTINUOUS INTEGRATION

If your SHARED KERNEL is expanding, you may be lured by the
advantages of full unification of the two BOUNDED CONTEXTS. This is
not just a matter of resolving the model differences. You are going to
be changing team structures and ultimately the language people
speak.

Start by preparing the people and the teams.

1. Be sure that all the processes needed for CONTINUOUS
INTEGRATION (shared code ownership, frequent integration,
and so on) are in place on each team, separately.
Harmonize integration procedures on the two teams so that
everyone is doing things in the same way.

Start circulating team members between teams. This will create a
pool of people who understand both models, and will begin to
connect the people of the two teams.



Clarify the distillation of each model individually. (See Chapter 15.)

At this point, confidence should be high enough to begin merging the
core domain into the SHARED KERNEL. This can take several iterations,
and sometimes temporary translation layers are needed between the
newly shared parts and the not-yet-shared parts. Once into merging
the CORE DOMAIN, it is best to go pretty fast. It is a high-overhead
phase, fraught with errors, and should be shortened as much as
possible, taking priority over most new development. But don't take
on more than you can handle.

To merge the CORE models, you have a few choices. You can stick
with one model and modify the other to be compatible with it, or you
can create a new model of the subdomain and adapt both contexts
to use it. Watch out if the two models have been tailored to address
distinct user needs. You may need the specialized power of both
original models. This calls for developing a deeper model that can
supersede both original models. Developing a deeper unifying model
is very difficult, but if you are committed to the full merger of the two
CONTEXTS, you no longer have the option of multiple dialects. There
will be a reward in terms of the clarity of integration of the resulting
model and code. Be careful that it doesn't come at the cost of your
ability to address the specialized needs of your users.

5. As the SHARED KERNEL grows, increase the integration
frequency to daily and finally to CONTINUOUS INTEGRATION.

As the SHARED KERNEL approaches the point of encompassing all of
the two former BOUNDED CONTEXTS, you will find yourself with either
one large team or two smaller teams that have a shared code base
that they INTEGRATE CONTINUOUSLY, and that trade members back and
forth frequently.



Phasing Out a Legacy System

All good things must come to an end, even legacy computer
software. But it doesn't happen on its own. These old systems can
be so woven into the business and other systems that extricating
them can take many years. Fortunately, it doesn't have to be done all
at once.

The possibilities are too various for me to do more than scratch the
surface here. But I'll discuss a common case: An old system that is
used daily in the business has been supplemented recently by a
handful of more modern systems that communicate with the legacy
system through an ANTICORRUPTION LAYER.

One of the first steps should be to decide on a testing strategy.
Automated unit tests should be written for new functionality in the
new systems, but phasing out legacy introduces special testing
needs. Some organizations run new and old in parallel for some
period of time.

In any given iteration:

1. Identify specific functionality of the legacy that could be
added to one of the favored systems within a single
iteration.

Identify additions that will be required in the ANTICORRUPTION LAYER.

Implement.



Deploy.

Sometimes it will be necessary to spend more than one iteration
writing equivalent functionality to a unit that can be phased out of the
legacy, but still plan the new functions in small, iteration-sized units,
only waiting multiple iterations for deployment.

Deployment is another point at which too much variation exists to
cover all the bases. It would be nice for development if these small,
incremental changes could be rolled out to production, but usually it
is necessary to organize bigger releases. The users must be trained
to use the new software. A parallel period sometimes must be
completed successfully. Many logistical problems will have to be
worked out.

Once it is finally running in the field:

5. Identify any unnecessary parts of the ANTICORRUPTION LAYER
and remove them.

Consider excising the now-unused modules of the legacy system,
though this may not turn out to be practical. Ironically, the better
designed the legacy system is, the easier it will be to phase it out.
But badly designed software is hard to dismantle a little at a time. It
may be possible to just ignore the unused parts until a later time
when the remainder has been phased out and the whole thing can
be switched off.

Repeat this over and over. The legacy system should become less
involved in the business, and eventually it will be possible to see the
light at the end of the tunnel and finally switch off the old system.
Meanwhile, the ANTICORRUPTION LAYER will alternately shrink and swell
as various combinations increase or decrease the interdependence
between the systems. All else being equal, of course, you should
migrate first those functions that lead to smaller ANTICORRUPTION



LAYERS. But other factors are likely to dominate, and you may have to
live with some hairy translations during some transitions.

Open Host Service  Published Language

You have been integrating with other systems with a series of ad hoc
protocols, but the maintenance burden is mounting as more systems
want access, or perhaps the interaction is becoming very difficult to
understand. You need to formalize the relationship between the
systems with a PUBLISHED LANGUAGE.

1. If an industry-standard language is available, evaluate it
and use it if at all possible.

If no standard or prepublished language is available, then begin by
sharpening up the CORE DOMAIN of the system that will serve as the
host. (See Chapter 15.)

Use the CORE DOMAIN as the basis of an interchange language, using
a standard interchange paradigm such as XML, if at all possible.

Publish the new language to all involved in the collaboration (at
least).

If a new system architecture is involved, publish that too.



Build translation layers for each collaborating system.

Switch over.

At this point, additional collaborators should be able to enter with
minimal disruption.

Remember, the PUBLISHED LANGUAGE must be stable, yet you'll still
need the freedom to change the host's model as you continue your
relentless refactoring. Therefore, do not equate the interchange
language and the model of the host. Keeping them close together
will reduce translation overhead, and you may choose to make your
host a CONFORMIST. But reserve the right to beef up the translation
layer and diverge if the cost-benefit trade-off favors that.

Project leaders should define BOUNDED CONTEXTS based on functional
integration requirements and relationships of development teams.
Once BOUNDED CONTEXTS and a CONTEXT MAP are explicitly defined and
respected, then logical consistency should be protected. Related
communication problems will at least be exposed so they can be
dealt with.

However, sometimes model contexts, whether consciously bounded
or naturally occurring, are misapplied to solve problems other than
logical inconsistency within a system. The team may find that the
model of a large CONTEXT seems too complex to comprehend as a
whole, or to analyze completely. By choice or by chance, this often
leads to breaking down the CONTEXTS into more manageable pieces.
This fragmentation leads to lost opportunities. Now, it is worth
scrutinizing a decision to establish a large model in a broad CONTEXT,
and if it is not organizationally or politically possible to keep together,
if it is in reality fragmenting, then redraw the map and define
boundaries you can keep. But if a large BOUNDED CONTEXT addresses



compelling integration needs, and if it seems feasible apart from the
complexity of the model itself, then breaking up the CONTEXT may not
be the best answer.

There are other means of making large models tractable that should
be considered before making this sacrifice. The next two chapters
focus on managing complexity within a big model by applying two
more broad principles: distillation and large-scale structure.



Chapter Fifteen. Distillation

These four equations, along with the definitions of their terms
and the body of mathematics they rest on, express the entirety
of classical nineteenth-century electromagnetism.

�James Clerk Maxwell, A Treatise on Electricity and
Magnetism, 1873

How do you focus on your central problem and keep from drowning
in a sea of side issues? A LAYERED ARCHITECTURE separates domain
concepts from the technical logic that makes a computer system run,
but in a large system, even the isolated domain may be
unmanageably complex.

Distillation is the process of separating the components of a mixture
to extract the essence in a form that makes it more valuable and
useful. A model is a distillation of knowledge. With every refactoring
to deeper insight, we abstract some crucial aspect of domain
knowledge and priorities. Now, stepping back for a strategic view,
this chapter looks at ways to distinguish broad swaths of the model
and distill the domain model as a whole.

As with many chemical distillations, the separated by-products are
themselves made more valuable by the distillation process (as
GENERIC SUBDOMAINS and COHERENT MECHANISMS), but the effort is
motivated by the desire to extract that one particularly valuable part,



the part that distinguishes our software and makes it worth building:
the "CORE DOMAIN."

Strategic distillation of a domain model does all of the following:

1. Aids all team members in grasping the overall design of the
system and how it fits together

Facilitates communication by identifying a core model of
manageable size to enter the UBIQUITOUS LANGUAGE

Guides refactoring

Focuses work on areas of the model with the most value

Guides outsourcing, use of off-the-shelf components, and decisions
about assignments

This chapter lays out a systematic approach to strategic distillation of
the CORE DOMAIN, and it explains how to effectively share a view of it
within the team and provides the language to talk about what we are
doing.

Figure 15.1. A navigation map for strategic distillation



Like a gardener pruning a tree, clearing the way for the growth of the
main branches, we are going to apply a suite of techniques to hew
away distractions in the model and focus our attention on the part
that matters most. . . .



Core Domain

In designing a large system, there are so many contributing
components, all complicated and all absolutely necessary to
success, that the essence of the domain model, the real
business asset, can be obscured and neglected.

A system that is hard to understand is hard to change. The effect of
a change is hard to foresee. A developer who wanders outside his or
her own area of familiarity gets lost. (This is particularly true when
bringing new people into a team, but even an established member of
the team will struggle unless code is very expressive and organized.)
This forces people to specialize. When developers confine their work
to specific modules, it further reduces knowledge transfer. With the
compartmentalization of work, smooth integration of the system
suffers, and flexibility in assigning work is lost. Duplication crops up
when a developer does not realize that a behavior already exists
elsewhere, and so the system becomes even more complex.



Those are some of the consequences of any design that is hard to
understand, but there is another, equally serious risk from losing the
big picture of the domain:

The harsh reality is that not all parts of the design are going to
be equally refined. Priorities must be set. To make the domain
model an asset, the model's critical core has to be sleek and
fully leveraged to create application functionality. But scarce,
highly skilled developers tend to gravitate to technical
infrastructure or neatly definable domain problems that can be
understood without specialized domain knowledge.

Such parts of the system seem interesting to computer scientists,
and are perceived to build transferable professional skills and
provide better resume material. The specialized core, that part of the
model that really differentiates the application and makes it a
business asset, typically ends up being put together by less skilled
developers who work with DBAs to create a data schema and then
code feature-by-feature without drawing on any conceptual power in
the model at all.

Poor design or implementation of this part of the software leads to an
application that never does compelling things for the users, no
matter how well the technical infrastructure works, no matter how
nice the supporting features are. This insidious problem can take
root when a project lacks a sharp picture of the overall design and
the relative significance of the various parts.

One of the most successful projects I've joined initially suffered from
this syndrome. The goal was to develop a very complex syndicated
loan system. Most of the strong talent was happily working on
database mapping layers and messaging interfaces while the
business model was in the hands of developers new to object
technology.

The single exception, an experienced object developer working on a
domain problem, devised a way of attaching comments to any of the
long-lived domain objects. These comments could be organized so



that traders could see the rationale they or others recorded for some
past decision. He also built an elegant user interface that gave
intuitive access to the flexible features of the comment model.

These features were useful and well designed. They went into
production.

Unfortunately, they were peripheral. This talented developer modeled
his interesting, generic way of commenting, implemented it cleanly,
and put it into users' hands. Meanwhile an incompetent developer
was turning the mission-critical "loan" module into an
incomprehensible tangle that the project very nearly did not recover
from.

The planning process must drive resources to the most crucial points
in the model and design. To do that, those points must be identified
and understood by everyone during planning and development.

Those parts of the model distinctive and central to the purposes of
the intended applications make up the CORE DOMAIN. The CORE DOMAIN

is where the most value should be added in your system.

Therefore:

Boil the model down. Find the CORE DOMAIN and provide a means
of easily distinguishing it from the mass of supporting model
and code. Bring the most valuable and specialized concepts
into sharp relief. Make the CORE small.

Apply top talent to the CORE DOMAIN, and recruit accordingly.
Spend the effort in the CORE to find a deep model and develop a
supple design�sufficient to fulfill the vision of the system.
Justify investment in any other part by how it supports the
distilled CORE.

Distilling the CORE DOMAIN is not easy, but it does lead to some easy
decisions. You'll put a lot of effort into making your CORE distinctive,
while keeping the rest of the design as generic as is practical. If you



need to keep some aspect of your design secret as a competitive
advantage, it is the CORE DOMAIN. There is no need to waste effort
concealing the rest. And whenever a choice has to be made (due to
time limitations) between two desirable refactorings, the one that
most affects the CORE DOMAIN should be chosen first.

  

The patterns in this chapter make the CORE DOMAIN easier to see and
use and change.

Choosing the CORE

We are looking at those parts of the model particular to representing
your business domain and solving your business problems.

The CORE DOMAIN you choose depends on your point of view. For
example, many applications need a generic model of money that
could represent various currencies and their exchange rates and
conversions. On the other hand, an application to support currency
trading might need a more elaborate model of money, which would
be considered part of the CORE. Even in such a case, there may be a
part of the money model that is very generic. As insight into the
domain deepens with experience, the distillation process can
continue by separating the generic money concepts and retaining
only the specialized aspects of the model in the CORE DOMAIN.

In a shipping application, the CORE could be the model of how
cargoes are consolidated for shipping, how liability is transferred
when containers change hands, or how a particular container is
routed on various transports to reach its destination. In investment
banking, the CORE could include the models of syndication of assets
among assignees and participants.

One application's CORE DOMAIN is another application's generic
supporting component. Still, throughout one project, and usually



throughout one company, a consistent CORE can be defined. Like
every other part of the design, the identification of the CORE DOMAIN

should evolve through iterations. The importance of a particular set
of relationships might not be apparent at first. The objects that seem
obviously central at first may turn out to have supporting roles.

The discussion in the following sections, particularly GENERIC

SUBDOMAINS, will give more guidelines for these decisions.

Who Does the Work?

The most technically proficient members of project teams seldom
have much knowledge of the domain. This limits their usefulness and
reinforces the tendency to assign them to supporting components,
sustaining a vicious circle in which lack of knowledge keeps them
away from the work that would build domain knowledge.

It is essential to break this cycle by assembling a team matching up
a set of strong developers who have a long-term commitment and an
interest in becoming repositories of domain knowledge with one or
more domain experts who know the business deeply. Domain design
is interesting, technically challenging work when approached
seriously, and developers can be found who see it this way.

It is usually not practical to hire short-term, outside design expertise
for the nuts and bolts of creating the CORE DOMAIN, because the team
needs to accumulate domain knowledge, and a temporary member
is a leak in the bucket. On the other hand, an expert in a
teaching/mentoring role can be very valuable by helping the team
build its domain design skills and facilitating the use of sophisticated
principles that team members probably have not mastered.

For similar reasons, it is unlikely that the CORE DOMAIN can be
purchased. Efforts have been made to build industry-specific model
frameworks, conspicuous examples being the semiconductor
industry consortium SEMATECH's CIM framework for semiconductor



manufacturing automation, and IBM's "San Francisco" frameworks
for a wide range of businesses. Although this is a very enticing idea,
so far the results have not been compelling, except perhaps as
PUBLISHED LANGUAGES facilitating data interchange (see Chapter 14).
The book Domain-Specific Application Frameworks (Fayad and
Johnson 2000) gives an overview of the state of this art. As the field
advances, more workable frameworks may be available.

Even so, there is a more fundamental reason for caution: The
greatest value of custom software comes from the total control of the
CORE DOMAIN. A well-designed framework may be able to provide
high-level abstractions that you can specialize for your use. It may
save you from developing the more generic parts and leave you free
to concentrate on the CORE. But if it constrains you more than that,
then there are three likely possibilities.

1. You are losing an essential software asset. Back off
restrictive frameworks in your CORE DOMAIN.

The area treated by the framework is not as pivotal as you thought.
Redraw the boundaries of the CORE DOMAIN to the truly distinctive part
of the model.

You don't have special needs in your CORE DOMAIN. Consider a lower-
risk solution, such as purchasing software to integrate with your
applications.

One way or another, creating distinctive software comes back to a
stable team accumulating specialized knowledge and crunching it
into a rich model. No shortcuts. No magic bullets.



An Escalation of Distillations

The various distillation techniques that make up the rest of this
chapter can be applied in almost any order, but there is a range in
how radically they modify the design.

A simple DOMAIN VISION STATEMENT communicates the basic concepts
and their value with a minimum investment. The HIGHLIGHTED CORE

can improve communication and help guide decision making�and
still requires little or no modification to the design.

More aggressive refactoring and repackaging explicitly separate
GENERIC SUBDOMAINS, which can then be dealt with individually.
COHESIVE MECHANISMS can be encapsulated with versatile,
communicative, and supple design. Removing these distractions
disentangles the CORE.

Repackaging a SEGREGATED CORE makes the CORE directly visible,
even in the code, and facilitates future work on the CORE model.

And most ambitious is the ABSTRACT CORE, which expresses the most
fundamental concepts and relationships in a pure form (and requires
extensive reorganizing and refactoring of the model).

Each of these techniques requires a successively greater
commitment, but a knife gets sharper as its blade is ground finer.
Successive distillation of a domain model produces an asset that
gives the project speed, agility, and precision of execution.

To start, we can boil off the least distinctive aspects of the model.
GENERIC SUBDOMAINS provide a contrast to the CORE DOMAIN that
clarifies the meaning of each. . . .



Generic Subdomains

Some parts of the model add complexity without capturing or
communicating specialized knowledge. Anything extraneous
makes the CORE DOMAIN harder to discern and understand. The
model clogs up with general principles everyone knows or
details that belong to specialties which are not your primary
focus but play a supporting role. Yet, however generic, these
other elements are essential to the functioning of the system
and the full expression of the model.

There is a part of your model that you would like to take for granted.
It is undeniably part of the domain model, but it abstracts concepts
that would probably be needed for a great many businesses. For
example, a corporate organization chart is needed in some form by
businesses as diverse as shipping, banking, or manufacturing. For
another example, many applications track receivables, expense
ledgers, and other financial matters that could all be handled using a
generic accounting model.

Often a great deal of effort is spent on peripheral issues in the
domain. I personally have witnessed two separate projects that have
employed their best developers for weeks in redesigning dates and
times with time zones. While such components must work, they are
not the conceptual core of the system.

Even if such a generic model element is deemed critical, the overall
domain model needs to make prominent the most valueadding and
special aspects of your system, and needs to be structured to give
that part as much power as possible. This is hard to do when the
CORE is mixed with all the interrelated factors.

Therefore:

Identify cohesive subdomains that are not the motivation for
your project. Factor out generic models of these subdomains



and place them in separate MODULES. Leave no trace of your
specialties in them.

Once they have been separated, give their continuing
development lower priority than the CORE DOMAIN, and avoid
assigning your core developers to the tasks (because they will
gain little domain knowledge from them). Also consider off-the-
shelf solutions or published models for these GENERIC
SUBDOMAINS.

  

You may have a few extra options when developing these packages.

Option 1: An Off-the-Shelf Solution

Sometimes you can buy an implementation or use open source
code.

Advantages

Less code to develop.

Maintenance burden externalized.

Code is probably more mature, used in multiple places, and
therefore more bulletproof and complete than homegrown code.

Disadvantages



You still have to spend the time to evaluate it and understand it
before using it.

Quality control being what it is in our industry, you can't count on
it being correct and stable.

It may be overengineered for your purposes; integration could
be more work than a minimalist homegrown implementation.

Foreign elements don't usually integrate smoothly. There may
be a distinct BOUNDED CONTEXT. Even if not, it may be difficult to
smoothly reference ENTITIES from your other packages.

It may introduce platform dependencies, compiler version
dependencies, and so on.

Off-the-shelf subdomain solutions are worth investigating, but they
are usually not worth the trouble. I've seen success stories in
applications with very elaborate workflow requirements that used
commercially available external workflow systems with API hooks.
I've also seen success with an error-logging package that was
deeply integrated into the application. Sometimes GENERIC SUBDOMAIN

solutions are packaged in the form of frameworks, which implement
a very abstract model that can be integrated with and specialized for
your application. The more generic the subcomponent, and the more
distilled its own model, the better the chance that it will be useful.

Option 2: A Published Design or Model

Advantages



More mature than a homegrown model and reflects many
people's insights

Instant, high-quality documentation

Disadvantage

May not quite fit your needs or may be overengineered for your
needs

Tom Lehrer (the comedic songwriter from the 1950s and 1960s) said
the secret to success in mathematics was, "Plagiarize! Plagiarize.
Let no one's work evade your eyes. . . . Only be sure always to call it
please, research." Good advice in domain modeling, and especially
when attacking a GENERIC SUBDOMAIN.

This works best when there is a widely distributed model, such as
the ones in Analysis Patterns (Fowler 1996). (See Chapter 11.)

When the field already has a highly formalized and rigorous model,
use it. Accounting and physics are two examples that come to mind.
Not only are these very robust and streamlined, but they are widely
understood by people everywhere, reducing your present and future
training burden. (See Chapter 10, on using established formalisms.)

Don't feel compelled to implement all aspects of a published model,
if you can identify a simplified subset that is self-consistent and
satisfies your needs. But in cases where there is a well-traveled and
well-documented�or better yet, formalized�model available, it makes
no sense to reinvent the wheel.

Option 3: An Outsourced Implementation



Advantages

Keeps core team free to work on the CORE DOMAIN, where most
knowledge is needed and accumulated.

Allows more development to be done without permanently
enlarging the team, but without dissipating knowledge of the
CORE DOMAIN.

Forces an interface-oriented design, and helps keep the
subdomain generic, because the specification is being passed
outside.

Disadvantages

Still requires time from the core team, because the interface,
coding standards, and any other important aspects need to be
communicated.

Incurs significant overhead of transferring ownership back
inside, because code has to be understood. (Still, overhead is
less than for specialized subdomains, because a generic model
presumably requires no special background to understand.)

Code quality can vary. This could be good or bad, depending on
the relative caliber of the two teams.

Automated tests can play an important role in outsourcing. The
implementers should be required to provide unit tests for the code
they deliver. A really powerful approach�one that helps ensure a
degree of quality, clarifies the spec, and smooths reintegration�is to
specify or even write automated acceptance tests for the outsourced



components. Also, "outsourced implementation" can be an excellent
combination with "published design or model."

Option 4: An In-House Implementation

Advantages

Easy integration.

You get just what you want and nothing extra.

Temporary contractors can be assigned.

Disadvantages

Ongoing maintenance and training burden.

It is easy to underestimate the time and cost of developing such
packages.

Of course, this too combines well with "published design or model."

GENERIC SUBDOMAINS are the place to try to apply outside design
expertise, because they do not require deep understanding of your
specialized CORE DOMAIN, and they do not present a major opportunity
to learn that domain. Confidentiality is of less concern, because little
proprietary information or business practice will be involved in such
modules. A GENERIC SUBDOMAIN lessens the training burden for those
not committed to deep knowledge of the domain.



Over time, I believe our ideas of what constitutes the CORE model will
narrow, and more and more generic models will be available as
implemented frameworks, or at least as published models or
analysis patterns. For now, we still have to develop most of these
ourselves, but there is great value in partitioning them from the CORE

DOMAIN model.

Example
 A Tale of Two Time Zones

Twice I've watched as the best developers on a project spent weeks
of their time solving the problem of storing and converting times with
time zones. While I'm always suspicious of such activities,
sometimes it is necessary, and these two projects provide almost
perfect contrast.

The first was an effort to design scheduling software for cargo
shipping. To schedule international transports, it is critical to have
accurate time calculations, and because all such schedules are
tracked in local time, it is impossible to coordinate transports without
conversions.

Having clearly established their need for this functionality, the team
proceeded with development of the CORE DOMAIN and some early
iterations of the application using the available time classes and
some dummy data. As the application began to mature, it was clear
that the existing time classes were not adequate, and that the
problem was very intricate because of the variations between the
many countries and the complexity of the International Date Line.
With their requirements by now even clearer, they searched for an
off-theshelf solution, but found none. They had no option but to build
it themselves.

The task would require research and precision engineering, so the
team leaders assigned one of their best programmers. But the task



did not require any special knowledge of shipping and would not
cultivate that knowledge, so they chose a programmer who was on
the project on a temporary contract.

This programmer did not start from scratch. He researched several
existing implementations of time zones, most of which did not meet
requirements, and decided to adapt the public-domain solution from
BSD Unix, which had an elaborate database and an implementation
in C. He reverse-engineered the logic and wrote an import routine for
the database.

The problem turned out to be even harder than expected (involving,
for example, the import of databases of special cases), but the code
got written and integrated with the CORE and the product was
delivered.

Things went very differently on the other project. An insurance
company was developing a new claims-processing system, and
planned to capture the times of various events (time of car crash,
time of hail storm, and so on). This data would be recorded in local
time, so time zone functionality was needed.

When I arrived, they had assigned a junior, but very smart, developer
to the task, although the exact requirements of the app were still in
play and not even an initial iteration had been attempted. He had
dutifully set out to build a time zone model a priori.

Not knowing what would be needed, it was assumed that it should
be flexible enough to handle anything. The programmer assigned to
the task needed help with such a difficult problem, so a senior
developer was assigned to it also. They wrote complex code, but no
specific application was using it, so it was never clear that the code
worked correctly.

The project ran aground for various reasons, and the time zone code
was never used. But if it had been, simply storing local times tagged
with the time zone might have been sufficient, even with no
conversion, because this was primarily reference data and not the



basis of computations. Even if conversion had turned out to be
necessary, all the data was going to be gathered from North
America, where time zone conversions are relatively simple.

The main cost of this attention to the time zones was the neglect of
the CORE DOMAIN model. If the same energy had been placed there,
they might have produced a functioning prototype of their own
application and a first cut at a working domain model. Furthermore,
the developers involved, who were committed long-term to the
project, should have been steeped in the insurance domain, building
up critical knowledge within the team.

One thing both projects did right was to cleanly segregate the
GENERIC time zone model from the CORE DOMAIN. A shippingspecific or
insurance-specific model of time zones would have coupled the
model to this generic supporting model, making the CORE harder to
understand (because it would contain irrelevant detail about time
zones). It would have made the time zone MODULE harder to maintain
(because the maintainer would have to understand the CORE and its
interrelationship with time zones).

Shipping Project's Strategy Insurance Project's Strategy



Shipping Project's Strategy Insurance Project's Strategy

Advantages

GENERIC model decoupled
from CORE.

CORE model mature, so
resources could be diverted
without stunting it.

Knew exactly what they
needed.

Critical support functionality
for international scheduling.

Programmer on short-term
contract used for GENERIC
task.

Disadvantage

Diverted top programmer
from core.

Advantage

GENERIC model decoupled from CORE.

Disadvantages

CORE model undeveloped, so attention to other issues
continued this neglect.

Unknown requirements led to attempt at full generality,
where simpler North America-specific conversion
might have sufficed.

Long-term programmers were assigned who could
have been repositories of domain knowledge.

We technical people tend to enjoy definable problems like time zone
conversion, and we can easily justify spending our time on them. But
a disciplined look at priorities usually points to the CORE DOMAIN.

Generic Doesn't Mean Reusable

Note that while I have emphasized the generic quality of these
subdomains, I have not mentioned the reusability of code. Off-the-
shelf solutions may or may not make sense for a particular situation,
but assuming that you are implementing the code yourself, in-house
or outsourced, you should specifically not concern yourself with the
reusability of that code. This would go against the basic motivation of
distillation: that you should be applying as much of your effort to the



CORE DOMAIN as possible and investing in supporting GENERIC SUB-

DOMAINS only as necessary.

Reuse does happen, but not always code reuse. The model reuse is
often a better level of reuse, as when you use a published design or
model. And if you have to create your own model, it may well be
valuable in a later related project. But while the concept of such a
model may be applicable to many situations, you do not have to
develop the model in its full generality. You can model and
implement only the part you need for your business.

Though you should seldom design for reusability, you must be strict
about keeping within the generic concept. Introducing industry-
specific model elements will have two costs. First, it will impede
future development. Although you need only a small part of the
subdomain model now, your needs will grow. By introducing anything
to the design that is not part of the concept, you make it much more
difficult to expand the system cleanly without completely rebuilding
the older part and redesigning the other modules that use it.

The second, and more important, reason is that those industry-
specific concepts belong either in the CORE DOMAIN or in their own,
more specialized, subdomains, and those specialized models are
even more valuable than the generic ones.

Project Risk Management

Agile processes typically call for managing risk by tackling the
riskiest tasks early. XP specifically calls for getting an end-to-end
system up and running immediately. This initial system often proves
a technical architecture, and it is tempting to build a peripheral
system that handles some supporting GENERIC SUBDOMAIN because
these are usually easier to analyze. But be careful; this can defeat
the purpose of risk management.



Projects face risk from both sides, with some projects having greater
technical risks and others greater domain modeling risks. The end-
to-end system mitigates risk only to the extent that it is an embryonic
version of the challenging parts of the actual system. It is easy to
underestimate the domain modeling risk. It can take the form of
unforeseen complexity, inadequate access to business experts, or
gaps in key skills of the developers.

Therefore, except when the team has proven skills and the domain is
very familiar, the first-cut system should be based on some part of
the CORE DOMAIN, however simple.

The same principle applies to any process that tries to push high-risk
tasks forward: the CORE DOMAIN is high risk because it is often
unexpectedly difficult and because without it, the project cannot
succeed.

Most of the distillation patterns in this chapter show how to change
the model and code to distill the CORE DOMAIN. However, the next two
patterns, DOMAIN VISION STATEMENT and HIGHLIGHTED CORE, show how
the use of supplemental documents can, with a very minor
investment, improve communication and awareness of the CORE and
focus development effort. . . .



Domain Vision Statement

At the beginning of a project, the model usually doesn't even
exist, yet the need to focus its development is already there. In
later stages of development, there is a need for an explanation
of the value of the system that does not require an in-depth
study of the model. Also, the critical aspects of the domain
model may span multiple BOUNDED CONTEXTS, but by definition
these distinct models can't be structured to show their common
focus.

Many project teams write "vision statements" for management. The
best of these documents lay out the specific value the application will
bring to the organization. Some mention the creation of the domain
model as a strategic asset. Usually the vision statement document is
abandoned after the project gets funding, and it is never used in the
actual development process or even read by the technical staff.

A DOMAIN VISION STATEMENT is modeled after such documents, but it
focuses on the nature of the domain model and how it is valuable to
the enterprise. It can be used directly by the management and
technical staff during all phases of development to guide resource
allocation, to guide modeling choices, and to educate team
members. If the domain model serves many masters, this document
can show how their interests are balanced.

Therefore:

Write a short description (about one page) of the CORE DOMAIN
and the value it will bring, the "value proposition." Ignore those
aspects that do not distinguish this domain model from others.
Show how the domain model serves and balances diverse
interests. Keep it narrow. Write this statement early and revise it
as you gain new insight.



A DOMAIN VISION STATEMENT can be used as a guidepost that keeps the
development team headed in a common direction in the ongoing
process of distilling the model and code itself. It can be shared with
nontechnical team members, management, and even customers
(except where it contains proprietary information, of course).

This is part of a DOMAIN VISION STATEMENT
This, though important, is not

part of a DOMAIN VISION STATEMENT

Airline Booking System

The model can represent passenger priorities and airline
booking strategies and balance these based on flexible
policies. The model of a passenger should reflect the
"relationship" the airline is striving to develop with repeat
customers. Therefore, it should represent the history of the
passenger in useful condensed form, participation in special
programs, affiliation with strategic corporate clients, and so
on.

Different roles of different users (such as passenger, agent,
manager) are represented to enrich the model of
relationships and to feed necessary information to the
security framework.

Model should support efficient route/seat search and
integration with other established flight booking systems.

Airline Booking System

The UI should be streamlined for
expert users but accessible to first-
time users.

Access will be offered over the
Web, by data transfer to other
systems, and maybe through other
UIs, so interface will be designed
around XML with transformation
layers to serve Web pages or
translate to other systems.

A colorful animated version of the
logo needs to be cached on the
client machine so that it can come
up quickly on future visits.

When customer submits a
reservation, make visual
confirmation within 5 seconds.

A security framework will
authenticate a user's identity and
then limit access to specific
features based on privileges
assigned to defined user roles.

This is part of a DOMAIN VISION STATEMENT
This, though important, is not

part of a DOMAIN VISION STATEMENT



This is part of a DOMAIN VISION STATEMENT
This, though important, is not

part of a DOMAIN VISION STATEMENT

Semiconductor Factory Automation

The domain model will represent the status of materials and
equipment within a wafer fab in such a way that necessary
audit trails can be provided and automated product routing
can be supported.

The model will not include the human resources required in
the process, but must allow selective process automation
through recipe download.

The representation of the state of the factory should be
comprehensible to human managers, to give them deeper
insight and support better decision making.

Semiconductor Factory
Automation

The software should be Web
enabled through a servlet, but
structured to allow alternative
interfaces.

Industry-standard technologies
should be used whenever possible
to avoid in-house development and
maintenance costs and to
maximize access to outside
expertise. Open source solutions
are preferred (such as Apache
Web server).

The Web server will run on a
dedicated server. The application
will run on a single dedicated
server.

  

A DOMAIN VISION STATEMENT gives the team a shared direction. Some
bridge between the high-level STATEMENT and the full detail of the
code or model will usually be needed. . . .



Highlighted Core

A DOMAIN VISION STATEMENT identifies the CORE DOMAIN in broad terms,
but it leaves the identification of the specific CORE model elements up
to the vagaries of individual interpretation. Unless there is an
exceptionally high level of communication on the team, the VISION

STATEMENT alone will have little impact.

  

Even though team members may know broadly what
constitutes the CORE DOMAIN, different people won't pick out quite
the same elements, and even the same person won't be
consistent from one day to the next. The mental labor of
constantly filtering the model to identify the key parts absorbs
concentration better spent on design thinking, and it requires
comprehensive knowledge of the model. The CORE DOMAIN must
be made easier to see.

Significant structural changes to the code are the ideal way of
identifying the CORE DOMAIN, but they are not always practical in
the short term. In fact, such major code changes are difficult to
undertake without the very view the team is lacking.

Structural changes in the organization of the model, such as
partitioning GENERIC SUBDOMAINS and a few others to come later in this
chapter, can allow the MODULES to tell the story. But as the only
means of communicating the CORE DOMAIN, this is too ambitious to
shoot for straight away.

You will probably need a lighter solution to supplement these
aggressive techniques. You may have constraints that prevent you
from physically separating the CORE. Or you may be starting out with
existing code that does not differentiate the CORE well, but you really
need to see the CORE, and share that view, to effectively refactor
toward better distillation. And even at an advanced stage, a few



carefully selected diagrams or documents provide mental anchor
points and entry points for the team.

These issues arise equally for projects that use elaborate UML
models and those (such as XP projects) that keep few external
documents and use the code as the primary repository of the model.
An Extreme Programming team might be more minimalist, keeping
these supplements more casual and more transient (for example, a
hand-drawn diagram on the wall for all to see), but these techniques
can fold nicely into the process.

Marking off a privileged part of a model, along with the
implementation that embodies it, is a reflection on the model, not
necessarily part of the model itself. Any technique that makes it easy
for everyone to know the CORE DOMAIN will do. Two specific
techniques can represent this class of solutions.

The Distillation Document

Often I create a separate document to describe and explain the CORE

DOMAIN. It can be as simple as a list of the most essential conceptual
objects. It can be a set of diagrams focused on those objects,
showing their most critical relationships. It can walk through the
fundamental interactions at an abstract level or by example. It can
use UML class or sequence diagrams, nonstandard diagrams
particular to the domain, carefully worded textual explanations, or
combinations of these. A distillation document is not a complete
design document. It is a minimalist entry point that delineates and
explains the CORE and suggests reasons for closer scrutiny of
particular pieces. The reader is given a broad view of how the pieces
fit and guided to the appropriate part of the code for more details.

Therefore (as one form of HIGHLIGHTED CORE):

Write a very brief document (three to seven sparse pages) that
describes the CORE DOMAIN and the primary interactions among



CORE elements.

All the usual risks of separate documents apply.

1. The document may not be maintained.

The document may not be read.

By multiplying the information sources, the document may defeat its
own purpose of cutting through complexity.

The best way to limit these risks is to be absolutely minimalist.
Staying away from mundane detail and focusing on the central
abstractions and their interactions allows the document to age more
slowly, because this level of the model is usually more stable.

Write the document to be understood by the nontechnical members
of the team. Use it as a shared view that delineates what every-one
needs to know, and a guide by which all team members may start
their exploration of the model and code.

The Flagged CORE

On my first day on a project at a major insurance company, I was
given a copy of the "domain model," a two-hundred-page document,
purchased at great expense from an industry consortium. I spent a
few days wading through a jumble of class diagrams covering
everything from the detailed composition of insurance policies to
extremely abstract models of relationships between people. The
quality of the factoring of these models ranged from high-school
project to rather good (a few even described business rules, at least
in the accompanying text). But where to start? Two hundred pages.



The project culture heavily favored abstract framework building, and
my predecessors had focused on a very abstract model of the
relationship of people with each other, with things, and with activities
or agreements. It was actually a nice analysis of these relationships,
and their experiments with the model had the quality of an academic
research project. But it wasn't getting us anywhere near an
insurance application.

My first instinct was to start slashing, finding a small CORE DOMAIN to
fall back on, then refactoring that and reintroducing other
complexities as we went. But the management was alarmed by this
attitude. The document was invested with great authority. Its
production had involved experts from across the industry, and in any
event they had paid the consortium far more than they were paying
me, so they were unlikely to weigh my recommendations for radical
change too heavily. But I knew we had to get a shared picture of our
CORE DOMAIN and get everyone's efforts focused on that.

Instead of refactoring, I went through the document and, with the
help of a business analyst who knew a great deal about the
insurance industry in general and the requirements of the application
we were to build in particular, I identified the handful of sections that
presented the essential, differentiating concepts we needed to work
with. I provided a navigation of the model that clearly showed the
CORE and its relationship to supporting features.

A new prototyping effort started from this perspective, and quickly
yielded a simplified application that demonstrated some of the
required functionality.

Two pounds of recyclable paper was turned into a business asset by
a few page tabs and some yellow highlighter.

This technique is not specific to object diagrams on paper. A team
that uses UML diagrams extensively could use a "stereotype" to
identify core elements. A team that uses the code as the sole
repository of the model might use comments, maybe structured as
Java Doc, or might use some tool in its development environment.



The particular technique doesn't matter, as long as a developer can
effortlessly see what is in and what is out of the CORE DOMAIN.

Therefore (as another form of HIGHLIGHTED CORE):

Flag the elements of the CORE DOMAIN within the primary
repository of the model, without particularly trying to elucidate
its role. Make it effortless for a developer to know what is in or
out of the CORE.

The CORE DOMAIN is now clearly visible to those working with the
model, with a fairly small effort and low maintenance, at least to the
extent that the model is factored fine enough to distinguish the
contributions of parts.

The Distillation Document as Process Tool

Theoretically on an XP project, any pair (two programmers working
together) can change any code in the system. In practice, some
changes have major implications, and call for more consultation and
coordination. When working in the infrastructure layer, the impact of
a change may be clear, but it may not be so obvious in the domain
layer, as typically organized.

With the concept of the CORE DOMAIN, this impact can be made clear.
Changes to the model of the CORE DOMAIN should have a big effect.
Changes to widely used generic elements may require a lot of code
updating, but they still shouldn't create the conceptual shift that CORE

changes do.

Use the distillation document as a guide. When developers realize
that the distillation document itself requires change to stay in sync
with their code or model change, then consultation is called for.
Either they are fundamentally changing the CORE DOMAIN elements or
relationships, or they are changing the boundaries of the CORE,
including or excluding something different. Dissemination of the



model change to the whole team is necessary by whatever
communication channels the team uses, including distribution of a
new version of the distillation document.

If the distillation document outlines the essentials of the CORE
DOMAIN, then it serves as a practical indicator of the significance
of a model change. When a model or code change affects the
distillation document, it requires consultation with other team
members. When the change is made, it requires immediate
notification of all team members, and the dissemination of a
new version of the document. Changes outside the CORE or to
details not included in the distillation document can be
integrated without consultation or notification and will be
encountered by other members in the course of their work.
Then the developers have the full autonomy that XP suggests.

  

Although the VISION STATEMENT and HIGHLIGHTED CORE inform and
guide, they do not actually modify the model or the code itself.
Partitioning GENERIC SUBDOMAINS physically removes some distracting
elements. The next patterns look at ways to structurally change the
model and the design itself to make the CORE DOMAIN more visible
and manageable. . . .



Cohesive Mechanisms

Encapsulating mechanisms is a standard principle of object-oriented
design. Hiding complex algorithms in methods with intention-
revealing names separates the "what" from the "how." This technique
makes a design simpler to understand and use. Yet it runs into
natural limits.

Computations sometimes reach a level of complexity that
begins to bloat the design. The conceptual "what" is swamped
by the mechanistic "how." A large number of methods that
provide algorithms for resolving the problem obscure the
methods that express the problem.

This proliferation of procedures is a symptom of a problem in the
model. Refactoring toward deeper insight can yield a model and
design whose elements are better suited to solving the problem. The
first solution to seek is a model that makes the computation
mechanism simple. But now and then the insight emerges that some
part of the mechanism is itself conceptually coherent. This
conceptual computation will probably not include all of the messy
computations you need. We are not talking about some kind of
catch-all "calculator." But extracting the coherent part should make
the remaining mechanism easier to understand.

Therefore:

Partition a conceptually COHESIVE MECHANISM into a separate
lightweight framework. Particularly watch for formalisms or
well-documented categories of algorithms. Expose the
capabilities of the framework with an INTENTION-REVEALING
INTERFACE. Now the other elements of the domain can focus on
expressing the problem ("what"), delegating the intricacies of
the solution ("how") to the framework.



These separated mechanisms are then placed in their supporting
roles, leaving a smaller, more expressive CORE DOMAIN that uses the
mechanism through the interface in a more declarative style.

Recognizing a standard algorithm or formalism moves some of the
complexity of the design into a studied set of concepts. With such a
guide, we can implement a solution with confidence and little trial
and error. We can count on other developers knowing about it or at
least being able to look it up. This is similar to the benefits of a
published GENERIC SUBDOMAIN model, but a documented algorithm or
formal computation may be found more often because this level of
computer science has been studied more. Still, more often than not
you will have to create something new. Make it narrowly focused on
the computation and avoid mixing in the expressive domain model.
There is a separation of responsibilities: The model of the CORE

DOMAIN or a GENERIC SUBDOMAIN formulates a fact, rule, or problem. A
COHESIVE MECHANISM resolves the rule or completes the computation
as specified by the model.

Example
 A Mechanism in an Organization Chart

I went through this process on a project that needed a fairly
elaborate model of an organization chart. This model represented
the fact that one person worked for another, and in which branches
of the organization, and it provided an interface by which relevant
questions might be asked and answered. Because most of these
questions were along the lines of "Who, in this chain of command,
has authority to approve this?" or "Who, in this department, is
capable of handling an issue like this?" the team realized that most
of the complexity involved traversing specific branches of the
organizational tree, searching for specific people or relationships.
This is exactly the kind of problem solved by the well-developed
formalism of a graph, a set of nodes connected by arcs (called
edges) and the rules and algorithms needed to traverse the graph.



A subcontractor implemented a graph traversal framework as a
COHESIVE MECHANISM. This framework used standard graph
terminology and algorithms familiar to most computer scientists and
abundantly documented in textbooks. By no means did he
implement a fully general graph. It was a subset of that conceptual
framework that covered the features needed for our organization
model. And with an INTENTION-REVEALING INTERFACE, the means by
which the answers are obtained are not a primary concern.

Now the organization model could simply state, using standard
graph terminology, that each person is a node, and that each
relationship between people is an edge (arc) connecting those
nodes. After that, presumably, mechanisms within the graph
framework could find the relationship between any two people.

If this mechanism had been incorporated into the domain model, it
would have cost us in two ways. The model would have been
coupled to a particular method of solving the problem, limiting future
options. More important, the model of an organization would have
been greatly complicated and muddied. Keeping mechanism and
model separate allowed a declarative style of describing
organizations that was much clearer. And the intricate code for graph
manipulation was isolated in a purely mechanistic framework, based
on proven algorithms, that could be maintained and unit-tested in
isolation.

Another example of a COHESIVE MECHANISM would be a framework for
constructing SPECIFICATION objects and supporting the basic
comparison and combination operations expected of them. By
employing such a framework, the CORE DOMAIN and GENERIC

SUBDOMAINS can declare their SPECIFICATIONS in the clear, easily
understood language described in that pattern (see Chapter 10). The
intricate operations involved in carrying out the comparisons and
combinations can be left to the framework.

  



GENERIC SUBDOMAIN Versus COHESIVE
MECHANISM

Both GENERIC SUBDOMAINS and COHESIVE MECHANISMS are motivated by
the same desire to unburden the CORE DOMAIN. The difference is the
nature of the responsibility taken on. A GENERIC SUBDOMAIN is based
on an expressive model that represents some aspect of how the
team views the domain. In this it is no different than the CORE DOMAIN,
just less central, less important, less specialized. A COHESIVE

MECHANISM does not represent the domain; it solves some sticky
computational problem posed by the expressive models.

A model proposes; a COHESIVE MECHANISM disposes.

In practice, unless you recognize a formalized, published
computation, this distinction is usually not pure, at least not at first. In
successive refactoring it could either be distilled into a purer
mechanism or be transformed into a GENERIC SUBDOMAIN with some
previously unrecognized model concepts that would make the
mechanism simple.

When a MECHANISM Is Part of the CORE
DOMAIN

You almost always want to remove MECHANISMS from the CORE

DOMAIN. The one exception is when a MECHANISM is itself proprietary
and a key part of the value of the software. This is sometimes the
case with highly specialized algorithms. For example, if one of the
distinguishing features of a shipping logistics application were a
particularly effective algorithm for working out schedules, that
MECHANISM could be considered part of the conceptual CORE. I once
worked on a project at an investment bank in which highly
proprietary algorithms for rating risk were definitely in the CORE

DOMAIN. (In fact, they were held so closely that even most of the CORE



developers were not allowed to see them.) Of course, these
algorithms are probably a particular implementation of a set of rules
that really predict risk. Deeper analysis might lead to a deeper model
that would allow those rules to be explicit, with an encapsulated
solving mechanism.

But that would be another incremental improvement in the design,
for another day. The decision as to whether to go that next step
would be based on a cost-benefit analysis: How difficult would it be
to work out that new design? How difficult is the current design to
understand and modify? How much easier would it be with a more
advanced design, for the type of people who would be expected to
do the work? And of course, does anyone have any idea what form
the new model might take?

Example
 Full Circle: Organization Chart Reabsorbs Its

MECHANISM

Actually, a year after we completed the organization model in the
previous example, other developers redesigned it to eliminate the
separation of the graph framework. They felt the increased object
count and the complication of separating the MECHANISM into a
separate package were not warranted. Instead, they added node
behavior to the parent class of the organizational ENTITIES. Still, they
retained the declarative public interface of the organization model.
They even kept the MECHANISM encapsulated, within the
organizational ENTITIES.

These full circles are common, but they do not return to their starting
point. The end result is usually a deeper model that more clearly
differentiates facts, goals, and MECHANISMS. Pragmatic refactoring
retains the important virtues of the intermediate stages while
shedding the unneeded complications.



Distilling to a Declarative Style

Declarative design and "declarative style" is a topic of Chapter 10,
but that design style deserves special mention in this chapter on
strategic distillation. The value of distillation is being able to see what
you are doing: cutting to the essence without being distracted by
irrelevant detail. Important parts of the CORE DOMAIN may be able to
follow a declarative style, when the supporting design provides an
economical language for expressing the concepts and rules of the
CORE while encapsulating the means of computing or enforcing them.

COHESIVE MECHANISMS are by far most useful when they provide
access through an INTENTION-REVEALING INTERFACE, with conceptually
coherent ASSERTIONS and SIDE-EFFECT-FREE FUNCTIONS. MECHANISMS

and supple designs allow the CORE DOMAIN to make meaningful
statements rather than calling obscure functions. But an exceptional
payoff comes when part of the CORE DOMAIN itself breaks through to a
deep model and starts to function as a language that can express
the most important application scenarios flexibly and concisely.

A deep model often comes with a corresponding supple design.
When a supple design reaches maturity, it provides an easily
understood set of elements that can be combined unambiguously to
accomplish complex tasks or express complex information, just as
words are combined into sentences. At that point, client code takes
on a declarative style and can be much more distilled.

Factoring out GENERIC SUBDOMAINS reduces clutter, and COHESIVE

MECHANISMS serve to encapsulate complex operations. This leaves
behind a more focused model, with fewer distractions that add no
particular value to the way users conduct their activities. But you are
unlikely ever to find good homes for everything in the domain model
that is not CORE. The SEGREGATED CORE takes a direct approach to
structurally marking off the CORE DOMAIN....



Segregated Core

Elements in the model may partially serve the CORE DOMAIN and
partially play supporting roles. CORE elements may be tightly
coupled to generic ones. The conceptual cohesion of the CORE
may not be strong or visible. All this clutter and entanglement
chokes the CORE. Designers can't clearly see the most important
relationships, leading to a weak design.

By factoring out GENERIC SUBDOMAINS, you clear away some of the
obscuring detail from the domain, making the CORE more visible. But
it is hard work identifying and clarifying all these subdomains, and
some of them don't seem worth the trouble. Meanwhile, the all-
important CORE DOMAIN is left entangled with the residue.

Therefore:

Refactor the model to separate the CORE concepts from
supporting players (including ill-defined ones) and strengthen
the cohesion of the CORE while reducing its coupling to other
code. Factor all generic or supporting elements into other
objects and place them into other packages, even if this means
refactoring the model in ways that separate highly coupled
elements.

This is basically taking the same principles we applied to GENERIC

SUBDOMAINS but from the other direction. The cohesive subdomains
that are central to our application can be identified and partitioned
into coherent packages of their own. What is done with the
undifferentiated mass left behind is important, but not as important. It
can be left more or less where it was, or placed into packages based
on prominent classes. Eventually, more and more of the residue can
be factored into GENERIC SUBDOMAINS, but in the short term any easy
solution will do, just so the focus on the SEGREGATED CORE is retained.

  



The steps needed to refactor to SEGREGATED CORE are typically
something like these:

1. Identify a CORE subdomain (possibly drawing from the
distillation document).

Move related classes to a new MODULE, named for the concept that
relates them.

Refactor code to sever data and functionality that are not directly
expressions of the concept. Put the removed aspects into (possibly
new) classes in other packages. Try to place them with conceptually
related tasks, but don't waste too much time being perfect. Keep
focused on scrubbing the CORE subdomain and making the
references from it to other packages explicit and self-explanatory.

Refactor the newly SEGREGATED CORE MODULE to make its relationships
and interactions simpler and more communicative, and to minimize
and clarify its relationships with other MODULES. (This becomes an
ongoing refactoring objective.)

Repeat with another CORE subdomain until the SEGREGATED CORE is
complete.

The Costs of Creating a SEGREGATED CORE



Segregating the CORE will sometimes make relationships with tightly
coupled non-CORE classes more obscure or even more complicated,
but that cost is outweighed by the benefit of clarifying the CORE

DOMAIN and making it much easier to work on.

The SEGREGATED CORE will let you enhance the cohesion of that CORE

DOMAIN. There are many meaningful ways of breaking down a model,
and sometimes in the creation of a SEGREGATED CORE a nicely
cohesive MODULE may be broken, sacrificing that cohesion for the
sake of bringing out the cohesiveness of the CORE DOMAIN. This is a
net gain, because the greatest value-added of enterprise software
comes from the enterprise-specific aspects of the model.

The other cost, of course, is that segregating the CORE is a lot of
work. It must be acknowledged that a decision to go to a SEGREGATED

CORE will potentially absorb developers in changes all over the
system.

The time to chop out a SEGREGATED CORE is when you have a large
BOUNDED CONTEXT that is critical to the system, but where the
essential part of the model is being obscured by a great deal of
supporting capability.

Evolving Team Decision

As with many strategic design decisions, an entire team must move
to a SEGREGATED CORE together. This step requires a team decision
process and a team disciplined and coordinated enough to carry out
the decision. The challenge is to constrain everyone to use the same
definition of the CORE while not freezing that decision. Because the
CORE DOMAIN evolves just like every other aspect of a design,
experience working with a SEGREGATED CORE will lead to new insights
into what is essential and what is a supporting element. Those
insights should feed back into a refined definition of the CORE DOMAIN

and of the SEGREGATED CORE MODULES.



This means that new insights must be shared with the team on an
ongoing basis, but an individual (or programming pair) cannot act on
those insights unilaterally. Whatever the process is for joint
decisions, whether consensus or team leader directive, it must be
agile enough to make repeated course corrections. Communication
must be effective enough to keep everyone together in one view of
the CORE.

Example
 Segregating the CORE of a Cargo Shipping

Model

We start with the model shown in Figure 15.2 as the basis of
software for cargo shipping coordination.

 

Figure 15.2.



 
Note that this is highly simplified compared to what would likely be
needed for a real application. A realistic model would be too
cumbersome for an example. Therefore, although this example may
not be complicated enough to drive us to a SEGREGATED CORE, take a
leap of imagination to treat this model as being too complex to
interpret easily and deal with as a whole.

Now, what is the essence of the shipping model? Usually a good
place to start looking is the "bottom line." This might lead us to focus
on pricing and invoices. But we really need to look at the DOMAIN

VISION STATEMENT. Here is an excerpt from this one.

. . . Increase visibility of operations and provide tools to fulfill
customer requirements faster and more reliably...

This application is not being designed for the sales department. It is
going to be used by the front-line operators of the company. So let's



relegate all money-related issues to (admittedly important)
supporting roles. Someone has already placed some of these items
into a separate package (Billing). We can keep that, and further
recognize that it plays a supporting role.

The focus needs to be on the cargo handling: delivery of the cargo
according to customer requirements. Extracting the classes most
directly involved in these activities produces a SEGREGATED CORE in a
new package called Delivery, as shown in Figure 15.3.

Figure 15.3. Reliable delivery in adherence with
customer requirements is the core goal of this project.



For the most part, classes have just moved into the new package,
but there have been a few changes to the model itself.

First, the Customer Agreement now constrains the Handling Step.
This is typical of the insights that tend to arise as the team
segregates the CORE. As attention is focused on effective, correct
delivery, it becomes clear that the delivery constraints in the
Customer Agreement are fundamental and should be explicit in the
model.



The other change is more pragmatic. In the refactored model, the
Customer Agreement is attached directly to the Cargo, rather than
requiring a navigation through the Customer. (It will have to be
attached when the Cargo is booked, just as the Customer is.) At
actual delivery time, the Customer is not as relevant to operations
as the agreement itself. In the other model, the correct Customer
had to be found, according to the role it played in the shipment, and
then queried for its Customer Agreement. This interaction would
clog up every story you set out to tell about the model. The new
association makes the most important scenarios as simple and direct
as possible. Now it becomes easy to pull the Customer out of the
CORE altogether.

And what about pulling Customer out, anyway? The focus is on
fulfilling the Customer's requirements, so at first Customer seems
to belong in the CORE. Yet the interactions during delivery do not
usually need to involve the Customer class now that the Customer
Agreement is available directly. And the basic model of a Customer
is pretty generic.

A strong argument could be made for Leg to remain in the CORE. I
tend to be minimalist in the CORE, and the Leg has tighter cohesion
with Transport Schedule, Routing Service, and Location, none of
which needed to be in the CORE. But if a lot of the stories I wanted to
tell about this model involved Legs, I'd move it into the Delivery
package and suffer the awkwardness of its separation from those
other classes.

In this example, all the class definitions are the same as before, but
often distillation requires refactoring the classes themselves to
separate the generic and domain-specific responsibilities, which can
then be segregated.

Now that we have a SEGREGATED CORE, the refactoring is complete.
But the Shipping package we are left with is just "everything left
over after we pulled out the CORE." We can follow up with other
refactorings to get more communicative packaging, as shown in
Figure 15.4.



Figure 15.4. Meaningful MODULES for non-CORE
subdomains follow after the SEGREGATED CORE is

complete.

It might take several refactorings to get to this point; it doesn't have
to be done all at once. Here, we've ended up with one SEGREGATED

CORE package, one GENERIC SUBDOMAIN, and two domain-specific
packages in supporting roles. Deeper insight might eventually
produce a GENERIC SUBDOMAIN for Customer, or it might end up more
specialized for shipping.



Recognizing useful, meaningful MODULES is a modeling activity (as
discussed in Chapter 5). Developers and domain experts collaborate
in strategic distillation as part of the knowledge crunching process.



Abstract Core

Even the CORE DOMAIN model usually has so much detail that
communicating the big picture can be difficult.

  

We usually deal with a large model by breaking it into narrower
subdomains that are small enough to be grasped and placing them
in separate MODULES. This reductive style of packaging often works to
make a complicated model manageable. But sometimes creating
separate MODULES can obscure or even complicate the interactions
between the subdomains.

When there is a lot of interaction between subdomains in
separate MODULES, either many references will have to be
created between MODULES, which defeats much of the value of
the partitioning, or the interaction will have to be made indirect,
which makes the model obscure.



Consider slicing horizontally rather than vertically. Polymorphism
gives us the power to ignore a lot of the detailed variation among
instances of an abstract type. If most of the interactions across
MODULES can be expressed at the level of polymorphic interfaces, it
may make sense to refactor these types into a special CORE MODULE.

We are not looking for a technical trick here. This is a valuable
technique only when the polymorphic interfaces correspond to
fundamental concepts in the domain. In that case, separating these
abstractions decouples the MODULES while distilling a smaller and
more cohesive CORE DOMAIN.

Therefore:

Identify the most fundamental concepts in the model and factor
them into distinct classes, abstract classes, or interfaces.
Design this abstract model so that it expresses most of the
interaction between significant components. Place this abstract
overall model in its own MODULE, while the specialized, detailed
implementation classes are left in their own MODULES defined by
subdomain.

Most of the specialized classes will now reference the ABSTRACT CORE

MODULE but not the other specialized MODULES. The ABSTRACT CORE

gives a succinct view of the main concepts and their interactions.

The process of factoring out the ABSTRACT CORE is not mechanical.
For example, if all the classes that were frequently referenced across
MODULES were automatically moved into a separate MODULE, the likely
result would be a meaningless mess. Modeling an ABSTRACT CORE

requires a deep understanding of the key concepts and the roles
they play in the major interactions of the system. In other words, it is
an example of refactoring to deeper insight. And it usually requires
considerable redesign.

The ABSTRACT CORE should end up looking a lot like the distillation
document (if both were used on the same project, and the distillation
document had evolved with the application as insight deepened). Of



course, the ABSTRACT CORE will be written in code, and therefore more
rigorous and more complete.

  



Deep Models Distill

Distillation does not operate only on the gross level of separating
parts of the domain away from the CORE. It also means refining those
subdomains, especially the CORE DOMAIN, through continuously
refactoring toward deeper insight, driving toward a deep model and
supple design. The goal is a design that makes the model obvious, a
model that expresses the domain simply. A deep model distills the
most essential aspects of a domain into simple elements that can be
combined to solve the important problems of the application.

Although a breakthrough to a deep model provides value
anywhere it happens, it is in the CORE DOMAIN that it can change
the trajectory of an entire project.



Choosing Refactoring Targets

When you encounter a large system that is poorly factored, where do
you start? In the XP community, the answer tends to be either one of
these:

1. Just start anywhere, because it all has to be refactored.

Start wherever it is hurting. I'll refactor what I need to in order to get
my specific task done.

I don't hold with either of these. The first is impractical except in a
few projects staffed entirely with top programmers. The second tends
to pick around the edges, treating symptoms and ignoring root
causes, shying away from the worst tangles. Eventually the code
becomes harder and harder to refactor.

So, if you can't do it all, and you can't be pain-driven, what do you
do?

1. In a pain-driven refactoring, you look to see if the root
involves the CORE DOMAIN or the relationship of the CORE to a
supporting element. If it does, you bite the bullet and fix
that first.

When you have the luxury of refactoring freely, you focus first on
better factoring of the CORE DOMAIN, on improving the segregation of
the CORE, and on purifying supporting subdomains to be GENERIC.

This is how to get the most bang for your refactoring buck.



Chapter Sixteen. Large-Scale
Structure

Thousands of people worked independently to create the AIDS Quilt.

A small Silicon Valley design firm had been contracted to create a
simulator for a satellite communications system. Work was
progressing well. A MODEL-DRIVEN DESIGN was developing that could
express and simulate a wide range of network conditions and
failures.

But the lead developers on the project were uneasy. The problem
was inherently complex. Driven by the need to clarify the intricate
relationships in the model, they had decomposed the design into



coherent MODULES of manageable size. Now there were a lot of
MODULES. Which package should a developer look in to find a
particular aspect of functionality? Where should a new class be
placed? What did some of these little packages really mean? How
did they all fit together? And there was still more to build.

The developers communicated well with one another and could still
figure out what to do from day to day, but the project leaders were
not content to skirt the edge of comprehensibility. They wanted some
way of organizing the design so that it could be understood and
manipulated as it moved to the next level of complexity.

They brainstormed. There were a lot of possibilities. Alternative
packaging schemes were proposed. Maybe some document could
give an overview of the system, or some new views of the class
diagram in the modeling tool could guide a developer to the right
MODULE. But the project leaders weren't satisfied with these
gimmicks.

They could tell a simple story of their simulation, of the way data
would be marshaled through an infrastructure, its integrity and
routing assured by layers of telecommunications technology. Every
detail of that story was in the model, yet the broad arc of the story
could not be seen.

Some essential concept from the domain was missing. But this time
it was not a class or two missing from the object model, it was a
missing structure for the model as a whole.

After the developers mulled over the problem for a week or two, the
idea began to jell. They would impose a structure on the design. The
entire simulator would be viewed as a series of layers related to
aspects of the communications system. The bottom layer would
represent the physical infrastructure, the basic ability to transmit bits
from one node to another. Then there would be a packet-routing
layer that brought together the concerns of how a particular data
stream would be directed. Other layers would identify other



conceptual levels of the problem. These layers would outline their
story of the system.

They set out to refactor the code to conform to the new structure.
MODULES had to be redefined so as not to span layers. In some
cases, object responsibilities were refactored so that each object
would clearly belong to one layer. Conversely, throughout this
process the definitions of the conceptual layers themselves were
refined based on the hands-on experience of applying them. The
layers, MODULES, and objects coevolved until, in the end, the entire
design followed the contours of this layered structure.

These layers were not MODULES or any other artifact in the code.
They were an overarching set of rules that constrained the
boundaries and relationships of any particular MODULE or object
throughout the design, even at interfaces with other systems.

Imposing this order brought the design back to comfortable
intelligibility. People knew roughly where to look for a particular
function. Individuals working independently could make design
decisions that were broadly consistent with each other. The
complexity ceiling had been lifted.

Even with a MODULAR breakdown, a large model can be too
complicated to grasp. The MODULES chunk the design into
manageable bites, but there may be many of them. Also, modularity
does not necessarily bring uniformity to the design. Object to object,
package to package, a jumble of design decisions may be applied,
each defensible but idiosyncratic.

The strict segregation imposed by BOUNDED CONTEXTS prevents
corruption and confusion, but it does not, in itself, make it easier to
see the system as a whole.

Distillation does help by focusing attention on the CORE DOMAIN and
casting other subdomains in their supporting roles. But it is still
necessary to understand the supporting elements and their
relationships to the CORE DOMAIN�and to each other. And while the



CORE DOMAIN would ideally be so clear and easily understood that no
additional guidance would be needed, we are not always at that
point.

On a project of any size, people must work somewhat independently
on different parts of the system. Without any coordination or rules, a
confusion of different styles and distinct solutions to the same
problems arises, making it hard to understand how the parts fit
together and impossible to see the big picture. Learning about one
part of the design will not transfer to other parts, so the project will
end up with specialists in different MODULES who cannot help each
other outside their narrow range. CONTINUOUS INTEGRATION breaks
down and the BOUNDED CONTEXT fragments.

In a large system without any overarching principle that allows
elements to be interpreted in terms of their role in patterns that
span the whole design, developers cannot see the forest for the
trees. We need to be able to understand the role of an individual part
in the whole without delving into the details of the whole.

A "large-scale structure" is a language that lets you discuss and
understand the system in broad strokes. A set of high-level concepts
or rules, or both, establishes a pattern of design for an entire system.
This organizing principle can guide design as well as aid
understanding. It helps coordinate independent work because there
is a shared concept of the big picture: how the roles of various parts
shape the whole.

Devise a pattern of rules or roles and relationships that will
span the entire system and that allows some understanding of
each part's place in the whole�even without detailed knowledge
of the part's responsibility.

Structure may be confined to one BOUNDED CONTEXT but will usually
span more than one, providing the conceptual organization to hold
together all the teams and subsystems involved in the project. A
good structure gives insight into the model and complements
distillation.



You can't represent most large-scale structures in UML, and you
don't need to. Most large-scale structures shape and explain the
model and design but do not appear in it. They provide an extra level
of communication about the design. In the examples of this chapter,
you'll see many informal UML diagrams on which I've superimposed
information about the large-scale structure.

When a team is reasonably small and the model is not too
complicated, decomposition into well-named MODULES, a certain
amount of distillation, and informal coordination among developers
can be sufficient to keep the model organized.

Large-scale structure can save a project, but an ill-fitting structure
can severely hinder development. This chapter explores patterns for
successfully structuring a design at this level.

Figure 16.1. Some patterns of large-scale structure



Evolving Order

Many developers have experienced the cost of an unstructured
design. To avoid anarchy, projects impose architectures that
constrain development in various ways. Some technical
architectures do solve technical problems, such as networking or
data persistence, but when architectures start venturing into the
arena of the application and domain model, they can create
problems of their own. They often prevent the developers from
creating designs and models that work well for the specifics of the
problem. The most ambitious ones can even take away from
application developers the familiarity and technical power of the
programming language itself. And whether technical or domain
oriented, architectures that freeze a lot of up-front design decisions
can become a straitjacket as requirements change and as
understanding deepens.

While some technical architectures (such as J2EE) have become
prominent over the years, large-scale structure in the domain layer
has not been explored much. Needs vary widely from one
application to the next.

An up-front imposition of a large-scale structure is likely to be costly.
As development proceeds, you will almost certainly find a more
suitable structure, and you may even find that the prescribed
structure is prohibiting you from taking a design route that would
greatly clarify or simplify the application. You may be able to use
some of the structure, but you're forgoing opportunities. Your work
slows down as you try workarounds or try to negotiate with the
architects. But your managers think the architecture is done. It was
supposed to make this application easy, so why aren't you working
on the application instead of dealing with all these architecture
problems? The managers and architecture teams may even be open
to input, but if each change is a heroic battle, it is too exhausting.



Design free-for-alls produce systems no one can make sense of
as a whole, and they are very difficult to maintain. But
architectures can straitjacket a project with up-front design
assumptions and take too much power away from the
developers/designers of particular parts of the application.
Soon, developers will dumb down the application to fit the
structure, or they will subvert it and have no structure at all,
bringing back the problems of uncoordinated development.

The problem is not the existence of guiding rules, but rather the
rigidity and source of those rules. If the rules governing the design
really fit the circumstances, they will not get in the way but actually
push development in a helpful direction, as well as provide
consistency.

Therefore:

Let this conceptual large-scale structure evolve with the
application, possibly changing to a completely different type of
structure along the way. Don't overconstrain the detailed design
and model decisions that must be made with detailed
knowledge.

Individual parts have natural or useful ways of being organized and
expressed that may not apply to the whole, so imposing global rules
makes these parts less ideal. Choosing to use a large-scale
structure favors manageability of the model as a whole over optimal
structuring of the individual parts. Therefore, there will be some
compromise between unifying structure and freedom to express
individual components in the most natural way. This can be mitigated
by selecting the structure based on actual experience and
knowledge of the domain and by avoiding over-constrictive
structures. A really nice fit of structure to domain and requirements
actually makes detailed modeling and design easier, by helping to
quickly eliminate a lot of options.

The structure can also give shortcuts to design decisions that could,
in principle, be found by working on the individual object level, but



would, in practice, take too long and have inconsistent results. Of
course, continuous refactoring is still necessary, but this will make it
a more manageable process and can help make different people
come up with consistent solutions.

A large-scale structure generally needs to be applicable across
BOUNDED CONTEXTS. Through iteration on a real project, a structure will
lose features that tightly bind it to a particular model and evolve
features that correspond to CONCEPTUAL CONTOURS of the domain.
This doesn't mean that it will have no assumptions about the model,
but it will not impose upon the entire project ideas tailored to a
particular local situation. It has to leave freedom for development
teams in distinct CONTEXTS to vary the model in ways that address
their local needs.

Also, large-scale structures must accommodate practical constraints
on development. For example, designers may have no control over
the model of some parts of the system, especially in the case of
external or legacy subsystems. This could be handled by changing
the structure to better fit the specific external elements. It could be
handled by specifying ways in which the application relates to
externals. It might be handled by making the structure loose enough
to flex around awkward realities.

Unlike the CONTEXT MAP, a large-scale structure is optional. One
should be imposed when costs and benefits favor it, and when a
fitting structure is found. In fact, it is not needed for systems that are
simple enough to be understood when broken into MODULES. Large-
scale structure should be applied when a structure can be
found that greatly clarifies the system without forcing unnatural
constraints on model development. Because an ill-fitting
structure is worse than none, it is best not to shoot for
comprehensiveness, but rather to find a minimal set that solves
the problems that have emerged. Less is more.

A large-scale structure can be very helpful and still have a few
exceptions, but those exceptions need to be flagged somehow, so
that developers can assume the structure is being followed unless



otherwise noted. And if those exceptions start to get numerous, the
structure needs to be changed or discarded.

  

As mentioned, it is no mean feat to create a structure that gives the
necessary freedom to developers while still averting chaos. Although
a lot of work has been done on technical architecture for software
systems, little has been published on the structuring of the domain
layer. Some approaches weaken the object-oriented paradigm, such
as those that break down the domain by application task or by use
case. This whole area is still undeveloped. I've observed a few
general patterns of large-scale structures that have emerged on
various projects. I'll discuss four in this chapter. One of these may fit
your needs or lead to ideas for a structure tailored to your project.



System Metaphor

Metaphorical thinking is pervasive in software development,
especially with models. But the Extreme Programming practice of
"metaphor" has come to mean a particular way of using a metaphor
to bring order to the development of a whole system.

  

Just as a firewall can save a building from a fire raging through
neighboring buildings, a software "firewall" protects the local network
from the dangers of the larger networks outside. This metaphor has
influenced network architectures and shaped a whole product
category. Multiple competing firewalls�developed independently,
understood to be somewhat interchangeable�are available for
consumers. Novices to networking readily grasp the concept. This
shared understanding throughout the industry and among customers
is due in no small part to the metaphor.

Yet it is an inexact analogy, and its power cuts both ways. The use of
the firewall metaphor has led to development of software barriers
that are sometimes insufficiently selective and impede desirable
exchanges, while offering no protection against threats originating
within the wall. Wireless LANs, for example, are vulnerable. The
clarity of the firewall has been a boon, but all metaphors carry
baggage.[1]

[1] SYSTEM METAPHOR finally made sense to me when I heard Ward Cunningham use
this firewall example in a workshop lecture.

Software designs tend to be very abstract and hard to grasp.
Developers and users alike need tangible ways to understand
the system and share a view of the system as a whole.



On one level, metaphor runs so deeply in the way we think that it
pervades every design. Systems have "layers" that "lay on top" of
each other. They have "kernels" at their "centers." But sometimes a
metaphor comes along that can convey the central theme of a whole
design and provide a shared understanding among all team
members.

When this happens, the system is actually shaped by the metaphor.
A developer will make design decisions consistent with the system
metaphor. This consistency will enable other developers to interpret
the many parts of a complex system in terms of the same metaphor.
The developers and experts have a reference point in discussions
that may be more concrete than the model itself.

A SYSTEM METAPHOR is a loose, easily understood, large-scale
structure that it is harmonious with the object paradigm. Because the
SYSTEM METAPHOR is only an analogy to the domain anyway, different
models can map to it in an approximate way, which allows it to be
applied in multiple BOUNDED CONTEXTS, helping to coordinate work
between them.

SYSTEM METAPHOR has become a popular approach because it is one
of the core practices of Extreme Programming (Beck 2000).
Unfortunately, few projects have found really useful METAPHORS, and
people have tried to push the idea into domains where it is
counterproductive. A persuasive metaphor introduces the risk that
the design will take on aspects of the analogy that are not desirable
for the problem at hand, or that the analogy, while seductive, may not
be apt.

That said, SYSTEM METAPHOR is a well-known form of large-scale
structure that is useful on some projects, and it nicely illustrates the
general concept of a structure.

Therefore:

When a concrete analogy to the system emerges that captures
the imagination of team members and seems to lead thinking in



a useful direction, adopt it as a large-scale structure. Organize
the design around this metaphor and absorb it into the
UBIQUITOUS LANGUAGE. The SYSTEM METAPHOR should both facilitate
communication about the system and guide development of it.
This increases consistency in different parts of the system,
potentially even across different BOUNDED CONTEXTS. But because
all metaphors are inexact, continually reexamine the metaphor
for overextension or inaptness, and be ready to drop it if it gets
in the way.

  

The "Naive Metaphor" and Why We Don't
Need It

Because a useful metaphor doesn't present itself on most projects,
some in the XP community have come to talk of the naive metaphor,
by which they mean the domain model itself.

One trouble with this term is that a mature domain model is anything
but naive. In fact, "payroll processing is like an assembly line" is
likely a much more naive view than a model that is the product of
many iterations of knowledge crunching with domain experts, and
that has been proven by being tightly woven into the implementation
of a working application.

The term naive metaphor should be retired.

SYSTEM METAPHORS are not useful on all projects. Large-scale
structure in general is not essential. In the 12 practices of Extreme
Programming, the role of a SYSTEM METAPHOR could be fulfilled by a
UBIQUITOUS LANGUAGE. Projects should augment that LANGUAGE with
SYSTEM METAPHORS or other large-scale structures when they find one
that fits well.



Responsibility Layers

Throughout this book, individual objects have been assigned narrow
sets of related responsibilities. Responsibility-driven design also
applies to larger scales.

  

When each individual object has handcrafted responsibilities,
there are no guidelines, no uniformity, and no ability to handle
large swaths of the domain together. To give coherence to a
large model, it is useful to impose some structure on the
assignment of those responsibilities.

When you gain a deep understanding of a domain, broad patterns
start to become visible. Some domains have a natural stratification.
Certain concepts and activities take place against a background of
other elements that change independently and at a different rate for
different reasons. How can we take advantage of this natural
structure, make it more visible and useful? This stratification
suggests layering, one of the most successful architectural design
patterns (Buschmann et al. 1996, among others).

Layers are partitions of a system in which the members of each
partition are aware of and are able to use the services of the layers
"below," but unaware of and independent of the layers "above."
When the dependencies of MODULES are drawn, they are often laid
out so that a MODULE with dependents appears below its dependents.
In this way, layers sometimes sort themselves out so that none of the
objects in the lower levels is conceptually dependent on those in
higher layers.

But this ad hoc layering, while it can make tracing dependencies
easier�and sometimes makes some intuitive sense�doesn't give
much insight into the model or guide modeling decisions. We need
something more intentional.



Figure 16.2. Ad hoc layering: What are these packages
about?

In a model with a natural stratification, conceptual layers can be
defined around major responsibilities, uniting the two powerful
principles of layering and responsibility-driven design.

These responsibilities must be considerably broader than those
typically assigned to individual objects, as examples will illustrate
shortly. As individual MODULES and AGGREGATES are designed, they
are factored to keep them within the bounds of one of these major
responsibilities. This named grouping of responsibilities by itself
could enhance the comprehensibility of a modularized system, since
the responsibilities of MODULES could be more readily interpreted. But
combining high-level responsibilities with layering gives us an
organizing principle for a system.

The layering pattern that serves best for RESPONSIBILITY LAYERS is the variant called
RELAXED LAYERED SYSTEM (Buschmann et al. 1996, p. 45), which allows components of
a layer to access any lower layer, not just the one immediately below.



Therefore:

Look at the conceptual dependencies in your model and the
varying rates and sources of change of different parts of your
domain. If you identify natural strata in the domain, cast them
as broad abstract responsibilities. These responsibilities
should tell a story of the high-level purpose and design of your
system. Refactor the model so that the responsibilities of each
domain object, AGGREGATE, and MODULE fit neatly within the
responsibility of one layer.

This is a pretty abstract description, but it will become clear with a
few examples. The satellite communications simulator whose story
opened this chapter layered its responsibility. I have seen
RESPONSIBILITY LAYERS used to good effect in domains as various as
manufacturing control and financial management.

  

The following example explores RESPONSIBILITY LAYERS in detail to give
a feel for the discovery of a large-scale structure of any sort, and the
way it guides and constrains modeling and design.

Example
 In Depth: Layering a Shipping System

Let's look at the implications of applying RESPONSIBILITY LAYERS to the
cargo shipping application discussed in the examples of previous
chapters.

As we rejoin the story, the team has made considerable progress
creating a MODEL-DRIVEN DESIGN and distilling a CORE DOMAIN. But as
the design fleshes out, they are having trouble coordinating how all
the parts fit together. They are looking for a large-scale structure that
can bring out the main themes of their system and keep everyone on
the same page.



Here is a look at a representative part of the model.

Figure 16.3. A basic shipping domain model for routing
cargoes

Figure 16.4. Using the model to route a cargo during
booking

The team members have been steeped in the domain of shipping for
months, and they have noticed some natural stratification of its
concepts. It is quite reasonable to discuss transport schedules (the
scheduled voyages of ships and trains) without referring to the
cargoes aboard those transports. It is harder to talk about tracking a



cargo without referring to the transport carrying it. The conceptual
dependencies are pretty clear. The team can readily distinguish two
layers: "Operations" and the substrate of those operations, which
they dub "Capability."

"Operational" Responsibilities

Activities of the company, past, current, and planned, are collected
into the Operations layer. The most obvious Operations object is
Cargo, which is the focus of most of the day-to-day activity of the
company. The Route Specification is an integral part of Cargo,
indicating delivery requirements. The Itinerary is the operational
delivery plan. Both of these objects are part of the Cargo's
AGGREGATE, and their life cycles are tied to the time frame of an active
delivery.

"Capability" Responsibilities

This layer reflects the resources the company draws upon in order to
carry out operations. The Transit Leg is a classic example. The
ships are scheduled to run and have a certain capacity to carry
cargo, which may or may not be fully utilized.

True, if we were focused on operating a shipping fleet, Transit Leg
would be in the Operations layer. But the users of this system aren't
worried about that problem. (If the company were involved in both
those activities and wanted the two coordinated, the development
team might have to consider a different layering scheme, perhaps
with two distinct layers, such as "Transport Operations" and "Cargo
Operations.")

A trickier decision is where to place Customer. In some businesses,
customers tend to be transient: they're interesting while a package is
being delivered and then mostly forgotten until next time. This quality



would make customers only an operational concern for a parcel
delivery service aimed at individual consumers. But our hypothetical
shipping company tends to cultivate long-term relationships with
customers, and most work comes from repeat business. Given these
intentions of the business users, the Customer belongs in the
potential layer. As you can see, this was not a technical decision. It
was an attempt to capture and communicate knowledge of the
domain.

Because the association between Cargo and Customer can be
traversed in only one direction, the Cargo REPOSITORY will need a
query that finds all Cargoes for a particular Customer. There were
good reasons to design it that way anyway, but with the imposition of
the large-scale structure, it is now a requirement.

Figure 16.5. A query replaces a bidirectional association
that violates the layering.

Figure 16.6. A first-pass layered model



While the distinction between Operations and Capability clarifies the
picture, order continues to evolve. After a few weeks of
experimentation, the team zeroes in on another distinction. For the
most part, both initial layers focus on situations or plans as they are.
But the Router (and many other elements excluded from this
example) isn't part of current operational realities or plans. It helps
make decisions about changing those plans. The team defines a
new layer responsible for "Decision Support."

"Decision Support" Responsibilities

This layer of the software provides the user with tools for planning
and decision making, and it could potentially automate some
decisions (such as automatically rerouting Cargoes when a
transport schedule changes).

The Router is a SERVICE that helps a booking agent choose the best
way to send a Cargo. This places the Router squarely in Decision
Support.

The references within this model are all consistent with the three
layers except for one discordant element: the "is preferred" attribute
on Transport Leg. This attribute exists because the company
prefers to use its own ships when it can, or the ships of certain other



companies with which it has favorable contracts. The "is preferred"
attribute is used to bias the Router toward these favored transports.
This attribute has nothing to do with "Capability." It is a policy that
directs decision making. To use the new RESPONSIBILITY LAYERS, the
model will have to be refactored.

Figure 16.7. Refactoring the model to conform to the new
layering structure

This factoring makes the Route Bias Policy more explicit while
making Transport Leg more focused on the fundamental concept of
transportation capability. A large-scale structure based on a deep
understanding of the domain will often push the model in directions
that clarify its meaning.

This new model now smoothly fits into the large-scale structure.

Figure 16.8. The restructured and refactored model



A developer accustomed to the chosen layers can more readily
discern the roles and dependencies of the parts. The value of the
large-scale structure increases as the complexity grows.

Note that although I'm illustrating this example with a modified UML
diagram, the drawing is just a way of communicating the layering.
UML doesn't include this notation, so this is additional information
imposed for the sake of the reader. If code is the ultimate design
document for your project, it would be helpful to have a tool for
browsing classes by layer or at least for reporting them by layer.

How Does This Structure Affect Ongoing Design?

Once a large-scale structure has been adopted, subsequent
modeling and design decisions must take it into account. To
illustrate, suppose that we must add a new feature to this already
layered design. The domain experts have just told us that routing
restrictions apply for certain categories of hazardous materials.
Certain materials may not be allowed on some transports or in some
ports. We have to make the Router obey these regulations.



There are many possible approaches. In the absence of a large-
scale structure, one appealing design would be to give the
responsibility of incorporating these routing rules to the object that
owns the Route Specification and the Hazardous Material
(HazMat) code�namely the Cargo.

Figure 16.9. A possible design for routing hazardous
cargo

 

Figure 16.10.



 
The trouble is, this design doesn't fit the large-scale structure. The
HazMat Route Policy Service is not the problem; it fits neatly into
the responsibility of the Decision Support layer. The problem is the
dependency of Cargo (an Operational object) on HazMat Route
Policy Service (a Decision Support object). As long as the project is
committed to these layers, this model cannot be allowed. It would
confuse developers who expected the structure to be followed.

There are always many design possibilities, and we'll just have to
choose another one�one that follows the rules of the large-scale
structure. The HazMat Route Policy Service is all right, but we
need to move the responsibility for using the policy. Let's try giving
the Router the responsibility for collecting appropriate policies
before searching for a route. This means changing the Router
interface to include objects that policies might depend on. Here is a
possible design.

Figure 16.11. A design consistent with layering



A typical interaction is shown in Figure 16.12 on the next page.

 

Figure 16.12.



 
Now, this isn't necessarily a better design than the other. They both
have pros and cons. But if everyone on a project makes decisions in
a consistent way, the design as a whole will be much more
comprehensible, and that is worth some modest trade-offs on
detailed design choices.

If the structure is forcing many awkward design choices, then in
keeping with EVOLVING ORDER, it should be evaluated and perhaps
modified or even discarded.

Choosing Appropriate Layers

Finding good RESPONSIBILITY LAYERS, or any large-scale structure, is a
matter of understanding the problem domain and experimenting. If
you allow EVOLVING ORDER, the initial starting point is not critical,
although a poor choice does add work. The structure may well
evolve into something unrecognizable. So the guidelines suggested



here should be applied when considering transformations of the
structure as much as when choosing from scratch.

As layers get switched out, merged, split, and redefined, here are
some useful characteristics to look for and preserve.

Storytelling. The layers should communicate the basic realities
or priorities of the domain. Choosing a large-scale structure is
less a technical decision than a business modeling decision.
The layers should bring out the priorities of the business.

Conceptual dependency. The concepts in the "upper" layers
should have meaning against the backdrop of the "lower" layers,
while the lower-layer concepts should be meaningful standing
alone.

CONCEPTUAL CONTOURS. If the objects of different layers should
have different rates of change or different sources of change,
the layer accommodates the shearing between them.

It isn't always necessary to start from scratch in defining layers for
each new model. Certain layers show up in whole families of related
domains.

For example, in businesses based on exploiting large fixed capital
assets, such as factories or cargo ships, logistical software can often
be organized into a "Potential" layer (another name for the
"Capability" layer in the example) and an "Operations" layer.

Potential. What can be done? Never mind what we are planning
to do. What could we do? The resources of the organization,
including its people, and the way those resources are organized
are the core of the Potential layer. Contracts with vendors also
define potentials. This layer could be recognized in almost any
business domain, but it is a prominent part of the story in those



businesses, such as transportation and manufacturing, that
have relatively large fixed capital investments that enable the
business. Potential includes transient assets as well, but a
business driven primarily by transient assets might choose
layers that emphasize this, as discussed later. (This layer was
called "Capability" in the example.)

Operation. What is being done? What have we managed to
make of those potentials? Like the Potential layer, this layer
should reflect the reality of the situation, rather than what we
want it to be. In this layer we are trying to see our own efforts
and activities: What we are selling, rather than what enables us
to sell. It is very typical of Operational objects to reference or
even be composed of Potential objects, but a Potential object
shouldn't reference the Operations layer.

In many, perhaps most, existing systems in domains of this kind,
these two layers cover everything (although there could be some
entirely different and more revealing breakdown). They track the
current situation and active operational plans and issue reports or
documents about it. But tracking is not always enough. When
projects seek to guide or assist users, or to automate decision
making, there is an additional set of responsibilities that can be
organized into another layer, above Operations.

Decision Support. What action should be taken or what policy
should be set? This layer is for analysis and decision making. It
bases its analysis on information from lower layers, such as
Potential or Operations. Decision Support software may use
historical information to actively seek opportunities for current
and future operations.

Decision Support systems have conceptual dependencies on other
layers such as Operations or Potential because decisions aren't
made in a vacuum. A lot of projects implement Decision Support
using data warehouse technology. The layer becomes a distinct



BOUNDED CONTEXT, with a CUSTOMER/SUPPLIER relationship with the
Operations software. In other projects, it is more deeply integrated,
as in the preceding extended example. And one of the intrinsic
advantages of layers is that the lower layers can exist without the
higher ones. This can facilitate phased introductions or higher-level
enhancements built on top of older operational systems.

Another case is software that enforces elaborate business rules or
legal requirements, which can constitute a RESPONSIBILITY LAYER.

Policy. What are the rules and goals? Rules and goals are
mostly passive, but constrain the behavior in other layers.
Designing these interactions can be subtle. Sometimes a Policy
is passed in as an argument to a lower level method.
Sometimes the STRATEGY pattern is applied. Policy works well
in conjunction with a Decision Support layer, which provides the
means to seek the goals set by Policy, constrained by the rules
set by Policy.

Policy layers can be written in the same language as the other
layers, but they are sometimes implemented using rules engines.
This doesn't necessarily place them in a separate BOUNDED CONTEXT.
In fact, the difficulty of coordinating such different implementation
technologies can be eased by fastidiously using the same model
across both. When rules are written based on a different model than
the objects they apply to, either the complexity goes way up or the
objects get dumbed down to keep things manageable.

Figure 16.13. Conceptual dependencies and shearing
points in a factory automation system



Many businesses do not base their capability on plant and
equipment. In financial services or insurance, to name two, the
potential is to a large extent determined by current operations. An
insurance company's ability to take on a new risk by underwriting a
new policy agreement is based on the diversification of its current
business. The Potential layer would probably merge into Operations,
and a different layering would evolve.

One area that often comes to the fore in these situations is
commitments made to customers.

Commitment. What have we promised? This layer has the
nature of Policy, in that it states goals that direct future
operations, but it has the nature of Operations in that
commitments emerge and change as a part of ongoing business
activity.

Figure 16.14. Conceptual dependencies and shearing
points in an investment banking system



The Potential and Commitment layers are not mutually exclusive. A
domain in which both are prominent, say a transportation company
with a lot of custom shipping services, might use both. Other layers
more specific to those domains might be useful too. Change things.
Experiment. But it is best to keep the layering system simple; going
beyond four or possibly five becomes unwieldy. Having too many
layers isn't as effective at telling the story, and the problems of
complexity the large-scale structure was meant to solve will come
back in a new form. The large-scale structure must be ferociously
distilled.

Although these five layers are applicable to a range of enterprise
systems, they do not capture the salient responsibilities of all
domains. In other cases, it would be counterproductive to try to force
the design into this shape, but there may be a natural set of
RESPONSIBILITY LAYERS that do work. For a domain completely
unrelated to those we've discussed, these layers might have to be
completely original. Ultimately, you have to use your intuition, start
somewhere, and let the ORDER EVOLVE.



Knowledge Level

[A KNOWLEDGE LEVEL is] a group of objects that describes
how another group of objects should behave. [Martin Fowler,
"Accountability," www.martinfowler.com]

KNOWLEDGE LEVEL untangles things when we need to let some part of
the model itself be plastic in the user's hands yet constrained by a
broader set of rules. It addresses requirements for software with
configurable behavior, in which the roles and relationships among
ENTITIES must be changed at installation or even at runtime.

In Analysis Patterns (Fowler 1996, pp. 24�27), the pattern emerges
from a discussion of modeling accountability within organizations,
and it is later applied to posting rules in accounting. Although the
pattern appears in several chapters, it doesn't have a chapter of its
own because it is different from most patterns in the book. Rather
than modeling a domain, as the other analysis patterns do,
KNOWLEDGE LEVEL structures a model.

To see the problem concretely, consider models of "accountability."
Organizations are made up of people and smaller organizations, and
define the roles they play and the relationships between them. The
rules governing those roles and relationships vary greatly for
different organizations. At one company, a "department" might be
headed by a "Director" who reports to a "Vice President." In another
company, a "module" is headed by a "Manager" who reports to a
"Senior Manager." Then there are "matrix" organizations, in which
each person reports to different managers for different purposes.

http://www.martinfowler.com/default.htm


A typical application would make some assumptions. When those
didn't fit, users would start to use data-entry fields in a different way
than they were intended. Any behavior the application had would
misfire, as the semantics were changed by the users. Users would
develop workarounds for the behavior, or would get the higher level
features of the application shut off. They would be forced to learn
complicated mappings between what they did in their jobs and the
way the software works. They would never be served well.

When the system had to be changed or replaced, developers would
discover (sooner or later) that the meanings of the features were not
what they seemed. They might mean very different things in different
user communities or in different situations. Changing anything
without breaking these overlaid usages would be daunting. Data
migration to a more tailored system would require understanding and
coding for all those quirks.

Example
 Employee Payroll and Pension, Part 1

The HR department of a medium-sized company has a simple
program for calculating payroll and pension contributions.

Figure 16.15. The old model, overconstrained for new
requirements



Figure 16.16. Some employees represented using the old
model

But now, the management has decided that the office administrators
should go into the "defined benefit" retirement plan. The trouble is



that office administrators are paid hourly, and this model does not
allow mixing. The model will have to change.

The next model proposal is quite simple: just remove the constraints.

Figure 16.17. The proposed model, now
underconstrained

Figure 16.18. Employees can be associated with the
wrong plan.

This model allows each employee to be associated with either kind
of retirement plan, so each office administrator can be switched. This
model is rejected by management because it does not reflect



company policy. Some administrators could be switched and others
not. Or the janitor could be switched. Management wants a model
that enforces the policy:

Office administrators are hourly employees with defined-
benefit retirement plans.

This policy suggests that the "job title" field now represents an
important domain concept. Developers could refactor to make that
concept explicit as an "Employee Type."

Figure 16.19. The Type object allows requirements to be
met.

Figure 16.20. Each Employee Type is assigned a
Retirement Plan.

The requirements can be stated in the UBIQUITOUS LANGUAGE as
follows:



An Employee Type is assigned to either Retirement Plan or
either payroll.

Employees are constrained by the Employee Type.

Access to edit the Employee Type object will be restricted to a
"superuser," who will make changes only when company policy
changes. An ordinary user in the personnel department can change
Employees or point them at a different Employee Type.

This model satisfies the requirements. The developers sense an
implicit concept or two, but it is just a nagging feeling at the moment.
They don't have any solid ideas to pursue, so they call it a day.

A static model can cause problems. But problems can be just as bad
with a fully flexible system that allows any possible relationship to be
presented. Such a system would be inconvenient to use and
wouldn't allow the organization's own rules to be enforced.

Fully customizing software for each organization is not practical
because, even if each organization could pay for custom software,
the organizational structure will likely change frequently.

So such software must provide options to allow the user to configure
it to reflect the current structure of the organization. The trouble is
that adding such options to the model objects makes them unwieldy.
The more flexibility you add, the more complex it all becomes.

In an application in which the roles and relationships between
ENTITIES vary in different situations, complexity can explode.
Neither fully general models nor highly customized ones serve
the users' needs. Objects end up with references to other types
to cover a variety of cases, or with attributes that are used in
different ways in different situations. Classes that have the
same data and behavior may multiply just to accommodate
different assembly rules.



Nestled into our model is another model that is about our model. A
KNOWLEDGE LEVEL separates that self-defining aspect of the model
and makes its constraints explicit.

KNOWLEDGE LEVEL is an application to the domain layer of the
REFLECTION pattern, used in many software architectures and
technical infrastructures and described well in Buschmann et al.
1996. REFLECTION accommodates changing needs by making the
software "self-aware," and making selected aspects of its structure
and behavior accessible for adaptation and change. This is done by
splitting the software into a "base level," which carries the
operational responsibility for the application, and a "meta level,"
which represents knowledge of the structure and behavior of the
software.

Significantly, the pattern is not called a knowledge "layer." As much
as it resembles layering, REFLECTION involves mutual dependencies
running in both directions.

Java has some minimal built-in REFLECTION in the form of protocols
for interrogating a class for its methods and so forth. Such
mechanisms allow a program to ask questions about its own design.
CORBA has somewhat more extensive but similar REFLECTION

protocols. Some persistence technologies extend the richness of that
self-description to support partially automated mapping between
database tables and objects. There are other technical examples.
This pattern can also be applied within the domain layer.

The KNOWLEDGE LEVEL provides two useful distinctions. First, it
focuses on the application domain, in contrast to familiar applications
of REFLECTION. Second, it does not strive for full generality. Just as a
SPECIFICATION can be more useful than a general predicate, a very
specialized set of constraints on a set of objects and their
relationships can be more useful than a generalized framework. The
KNOWLEDGE LEVEL is simpler and can communicate the specific intent
of the designer.



Fowler Terminology POSA Terminology[2]Fowler Terminology POSA Terminology[2]

Knowledge Level Meta Level

Operations Level Base Level

[2] POSA is short for Pattern-Oriented Software Architecture, by Buschmann et al.
1996.

Comparing the terminology of KNOWLEDGE LEVEL and REFLECTION

Just to be clear, the reflection tools of the programming language are
not for use in implementing the KNOWLEDGE LEVEL of a domain model.
Those meta-objects describe the structure and behavior of the
language constructs themselves. Instead, the KNOWLEDGE LEVEL must
be built of ordinary objects.

The KNOWLEDGE LEVEL provides two useful distinctions. First, it
focuses on the application domain, in contrast to familiar uses of
REFLECTION. Second, it does not strive for full generality. Just as a
SPECIFICATION can be more useful than a general predicate, a very
specialized set of constraints on a set of objects and their
relationships can be more useful than a generalized framework. The
KNOWLEDGE LEVEL is simpler and can communicate the specific intent
of the designer.

Therefore:

Create a distinct set of objects that can be used to describe and
constrain the structure and behavior of the basic model. Keep
these concerns separate as two "levels," one very concrete, the
other reflecting rules and knowledge that a user or superuser is
able to customize.



Like all powerful ideas, REFLECTION and KNOWLEDGE LEVELS can be
intoxicating. This pattern should be used sparingly. It can unravel
complexity by freeing operations objects from the need to be jacks-
of-all-trades, but the indirection it introduces does add some of that
obscurity back in. If the KNOWLEDGE LEVEL becomes complex, the
system's behavior becomes hard to understand for developers and
users alike. The users (or superuser) who configure it will end up
needing the skills of a programmer�and a meta-level programmer at
that. If they make mistakes, the application will behave incorrectly.

Also, the basic problems of data migration don't completely
disappear. When a structure in the KNOWLEDGE LEVEL is changed,
existing operations-level objects have to be dealt with. It may be
possible for old and new to coexist, but one way or another, careful
analysis is needed.

All of these issues put a major burden on the designer of a
KNOWLEDGE LEVEL. The design has to be robust enough to handle not
only the scenarios presented in development, but also any scenario
for which a user could configure the software in the future. Applied
judiciously, to the points where customization is crucial and would
otherwise distort the design, KNOWLEDGE LEVELS can solve problems
that are very hard to handle any other way.

Example
 Employee Payroll and Pension, Part 2:

KNOWLEDGE LEVEL

Our team members are back, and, refreshed from a night's sleep,
one of them has started to close in on one of the awkward points.
Why were certain objects being secured while others were freely
edited? The cluster of restricted objects reminded him of the
KNOWLEDGE LEVEL pattern, and he decided to try it as a way of viewing
the model. He found that the existing model could already be viewed
this way.



Figure 16.21. Recognizing the KNOWLEDGE LEVEL
implicit in the existing model

The restricted edits were in the KNOWLEDGE LEVEL, while the day-to-
day edits were in the operational level. A nice fit. All the objects
above the line described types or longstanding policies. The
Employee Type effectively imposed behavior on the Employee.

The developer was sharing his insight with his colleagues when one
of the other developers had another insight. The clarity of seeing the
model organized by KNOWLEDGE LEVEL had let her spot what had been
bothering her the previous day. Two distinct concepts were being
combined in the same object. She had heard it in the language used
on the previous day but hadn't put her finger on it:

An Employee Type is assigned to either Retirement Plan or
either payroll.

But that was not really a statement in the UBIQUITOUS LANGUAGE. There
was no "payroll" in the model. They had spoken in the language they
wanted, rather than the one they had. The concept of payroll was
implicit in the model, lumped together with Employee Type. It hadn't
been so obvious before the KNOWLEDGE LEVEL was separated out, and
the very elements in that key phrase all appeared in the same level
together . . . except one.



Based on this insight, she refactored again to a model that does
support that statement.

The need for user control of the rules for associating objects drove
the team to a model that had an implicit KNOWLEDGE LEVEL.

Figure 16.22. Payroll is now explicit, distinct from
Employee Type.

Figure 16.23. Each Employee Type now has a Retirement
Plan and a Payroll.

KNOWLEDGE LEVEL was hinted at by the characteristic access
restrictions and a "thing-thing" type relationship. Once it was in



place, the clarity it afforded helped produce another insight that
disentangled two important domain concepts by factoring out
Payroll.

KNOWLEDGE LEVEL, like other large-scale structures, isn't strictly
necessary. The objects will still work without it, and the insight that
separated Employee Type from Payroll could still have been found
and used. There may come a time when this structure doesn't seem
to be pulling its weight and can be dropped. But for now, it seems to
tell a useful story about the system and helps developers grapple
with the model.

  

At first glance, KNOWLEDGE LEVEL looks like a special case of
RESPONSIBILITY LAYERS, especially the "policy" layer, but it is not. For
one thing, dependencies run in both directions between the levels,
but with LAYERS, lower layers are independent of upper layers.

In fact, KNOWLEDGE LEVEL can coexist with most other large-scale
structures, providing an additional dimension of organization.



Pluggable Component Framework

Opportunities arise in a very mature model that is deep and distilled.
A PLUGGABLE COMPONENT FRAMEWORK usually only comes into play
after a few applications have already been implemented in the same
domain.

  

When a variety of applications have to interoperate, all based
on the same abstractions but designed independently,
translations between multiple BOUNDED CONTEXTS limit integration.
A SHARED KERNEL is not feasible for teams that do not work
closely together. Duplication and fragmentation raise costs of
development and installation, and interoperability becomes
very difficult.

Some successful projects break down their design into components,
each with responsibility for certain categories of functions. Usually all
the components plug into a central hub, which supports any
protocols they need and knows how to talk to the interfaces they
provide. Other patterns of connecting components are also possible.
The design of these interfaces and the hub that connects them must
be coordinated, while more independence is possible designing the
interiors.

Several widely used technical frameworks support this pattern, but
that is a secondary issue. A technical framework is needed only if it
solves some essential technical problem such as distribution, or
sharing a component among different applications. The basic pattern
is a conceptual organization of responsibilities. It can easily be
applied within a single Java program.

Therefore:



Distill an ABSTRACT CORE of interfaces and interactions and create
a framework that allows diverse implementations of those
interfaces to be freely substituted. Likewise, allow any
application to use those components, so long as it operates
strictly through the interfaces of the ABSTRACT CORE.

High-level abstractions are identified and shared across the breadth
of the system; specialization occurs in MODULES. The central hub of
the application is an ABSTRACT CORE within a SHARED KERNEL. But
multiple BOUNDED CONTEXTS can lie behind the encapsulated
component interfaces, so that this structure can be especially
convenient when many components are coming from many different
sources, or when components are encapsulating preexisting
software for integration.

This is not to say that components must have divergent models.
Multiple components can be developed within a single CONTEXT if the
teams CONTINUOUSLY INTEGRATE, or they can define another SHARED

KERNEL held in common by a closely related set of components. All
these strategies can coexist easily within a large-scale structure of
PLUGGABLE COMPONENTS. Another option, in some cases, is to use a
PUBLISHED LANGUAGE for the plug-in interface of the hub.

There are a few downsides to a PLUGGABLE COMPONENT FRAMEWORK.
One is that this is a very difficult pattern to apply. It requires precision
in the design of the interfaces and a deep enough model to capture
the necessary behavior in the ABSTRACT CORE. Another major
downside is that applications have limited options. If an application
needs a very different approach to the CORE DOMAIN, the structure will
get in the way. Developers can specialize the model, but they can't
change the ABSTRACT CORE without changing the protocol of all the
diverse components. As a result, the process of continuous
refinement of the CORE, refactoring toward deeper insight, is more or
less frozen in its tracks.

Fayad and Johnson (2000) give a good look at ambitious attempts at
PLUGGABLE COMPONENT FRAMEWORKS in several domains, including a
discussion of SEMATECH CIM. The success of such frameworks is



a mixed story. Probably the biggest obstacle is the maturity of
understanding needed to design a useful framework. A PLUGGABLE

COMPONENT FRAMEWORK should not be the first large-scale structure
applied on a project, nor the second. The most successful examples
have followed after the full development of multiple specialized
applications.

Example
 The SEMATECH CIM Framework

In a factory producing computer chips, groups (called lots) of silicon
wafers are moved from one machine to another through hundreds of
steps of processing until the microscopic circuitry being printed and
etched into them is complete. The factory needs software that can
track each individual lot, recording the exact processing that has
been done to it, and then direct either factory workers or automated
equipment to take it to the next appropriate machine and apply the
next appropriate process. Such software is called a manufacturing
execution system (MES).

Hundreds of different machines from dozens of vendors are used,
with carefully tailored recipes at each step of the way. Developing
MES software that could deal with such a complex mix was daunting
and prohibitively expensive. In response, an industry consortium,
SEMATECH, developed the CIM Framework.

The CIM Framework is big and complicated and has many aspects,
but two are relevant here. First, the framework defines abstract
interfaces for the basic concepts of the semiconductor MES
domain�in other words, the CORE DOMAIN in the form of an ABSTRACT

CORE. These interface definitions include both behavior and
semantics.



Figure 16.24. A highly simplified subset of the CIM
interfaces, with sample implementations

If a vendor produces a new machine, they have to develop a
specialized implementation of the Process Machine interface. If
they adhere to that interface, their machine-control component
should plug into any application based on the CIM Framework.

Having defined these interfaces, SEMATECH defined the rules by
which they could interact in an application. Any application based on
the CIM Framework would have to implement a protocol that hosted
objects implementing some subset of those interfaces. If this
protocol were implemented, and the application strictly observed the
abstract interfaces, then the application could count on the promised
services of those interfaces, regardless of implementation. The
combination of those interfaces and the protocol for using them
constitutes a tightly restrictive large-scale structure.

Figure 16.25. The user places a lot in the next machine
and logs the move into the computer.



The framework has very specific infrastructure requirements. It is
tightly coupled to CORBA to provide persistence, transactions,
events, and other technical services. But the interesting thing about it
is the definition of a PLUGGABLE COMPONENT FRAMEWORK, which allows
people to develop software independently and smoothly integrate
them into immense systems. No one knows all the details of such a
system, but everyone understands an overview.

  

How can thousands of people work independently to create a
quilt of more than 40,000 panels?

A few simple rules provide a large-scale structure for the AIDS
Memorial Quilt, leaving the details to individual contributors. Notice
how the rules focus on the overall mission (memorializing people
who have died of AIDS), the features of a component that make
integration practical, and the ability to handle the quilt in larger
sections (such as folding it).

Here's How to Create a Panel for the Quilt

[From the AIDS Memorial Quilt Project Web site, www.aidsquilt.org]

http://www.aidsquilt.org/default.htm


Design the panel

Include the name of the person you are remembering. Feel free to
include additional information such as the dates of birth and death,
and a hometown. . . . [P]lease limit each panel to one individual . . . .

Choose your materials

Remember that the Quilt is folded and unfolded many times, so
durability is crucial. Since glue deteriorates with time, it is best to
sew things to the panel. A medium-weight, non-stretch fabric such as
a cotton duck or poplin works best.

Your design can be vertical or horizontal, but the finished, hemmed
panel must be 3 feet by 6 feet (90 cm x 180 cm)�no more and no
less! When you cut the fabric, leave an extra 2�3 inches on each
side for a hem. If you can't hem it yourself, we'll do it for you. Batting
for the panels is not necessary, but backing is recommended.
Backing helps to keep panels clean when they are laid out on the
ground. It also helps retain the shape of the fabric.

Create the panel

In constructing your panel you might want to use some of the
following techniques:

Appliqué: Sew fabric, letters and small mementos onto the
background fabric. Do not rely on glue�it won't last.

Paint: Brush on textile paint or color-fast dye, or use an indelible
ink pen. Please don't use "puffy" paint; it's too sticky.

Stencil: Trace your design onto the fabric with a pencil, lift the
stencil, then use a brush to apply textile paint or indelible
markers.



Collage: Make sure that whatever materials you add to the
panel won't tear the fabric (avoid glass and sequins for this
reason), and be sure to avoid very bulky objects.

Photos: The best way to include photos or letters is to
photocopy them onto iron-on transfers, iron them onto 100%
cotton fabric and sew that fabric to the panel. You may also put
the photo in clear plastic vinyl and sew it to the panel (off-center
so it avoids the fold).

 



How Restrictive Should a Structure Be?

The large-scale structure patterns discussed in this chapter range
from the very loose SYSTEM METAPHOR to the restrictive PLUGGABLE

COMPONENT FRAMEWORK. Other structures are possible, of course, and
even within a general structural pattern, there is a lot of choice about
how restrictive to make the rules.

For example, RESPONSIBILITY LAYERS dictate a kind of factoring of
model concepts and their dependencies, but you could add rules that
would specify communication patterns between the layers.

Consider a manufacturing plant where software directs each part to
a machine where it is processed according to some recipe. The
correct process is ordered from a Policy layer and executed in an
Operations layer. But inevitably there will be mistakes made on the
factory floor. The actual situation will not be consistent with the rules
of the software. Now, an Operations layer must reflect the world as it
is, which means that when a part is occasionally put in the wrong
machine, that information must be accepted unconditionally.
Somehow, this exceptional condition needs to be communicated to a
higher layer. A decision-making layer can then use other policies to
correct the situation, perhaps by rerouting the part to a repair
process or by scrapping it. But Operations does not know anything
about higher layers. The communication has to be done in a way
that doesn't create two-way dependencies from the lower layers to
the higher ones.

Typically, this signaling would be done through some kind of event
mechanism. The Operations objects would generate events
whenever their state changed. Policy layer objects would listen for
events of interest from the lower layers. When an event occurred
that violated a rule, the rule would execute an action (part of the
rule's definition) that makes the appropriate response, or it might
generate an event for the benefit of some still higher layer.



In the banking example, the values of assets change (Operations),
shifting the values of segments of a portfolio. When these values
exceed portfolio allocation limits (Policy), perhaps a trader is alerted,
who can buy or sell assets to redress the balance.

We could figure this out on a case-by-case basis, or we could decide
on a consistent pattern for everyone to follow in interactions of
objects of particular layers. A more restrictive structure increases
uniformity, making the design easier to interpret. If the structure fits,
the rules are likely to push developers toward good designs.
Disparate pieces are likely to fit together better.

On the other hand, the restrictions may take away flexibility that
developers need. Very particular communication paths might be
impractical to apply across BOUNDED CONTEXTS, especially in different
implementation technologies, in a heterogeneous system.

So you have to fight the temptation to build frameworks and regiment
the implementation of the large-scale structure. The most important
contribution of the large-scale structure is conceptual coherence,
and giving insight into the domain. Each structural rule should make
development easier.



Refactoring Toward a Fitting Structure

In an era when the industry is shaking off excessive up-front design,
some will see large-scale structure as a throwback to the bad old
days of waterfall architecture. But in fact, the only way a useful
structure can be found is from a very deep understanding of the
domain and the problem, and the practical way to that understanding
is an iterative development process.

A team committed to EVOLVING ORDER must fearlessly rethink the
large-scale structure throughout the project life cycle. The team
should not saddle itself with a structure conceived of early on, when
no one understood the domain or the requirements very well.

Unfortunately, that evolution means that your final structure will not
be available at the start, and that means that you will have to refactor
to impose it as you go along. This can be expensive and difficult, but
it is necessary. There are some general ways of controlling the cost
and maximizing the gain.

Minimalism

One key to keeping the cost down is to keep the structure simple
and lightweight. Don't attempt to be comprehensive. Just address
the most serious concerns and leave the rest to be handled on a
case-by-case basis.

Early on, it can be helpful to choose a loose structure, such as a
SYSTEM METAPHOR or a couple of RESPONSIBILITY LAYERS. A minimal,
loose structure can nonetheless provide lightweight guidelines that
will help prevent chaos.

Communication and Self-Discipline



The entire team must follow the structure in new development and
refactoring. To do this, the structure must be understood by the
entire team. The terminology and relationships must enter the
UBIQUITOUS LANGUAGE.

Large-scale structure can provide a vocabulary for the project to deal
with the system broadly, and for different people independently to
make harmonious decisions. But because most large-scale
structures are loose conceptual guidelines, the teams must exercise
self-discipline.

Without consistent adherence by the many people involved,
structures have a tendency to decay. The relationship of the
structure to detailed parts of the model or implementation is not
usually explicit in the code, and functional tests do not rely on the
structure. Plus, the structure tends to be abstract, so that
consistency of application can be difficult to maintain across a large
team (or multiple teams).

The kinds of conversations that take place on most teams are not
enough to maintain a consistent large-scale structure in a system. It
is critical to incorporate it into the UBIQUITOUS LANGUAGE of the project,
and for everyone to exercise that language relentlessly.

Restructuring Yields Supple Design

Second, any change to the structure may lead to a lot of refactoring.
The structure is evolving as system complexity increases and
understanding deepens. Each time the structure changes, the entire
system has to be changed to adhere to the new order. Obviously that
is a lot of work.

This isn't quite as bad as it sounds. I've observed that a design with
a large-scale structure is usually much easier to transform than one
without. This seems to be true even when changing from one kind of
structure to another, say from METAPHOR to LAYERS. I can't entirely



explain this. Part of the answer is that it is easier to rearrange
something when you can understand its current arrangement, and
the preexisting structure makes that easier. Partly it is that the
discipline that it took to maintain the earlier structure permeates all
aspects of the system. But there is something more, I think, because
it is even easier to change a system that has had two previous
structures.

A new leather jacket is stiff and uncomfortable, but after the first day
of wear the elbows have flexed a few times and are becoming easier
to bend. After a few more wearings, the shoulders have loosened up,
and the jacket is easier to put on. After months of wear, the leather
becomes supple and is comfortable and easy to move in. So it
seems to be with models that are transformed repeatedly with sound
transformations. Ever-increasing knowledge is embedded into them
and the principal axes of change have been identified and made
flexible, while stable aspects have been simplified. The broader
CONCEPTUAL CONTOURS of the underlying domain are emerging in the
model structure.

Distillation Lightens the Load

Another crucial force that should be applied to the model is
continuous distillation. This reduces the difficulty of changing the
structure in various ways. First, by removing mechanisms, GENERIC

SUBDOMAINS, and other support structure from the CORE DOMAIN, there
may simply be less to restructure.

If possible, these supporting elements should be defined to fit into
the large-scale structure in a simple way. For example, in a system
of RESPONSIBILITY LAYERS, a GENERIC SUBDOMAIN could be defined in
such a way that it would fit within a single layer. With PLUGGABLE

COMPONENTS, a GENERIC SUBDOMAIN could be owned entirely by a
single component, or it could be a SHARED KERNEL among a set of
related components. These supporting elements may have to be
refactored to find their place in the structure; but they move



independently of the CORE DOMAIN, and tend to be more narrowly
focused, which makes it easier. And ultimately they are less critical,
so refinement matters less.

The principles of distillation and refactoring toward deeper insight
apply even to the large-scale structure itself. For example, the layers
may initially be chosen based on a superficial understanding of the
domain; they are gradually replaced with deeper abstractions that
express the fundamental responsibilities of the system. This
sharpedged clarity lets people see deep into the design, which is the
goal. It is also part of the means, as it makes manipulation of the
system on a large scale easier and safer.



Chapter Seventeen. Bringing the
Strategy Together
The preceding three chapters presented many principles and
techniques for domain-driven strategic design. In a large, complex
system, you may need to bring several of them to bear on the same
design. How does a large-scale structure coexist with a CONTEXT

MAP? Where do the building blocks fit in? What do you do first?
Second? Third? How do you go about devising your strategy?



Combining Large-Scale Structures and
BOUNDED CONTEXTS

 

Figure 17.1.

 
The three basic principles of strategic design (context, distillation,
and large-scale structure) are not substitutes for each other; they are
complementary and interact in many ways. For example, a large-
scale structure can exist within one BOUNDED CONTEXT, or it can cut
across many of them and organize the CONTEXT MAP.



The previous examples of RESPONSIBILITY LAYERS were confined to
one BOUNDED CONTEXT. This is the easiest way to explain the idea,
and it's a common use of the pattern. In such a simple scenario, the
meanings of layer names are restricted to that CONTEXT, as are the
names of model elements or subsystem interfaces that exist within
that CONTEXT.

Figure 17.2. Structuring a model within a single
BOUNDED CONTEXT

Such a local structure can be useful in a very complicated but unified
model, raising the complexity ceiling on how much can be
maintained in a single BOUNDED CONTEXT.

But on many projects, the greater challenge is to understand how
disparate parts fit together. They may be partitioned into separate
CONTEXTS, but what part does each play in the whole integrated
system and how do the parts relate to each other? Then the large-
scale structure can be used to organize the CONTEXT MAP. In this
case, the terminology of the structure applies to the whole project (or
at least some clearly bounded part of it).



Figure 17.3. Structure imposed on the relationships of
components of distinct BOUNDED CONTEXTS

Suppose you want to adopt RESPONSIBILITY LAYERS, but you have a
legacy system whose organization is inconsistent with your desired
large-scale structure. Do you have to give up your LAYERS? No, but
you have to acknowledge the actual place the legacy has within the
structure. In fact, it may help to characterize the legacy. The SERVICES

the legacy provides may in fact be confined to only a few LAYERS. To
be able to say that the legacy system fits within particular
RESPONSIBILITY LAYERS concisely describes a key aspect of its scope
and role.

Figure 17.4. A structure that allows some components to
span layers



If the legacy subsystem's capabilities are being accessed through a
FACADE, you may be able to design each SERVICE offered by the
FACADE to fit within one layer.

The interior of the Shipping Coordination application, being a legacy
in this example, is presented as an undifferentiated mass. But a
team on a project with a well-established large-scale structure
spanning the CONTEXT MAP could choose, within their CONTEXT, to
order their model by the same familiar LAYERS.

Figure 17.5. The same structure applied within a
CONTEXT and across the CONTEXT MAP as a whole



Of course, because each BOUNDED CONTEXT is its own name space,
one structure could be used to organize the model within one
CONTEXT, while another was used in a neighboring CONTEXT, and still
another organized the CONTEXT MAP. However, going too far down
that path can erode the value of the large-scale structure as a
unifying set of concepts for the project.



Combining Large-Scale Structures and
Distillation

The concepts of large-scale structure and distillation also
complement each other. The large-scale structure can help explain
the relationships within the CORE DOMAIN and between GENERIC

SUBDOMAINS.

Figure 17.6. MODULES of the CORE DOMAIN (in bold) and
GENERIC SUBDOMAINS are clarified by the layers.



At the same time, the large-scale structure itself may be an important
part of the CORE DOMAIN. For example, distinguishing the layering of
potential, operations, policy, and decision support distills an insight
that is fundamental to the business problem addressed by the
software. This insight is especially useful if a project is carved up into
many BOUNDED CONTEXTS, so that the model objects of the CORE

DOMAIN don't have meaning over much of the project.



Assessment First

When you are tackling strategic design on a project, you need to
start from a clear assessment of the current situation.

1. Draw a CONTEXT MAP. Can you draw a consistent one, or are
there ambiguous situations?

Attend to the use of language on the project. Is there a UBIQUITOUS

LANGUAGE? Is it rich enough to help development?

Understand what is important. Is the CORE DOMAIN identified? Is there
a DOMAIN VISION STATEMENT? Can you write one?

Does the technology of the project work for or against a MODEL-DRIVEN

DESIGN?

Do the developers on the team have the necessary technical skills?

Are the developers knowledgeable about the domain? Are they
interested in the domain?

You won't find perfect answers, of course. You know less about this
project right now than you ever will in the future. But these questions
give you a solid starting point. By the time you have specific initial



answers to these questions, you'll have started getting insight into
what most urgently needs to be done. As time goes along, you can
refine the answers�especially the CONTEXT MAP, DOMAIN VISION

STATEMENT, and any other artifacts you've created�to reflect changed
situations and new insights.



Who Sets the Strategy?

Traditionally, architecture is handed down, created before application
development begins, by a team that has more power in the
organization than the application development team. But it doesn't
have to be that way. That way doesn't usually work very well.

Strategic design, by definition, must apply across the project. There
are many ways to organize a project, and I don't want to be too
prescriptive. However, for any decision-making process to be
effective, some fundamentals are required.

First, let's take a quick look at two styles that I've seen provide some
value in practice (thus ignoring the old "wisdom-from-on-high" style).

Emergent Structure from Application
Development

A self-disciplined team made up of very good communicators can
operate without central authority and follow EVOLVING ORDER to arrive
at a shared set of principles, so that order grows organically, not by
fiat.

This is the typical model for an Extreme Programming team. In
theory, the structure may emerge completely spontaneously from the
insight of any programming pair. More often, having an individual or
a subset of the team with some oversight responsibility for large-
scale structure helps keep the structure unified. This approach works
well particularly if such an informal leader is a hands-on
developer�an arbiter and communicator, and not the sole source of
ideas. On the Extreme Programming teams I have seen, such
strategic design leadership seems to have emerged spontaneously,
often in the person of the coach. Whoever this natural leader is, he



or she is still a member of the development team. It follows that the
development team must have at least a few people of the caliber to
make design decisions that are going to affect the whole project.

When a large-scale structure spans multiple teams, closely affiliated
teams may begin to collaborate informally. In such a situation, each
application team still makes the discoveries that lead to the idea for a
large-scale structure, but then particular options are discussed by
the informal committee, made up of representatives of the various
teams. After assessing the impact of the design, participants may
decide to adopt it, modify it, or leave it on the table. The teams
attempt to move together in this loose affiliation. This arrangement
can work when there are relatively few teams, when they are all
committed to coordinating with each other, when their design
capabilities are comparable, and when their structural needs are
similar enough to be met by a single large-scale structure.

A Customer Focused Architecture Team

When a strategy will be shared among several teams, some
centralization of decision making does seem attractive. The failed
model of the ivory tower architect is not the only possibility. An
architecture team can act as a peer with various application teams,
helping to coordinate and harmonize their large-scale structures as
well as BOUNDED CONTEXT boundaries and other cross-team technical
issues. To be useful in this, they must have a mind set that
emphasizes application development.

On an organization chart, this team may look just like the traditional
architecture team, but it is actually different in every activity. Team
members are true collaborators with development, discovering
patterns along with the developers, experimenting with various
teams to reach distillations, and getting their hands dirty.

I have seen this scenario a couple of times, when a project ends up
with a lead architect who does most of the things on the following



list.



Six Essentials for Strategic Design Decision
Making

Decisions must reach the entire team

Obviously, if everyone doesn't know the strategy and follow it, it is
irrelevant. This requirement leads people to organize around
centralized architecture teams with official "authority"�so that the
same rules will be applied everywhere. Ironically, ivory tower
architects are often ignored or bypassed. Developers have no choice
when the architects' lack of feedback from hands-on attempts to
apply their own rules to real applications results in impractical
schemes.

On a project with very good communication, a strategic design that
emerges from the application team may actually reach everyone
more effectively. The strategy will be relevant, and it will have the
authority that attaches to intelligent community decisions.

Whatever the system, be less concerned with the authority bestowed
by management than with the actual relationship the developers
have with the strategy.

The decision process must absorb feedback

Creating an organizing principle, large-scale structure, or distillation
of such subtlety requires a really deep understanding of the needs of
the project and the concepts of the domain. The only people who
have that depth of knowledge are the members of the application
development team. This explains why application architectures
created by architecture teams are so seldom helpful, despite the
undeniable talent of many of the architects.



Unlike technical infrastructure and architectures, strategic design
does not itself involve writing a lot of code, although it influences all
development. What it does require is involvement with the
application development teams. An experienced architect may be
able to listen to ideas coming from various teams and facilitate the
development of a generalized solution.

One technical architecture team I worked with actually circulated its
own members through the various application development teams
that were attempting to use its framework. This rotation pulled into
the architecture team the hands-on experience of the challenges
facing the developers, while it simultaneously transferred the
knowledge of how to apply the subtleties of the framework. Strategic
design has this same need of a tight feedback loop.

The plan must allow for evolution

Effective software development is a highly dynamic process. When
the highest level of decisions is set in stone, the team has fewer
options when it must respond to change. EVOLVING ORDER avoids this
trap by emphasizing ongoing change to the large-scale structure in
response to deepening insight.

When too many design decisions are preordained, the development
team can be hobbled, without the flexibility to solve the problems
they are charged with. So, while a harmonizing principle can be
valuable, it must grow and change with the ongoing life of the
development project, and it must not take too much power away
from the application developers, whose job is hard enough as it is.

With strong feedback, innovations emerge as obstacles are
encountered in building applications and as unexpected
opportunities are discovered.



Architecture teams must not siphon off all
the best and brightest

Design at this level calls for sophistication that is probably in short
supply. Managers tend to move the most technically talented
developers into architecture teams and infrastructure teams,
because they want to leverage the skills of these advanced
designers. For their part, the developers are attracted to the
opportunity to have a broader impact or to work on "more interesting"
problems. And there is prestige attached to being a member of an
elite team.

These forces often leave behind only the least technically
sophisticated developers to actually build applications. But building
good applications takes design skill; this is a setup for failure. Even if
a strategy team creates a great strategic design, the application
team won't have the design sophistication to follow it.

Conversely, such teams almost never include the developer who
perhaps has weaker design skills but who has the most extensive
experience in the domain. Strategic design is not a purely technical
task; cutting themselves off from developers with deep domain
knowledge hobbles the architects' efforts further. And domain
experts are needed too.

It is essential to have strong designers on all application teams. It is
essential to have domain knowledge on any team attempting
strategic design. It may simply be necessary to hire more advanced
designers. It may help to keep architecture teams part-time. I'm sure
there are many ways that work, but any effective strategy team has
to have as a partner an effective application team.

Strategic design requires minimalism and
humility



Distillation and minimalism are essential to any good design work,
but minimalism is even more critical for strategic design. Even the
slightest ill fit has a terrible potential for getting in the way. Separate
architecture teams have to be especially careful because they have
less feel for the obstacles they might be placing in front of application
teams. At the same time, the architects' enthusiasm for their primary
responsibility makes them more likely to get carried away. I've seen
this phenomenon many times, and I've even done it. One good idea
leads to another, and we end up with an overbuilt architecture that is
counterproductive.

Instead, we have to discipline ourselves to produce organizing
principles and core models that are pared down to contain nothing
that does not significantly improve the clarity of the design. The truth
is, almost everything gets in the way of something, so each element
had better be worth it. Realizing that your best idea is likely to get in
somebody's way takes humility.

Objects are specialists; developers are
generalists

The essence of good object design is to give each object a clear and
narrow responsibility and to reduce interdependence to an absolute
minimum. Sometimes we try to make interactions on teams as tidy
as they should be in our software. A good project has lots of people
sticking their nose in other people's business. Developers play with
frameworks. Architects write application code. Everyone talks to
everyone. It is efficiently chaotic. Make the objects into specialists;
let the developers be generalists.

Because I've made the distinction between strategic design and
other kinds of design to help clarify the tasks involved, I must point
out that having two kinds of design activity does not mean having
two kinds of people. Creating a supple design based on a deep
model is an advanced design activity, but the details are so important



that it has to be done by someone working with the code. Strategic
design emerges out of application design, yet it requires a big-picture
view of activity, possibly spanning multiple teams. People love to find
ways to chop up tasks so that design experts don't have to know the
business and domain experts don't have to understand technology.
There is a limit to how much an individual can learn, but
overspecialization takes the steam out of domain-driven design.

The Same Goes for the Technical
Frameworks

Technical frameworks can greatly accelerate application
development, including the domain layer, by providing an
infrastructure layer that frees the application from implementing
basic services, and by helping to isolate the domain from other
concerns. But there is a risk that an architecture can interfere with
expressive implementations of the domain model and easy change.
This can happen even when the framework designers had no
intention of venturing into the domain or application layers.

The same biases that limit the downside of strategic design can help
with technical architecture. Evolution, minimalism, and involvement
with the application development team can lead to a continuously
refined set of services and rules that genuinely help application
development without getting in the way. Architectures that don't
follow this path will either stifle the creativity of application
development or will find their architecture circumvented, leaving
application development, for practical purposes, with no architecture
at all.

There is one particular attitude that will surely ruin a framework.

Don't write frameworks for dummies



Team divisions that assume some developers are not smart enough
to design are likely to fail because they underestimate the difficulty of
application development. If those people are not smart enough to
design, they shouldn't be assigned to develop software. If they are
smart enough, then the attempts to coddle them will only put up
barriers between them and the tools they need.

This attitude also poisons the relationship between teams. I've ended
up on arrogant teams like this and found myself apologizing to
developers in every conversation, embarrassed by my association.
(I've never managed to change such a team, I'm afraid.)

Now, encapsulating irrelevant technical detail is completely different
from the kind of prepackaging I'm disparaging. A framework can
place powerful abstractions and tools in developers' hands and free
them from drudgery. It is hard to describe the difference in a
generalized way, but you can tell the difference by asking the
framework designers what they expect of the person who will be
using the tool/framework/components. If the designers seem to have
a high level of respect for the user of the framework, then they are
probably on the right track.

Beware the Master Plan

A group of architects (the kind who design physical buildings), led by
Christopher Alexander, were advocates of piecemeal growth in the
realm of architecture and city planning. They explained very nicely
why master plans fail.

Without a planning process of some kind, there is not a
chance in the world that the University of Oregon will ever
come to possess an order anywhere near as deep and
harmonious as the order that underlies the University of
Cambridge.



The master plan has been the conventional way of
approaching this difficulty. The master plan attempts to set
down enough guidelines to provide for coherence in the
environment as a whole�and still leave freedom for individual
buildings and open spaces to adapt to local needs.

. . . and all the various parts of this future university will form a
coherent whole, because they were simply plugged into the
slots of the design.

. . . in practice master plans fail�because they create
totalitarian order, not organic order. They are too rigid; they
cannot easily adapt to the natural and unpredictable changes
that inevitably arise in the life of a community. As these
changes occur . . . the master plan becomes obsolete, and is
no longer followed. And even to the extent that master plans
are followed . . . they do not specify enough about connections
between buildings, human scale, balanced function, etc. to
help each local act of building and design become well-related
to the environment as a whole.

. . . The attempt to steer such a course is rather like filling in
the colors in a child's coloring book . . . . At best, the order
which results from such a process is banal.

. . . Thus, as a source of organic order, a master plan is both
too precise, and not precise enough. The totality is too
precise: the details are not precise enough.

. . . the existence of a master plan alienates the users
[because, by definition] the members of the community can
have little impact on the future shape of their community
because most of the important decisions have already been
made.

�From The Oregon Experiment, pp. 16�28 (Alexander et al.
1975)



Alexander and his colleagues advocated instead a set of principles
for all community members to apply to every act of piecemeal
growth, so that "organic order" emerges, well adapted to
circumstances.



Conclusion
Epilogues

Looking Forward



Epilogues

Although it is very satisfying working on a cutting-edge project and
experimenting with interesting ideas and tools, for me it is a hollow
experience if the software does not find productive use. In fact, the
true test of success is how the software serves over a period of time.
I have been able to follow the stories of some of my former projects
over the years.

I'll discuss here five of those, each of which made a serious attempt
at domain-driven design, though not systematically and not by that
name, of course. All of these projects did deliver software: some
managed to carry through and produce a model-driven design, while
one slipped off that track. Some of the applications continued to grow
and change for many years, while one stagnated and one died
young.

The PCB design software described in Chapter 1 was a smash hit
among beta users in the field. Unfortunately, the start-up company
that had initiated the project utterly failed in its marketing function
and was eventually euthanized. The software is now used by a
handful of PCB engineers who have old copies they kept from the
beta program. Like any orphan software, it will continue to work until
there is some fatal change to one of the programs with which it is
integrated.

The loan software whose story was told in Chapter 9 thrived and
evolved along much the same track for three years after the
breakthrough I wrote about. At that point, the project was spun off as
an independent company. In the turmoil of this reorganization, the
project manager who had led the project from the beginning was
ejected, and some of the core developers left with him. The new
team had a somewhat different design philosophy, not as fully
committed to object modeling. But they retained a distinct domain
layer with complex behavior and continued to value domain
knowledge on the development team. Seven years after the spin-off,



the software continues to be enhanced with new features. It is the
leading application in its field and serves an increasing number of
client institutions, as well as being the largest revenue stream for the
company.

A Newly Planted Olive Grove

Until the domain-driven approach is more widespread, the interesting
software on many projects will be built in a short, highly productive
interval. Eventually the project will transform into something more
conventional that may not be able to fully exploit, much less
enhance, the power of the deep models that were distilled earlier. I
could wish for more, but truly those are successes that deliver
sustained value to users over many years.

On one project I paired with another developer to write a utility the
customer needed to produce its core product. The features were
fairly complicated and combined in intricate ways. I enjoyed the
project work and we produced a supple design with an ABSTRACT

CORE. When this software was handed off, that was the end of
involvement for everyone who had initially developed it. Because it
was such an abrupt transition, I expected that the design features
which supported the combinable elements might be confusing and
might get replaced by more typical case logic. This did not initially



happen. When we handed off, the package included a thorough test
suite and a distillation document. The new team members used that
document to guide their explorations, and as they looked into things,
they became excited by the possibilities the design presented. When
I heard their comments a year later, I realized that the UBIQUITOUS

LANGUAGE had sparked across to the other team and stayed alive,
continuing to evolve.

Seven Years Later

Then, another year later, I heard a different story. The team had
encountered new requirements that the developers didn't see any
way to accomplish within the inherited design. They had been forced
to change the design almost beyond recognition. As I probed for
more details, I could see that aspects of our model would have made
solving those problems awkward. It is precisely during such
moments when a breakthrough to a deeper model is often possible,
especially when, as in this case, the developers had accumulated
deep knowledge and experience in the domain. In fact, they had had
a rush of new insights and ended up transforming the model and
design based on those insights.

They told me this story carefully, diplomatically, expecting, I suppose,
that I would be disappointed by their discarding of so much of my



work. I am not that sentimental about my designs. The success of a
design is not necessarily marked by its stasis. Take a system people
depend on, make it opaque, and it will live forever as untouchable
legacy. A deep model allows clear vision that can yield new insight,
while a supple design facilitates ongoing change. The model they
came up with was deeper, better aligned with the real concerns of
the users. Their design solved real problems. It is the nature of
software to change, and this program has continued to evolve in the
hands of the team that owns it.

The shipping examples scattered through the book are loosely
based on a project for a major international container-shipping
company. Early on, the leadership of the project was committed to a
domain-driven approach, but they never produced a development
culture that could fully support it. Several teams with widely different
levels of design skill and object experience set out to create
modules, loosely coordinated by informal cooperation between team
leaders and by a customer-focused architecture team. We did
develop a reasonably deep model of the CORE DOMAIN, and there was
a viable UBIQUITOUS LANGUAGE.

But the company culture fiercely resisted iterative development, and
we waited far too long to push out a working internal release.
Therefore, problems were exposed at a late stage, when they were
more risky and expensive to fix. At some point, we discovered
specific aspects of the model were causing performance problems in
the database. A natural part of MODEL-DRIVEN DESIGN is the feedback
from implementation problems to changes in the model, but by that
time there was a perception that we were too far down the road to
change the fundamental model. Instead, changes were made to the
code to make it more efficient, and its connection to the model was
weakened. The initial release also exposed scaling limitations in the
technical infrastructure that threw a scare into management.
Expertise was brought in to fix the infrastructure problems, and the
project bounced back. But the loop was never closed between
implementation and domain modeling.



A few teams delivered fine software with complex capabilities and
expressive models. Others delivered stiff software that reduced the
model to data structures, though even they retained traces of the
UBIQUITOUS LANGUAGE. Perhaps a CONTEXT MAP would have helped us
as much as anything, as the relationship between the output of the
various teams was haphazard. Yet that CORE model carried in the
UBIQUITOUS LANGUAGE did help the teams ultimately to glue together a
system.

Although reduced in scope, the project replaced several legacy
systems. The whole was held together by a shared set of concepts,
though most of the design was not very supple. It has itself largely
fossilized into legacy now, years later, but it still serves the global
business 24 hours a day. Although the more successful teams'
influence gradually spread, time runs out eventually, even in the
richest company. The culture of the project never really absorbed
MODEL-DRIVEN DESIGN. New development today is on different
platforms and is only indirectly influenced by the work we did�as the
new developers CONFORM to their legacy.

In some circles, ambitious goals like those the shipping company
initially set have been discredited. Better, it seems, to make little
applications we know how to deliver. Better to stick to the lowest
common denominator of design to do simple things. This
conservative approach has its place, and allows for neatly scoped,
quick-response projects. But integrated, model-driven systems
promise value that those patchworks can't. There is a third way.
Domain-driven design allows piecemeal growth of big systems with
rich functionality, by building on a deep model and supple design.

I'll close this list with Evant, a company that develops inventory
management software, where I played a secondary supporting role
and contributed to an already strong design culture. Others have
written about this project as a poster child of Extreme Programming,
but what is not usually remarked upon is that the project was
intensely domain-driven. Ever deeper models were distilled and
expressed in ever more supple designs. This project thrived until the



"dot com" crash of 2001. Then, starved for investment funds, the
company contracted, software development went mostly dormant,
and it seemed that the end was near. But in the summer of 2002,
Evant was approached by one of the top ten retailers in the world.
This potential client liked the product, but it needed design changes
to allow the application to scale up for an enormous inventory
planning operation. It was Evant's last chance.

Although reduced to four developers, the team had assets. They
were skilled, with knowledge of the domain, and one member had
expertise in scaling issues. They had a very effective development
culture. And they had a code base with a supple design that
facilitated change. That summer, those four developers made a
heroic development effort resulting in the ability to handle billions of
planning elements and hundreds of users. On the strength of those
capabilities, Evant won the behemoth client and, soon after, was
bought by another company that wanted to leverage their software
and their proven ability to accommodate new demands.

The domain-driven design culture (as well as the Extreme
Programming culture) survived the transition and was revitalized.
Today, the model and design continue to evolve, far richer and
suppler two years later than when I made my contribution. And
rather than being assimilated into the purchasing company, the
members of the Evant team seem to be inspiring the company's
existing project teams to follow their lead. This story isn't over yet.

No project will ever employ every technique in this book. Even so,
any project committed to domain-driven design will be recognizable
in a few ways. The defining characteristic is a priority on
understanding the target domain and incorporating that
understanding into the software. Everything else flows from that
premise. Team members are conscious of the use of language on
the project and cultivate its refinement. They are hard to satisfy with
the quality of the domain model, because they keep learning more
about the domain. They see continuous refinement as an opportunity
and an ill-fitting model as a risk. They take design skill seriously



because it isn't easy to develop production-quality software that
clearly reflects the domain model. They stumble over obstacles, but
they hold on to their principles as they pick themselves up and
continue forward.



Looking Forward

Weather, ecosystems, and biology used to be considered messy,
"soft" fields in contrast to physics or chemistry. Recently, however,
people have recognized that the appearance of "messiness" in fact
presents a profound technical challenge to discover and understand
the order in these very complex phenomena. The field called
"complexity" is the vanguard of many sciences. Although purely
technological tasks have generally seemed most interesting and
challenging to talented software engineers, domain-driven design
opens up a new area of challenge that is at least equal. Business
software does not have to be a bolted-together mess. Wrestling a
complex domain into a comprehensible software design is an
exciting challenge for strong technical people.

We are nowhere near the era of laypeople creating complex software
that works. Armies of programmers with rudimentary skills can
produce certain kinds of software, but not the kind that saves a
company in its eleventh hour. What is needed is for tool builders to
put their minds to the task of extending the power and productivity of
talented software developers. What is needed are sharper ways of
exploring domain models and expressing them in working software. I
look forward to experimenting with new tools and technologies
devised for this purpose.

But though improved tools will be valuable, we mustn't get distracted
by them and lose sight of the core fact that creating good software is
a learning and thinking activity. Modeling requires imagination and
self-discipline. Tools that help us think or avoid distraction are good.
Efforts to automate what must be the product of thought are naive
and counterproductive.

With the tools and technology we already have, we can build
systems much more valuable than most projects do today. We can
write software that is a pleasure to use and a pleasure to work on,



software that doesn't box us in as it grows but creates new
opportunities and continues to add value for its owners.



Appendix The Use of Patterns in This
Book
My first "nice car," which I was given shortly after college, was an
eight-year-old Peugeot. Sometimes called the "French Mercedes,"
this car was well crafted, was a pleasure to drive, and had been very
reliable. But by the time I got it, it was reaching the age when things
start to go wrong and more maintenance is required.

Peugeot is an old company, and it has followed its own evolutionary
path over many decades. It has its own mechanical terminology, and
its designs are idiosyncratic; even the breakdown of functions into
parts is sometimes nonstandard. The result is a car that only
Peugeot specialists can work on, a potential problem for someone
on a grad student income.

On one typical occasion, I took the car to a local mechanic to
investigate a fluid leak. He examined the undercarriage and told me
that oil was "leaking from a little box about two-thirds of the way back
that seems to have something to do with distributing braking power
between front and rear." He then refused to touch the car and
advised me to go to the dealership, fifty miles away. Anyone can
work on a Ford or a Honda; that's why those cars are more
convenient and less expensive to own, even though they are equally
mechanically complex.

I did love that car, but I will never own a quirky car again. A day
came when a particularly expensive problem was diagnosed, and I
had had enough of Peugeots. I took it to a local charity that accepted
cars as donations. Then I bought a beat-up old Honda Civic for
about what the repair would have cost.

Standard design elements are lacking for domain development, and
so every domain model and corresponding implementation is quirky
and hard to understand. Moreover, every team has to reinvent the



wheel (or the gear, or the windshield wiper). In the world of object-
oriented design, everything is an object, a reference, or a
message�which, of course, is a useful abstraction. But that does not
sufficiently constrain the range of domain design choices and does
not support an economical discussion of a domain model.

To stop with "Everything is an object" would be like a carpenter or an
architect summing up houses by saying "Everything is a room."
There would be the big room with high-voltage outlets and a sink,
where you might cook. There would be the small room upstairs,
where you might sleep. It would take pages to describe an ordinary
house. People who build or use houses realize that rooms follow
patterns, patterns with special names, such as "kitchen." This
language enables economical discussion of house design.

Moreover, not all combinations of functions turn out to be practical.
Why not a room where you bathe and sleep? Wouldn't that be
convenient. But long experience has precipitated into custom, and
we separate our "bedrooms" from our "bathrooms." After all, bathing
facilities tend to be shared among more people than bedrooms are,
and they require maximum privacy, even from the others who share
the same bedroom. And bathrooms have specialized and expensive
infrastructure requirements. Bathtubs and toilets typically end up in
the same room because both require the same infrastructure (water
and drainage) and both are used in private.

Another room that has special infrastructure requirements is that
room where you might prepare meals, also known as the "kitchen."
In contrast to the bathroom, a kitchen has no special privacy
requirements. Because of its expense, there is typically only one,
even in relatively large houses. This singularity also facilitates our
communal food preparation and eating customs.

When I say that I want a three-bedroom, two-bath house with an
open-plan kitchen, I have packed a huge amount of information into
a short sentence, and I've avoided a lot of silly mistakes�such as
putting a toilet next to the refrigerator.



In every area of design�houses, cars, rowboats, or software�we
build on patterns that have been found to work in the past,
improvising within established themes. Sometimes we have to invent
something completely new. But by basing standard elements on
patterns, we avoid wasting our energy on problems with known
solutions so that we can focus on our unusual needs. Also, building
from conventional patterns helps us avoid a design so idiosyncratic
that it is difficult to communicate.

Although software domain design is not as mature as other design
fields�and in any case may be too diverse to accommodate patterns
as specific as those used for car parts or rooms�there is nonetheless
a need to move beyond "Everything is an object" to at least the
equivalent of distinguishing bolts from springs.

A form for sharing and standardizing design insight was introduced
in the 1970s by a group of architects led by Christopher Alexander
(Alexander et al. 1977). Their "pattern language" wove together
tried-and-true design solutions to common problems (much more
subtly than my "kitchen" example, which has probably caused some
readers of Alexander to cringe). The intent was that builders and
users would communicate in this language, and they would be
guided by the patterns to produce beautiful buildings that worked
well and felt good to the people who used them.

Whatever architects might think of the idea, this pattern language
has had a big impact on software design. In the 1990s software
patterns were applied in many ways with some success, notably in
detailed design (Gamma et al. 1995) and technical architectures
(Buschmann et al. 1996). More recently, patterns have been used to
document basic object-oriented design techniques (Larman 1998)
and enterprise architectures (Fowler 2002, Alur et al. 2001). The
language of patterns is now a mainstream technique for organizing
software design ideas.

The pattern names are meant to become terms in the language of
the team, and I've used them that way in this book. When a pattern



name appears in a discussion, it is FORMATTED IN SMALL CAPS to call it
out.

Here is how I've formatted patterns in this book. There is some
variation around this basic plan, as I have favored case-by-case
clarity and readability over rigid structure.



Pattern Name

[Illustration of concept. Sometimes a visual metaphor or evocative
text.]

[Context. A brief explanation of how the concept relates to other
patterns. In some cases, a brief overview of the pattern.

However, much of the context discussion in this book is in the
chapter introductions and other narrative segments, rather than
within the patterns.

  ]

[Problem discussion.]

Problem summary.

Discussion of the resolution of problem forces into a solution.

Therefore:

Solution summary.

Consequences. Implementation considerations. Examples.

  

Resulting context: A brief explanation of how the pattern leads to
later patterns.

[Discussion of implementation challenges. In Alexander's original
format, this discussion would have been folded into the section
describing the resolution of the problem, and I have often followed



Alexander's organization in this book. But some patterns demand
lengthier discussions of implementation. To keep the core pattern
discussion tight, I have moved such long implementation discussions
out, after the pattern.

Also, lengthy examples, particularly those that combine multiple
patterns, are often outside the patterns.]



Glossary
Here are brief definitions of selected terms, pattern names, and other
concepts used in the book.

AGGREGATE

A cluster of associated objects that are treated as a unit for the
purpose of data changes. External references are restricted to
one member of the AGGREGATE, designated as the root. A set of
consistency rules applies within the AGGREGATE'S boundaries.

 
 

analysis pattern

A group of concepts that represents a common construction in
business modeling. It may be relevant to only one domain or
may span many domains (Fowler 1997, p. 8).

 
 

ASSERTION

A statement of the correct state of a program at some point,
independent of how it does it. Typically, an ASSERTION specifies
the result of an operation or an invariant of a design element.

 
 

BOUNDED CONTEXT

The delimited applicability of a particular model. BOUNDING

CONTEXTS gives team members a clear and shared



understanding of what has to be consistent and what can
develop independently.

 
 

client

A program element that is calling the element under design,
using its capabilities.

 
 

cohesion

Logical agreement and dependence.

 
 

command (a.k.a. modifier)

An operation that effects some change to the system (for
example, setting a variable). An operation that intentionally
creates a side effect.

 
 

CONCEPTUAL CONTOUR

An underlying consistency of the domain itself, which, if
reflected in a model, can help the design accommodate change
more naturally.

 
 



context

The setting in which a word or statement appears that
determines its meaning.

See also [BOUNDED CONTEXT]
 
 

CONTEXT MAP

A representation of the BOUNDED CONTEXTS involved in a project
and the actual relationships between them and their models.

 
 

CORE DOMAIN

The distinctive part of the model, central to the user's goals, that
differentiates the application and makes it valuable.

 
 

declarative design

A form of programming in which a precise description of
properties actually controls the software. An executable
specification.

 
 

deep model

An incisive expression of the primary concerns of the domain
experts and their most relevant knowledge. A deep model



sloughs off superficial aspects of the domain and naive
interpretations.

 
 

design pattern

A description of communicating objects and classes that are
customized to solve a general design problem in a particular
context. (Gamma et al. 1995, p. 3)

 
 

distillation

A process of separating the components of a mixture to extract
the essence in a form that makes it more valuable and useful. In
software design, the abstraction of key aspects in a model, or
the partitioning of a larger system to bring the CORE DOMAIN to the
fore.

 
 

domain

A sphere of knowledge, influence, or activity.

 
 

domain expert

A member of a software project whose field is the domain of the
application, rather than software development. Not just any user
of the software, the domain expert has deep knowledge of the
subject.



 
 

domain layer

That portion of the design and implementation responsible for
domain logic within a LAYERED ARCHITECTURE. The domain layer is
where the software expression of the domain model lives.

 
 

ENTITY

An object fundamentally defined not by its attributes, but by a
thread of continuity and identity.

 
 

FACTORY

A mechanism for encapsulating complex creation logic and
abstracting the type of a created object for the sake of a client.

 
 

function

An operation that computes and returns a result without
observable side effects.

 
 

immutable

The property of never changing observable state after creation.



 
 

implicit concept

A concept that is necessary to understand the meaning of a
model or design but is never mentioned.

 
 

INTENTION-REVEALING INTERFACE

A design in which the names of classes, methods, and other
elements convey both the original developer's purpose in
creating them and their value to a client developer.

 
 

invariant

An ASSERTION about some design element that must be true at all
times, except during specifically transient situations such as the
middle of the execution of a method, or the middle of an
uncommitted database transaction.

 
 

iteration

A process in which a program is repeatedly improved in small
steps. Also, one of those steps.

 
 

large-scale structure



A set of high-level concepts, rules, or both that establishes a
pattern of design for an entire system. A language that allows
the system to be discussed and understood in broad strokes.

 
 

LAYERED ARCHITECTURE

A technique for separating the concerns of a software system,
isolating a domain layer, among other things.

 
 

life cycle

A sequence of states an object can take on between creation
and deletion, typically with constraints to ensure integrity when
changing from one state to another. May include migration of an
ENTITY between systems and different BOUNDED CONTEXTS.

 
 

model

A system of abstractions that describes selected aspects of a
domain and can be used to solve problems related to that
domain.

 
 

MODEL-DRIVEN DESIGN

A design in which some subset of software elements
corresponds closely to elements of a model. Also, a process of



codeveloping a model and an implementation that stay aligned
with each other.

 
 

modeling paradigm

A particular style of carving out concepts in a domain, combined
with tools to create software analogs of those concepts (for
example, object-oriented programming and logic programming).

 
 

REPOSITORY

A mechanism for encapsulating storage, retrieval, and search
behavior which emulates a collection of objects.

 
 

responsibility

An obligation to perform a task or know information (Wirfs-Brock
et al. 2003, p. 3).

 
 

SERVICE

An operation offered as an interface that stands alone in the
model, with no encapsulated state.

 
 



side effect

Any observable change of state resulting from an operation,
whether intentional or not, even a deliberate update.

 
 

SIDE-EFFECT-FREE FUNCTION
See [function]

STANDALONE CLASS

A class that can be understood and tested without reference to
any others, except system primitives and basic libraries.

 
 

stateless

The property of a design element that allows a client to use any
of its operations without regard to the element's history. A
stateless element may use information that is accessible
globally and may even change that global information (that is, it
may have side effects) but holds no private state that affects its
behavior.

 
 

strategic design

Modeling and design decisions that apply to large parts of the
system. Such decisions affect the entire project and have to be
decided at team level.

 
 



supple design

A design that puts the power inherent in a deep model into the
hands of a client developer to make clear, flexible expressions
that give expected results robustly. Equally important, it
leverages that same deep model to make the design itself easy
for the implementer to mold and reshape to accommodate new
insight.

 
 

UBIQUITOUS LANGUAGE

A language structured around the domain model and used by all
team members to connect all the activities of the team with the
software.

 
 

unification

The internal consistency of a model such that each term is
unam-biguous and no rules contradict.

 
 

VALUE OBJECT

An object that describes some characteristic or attribute but
carries no concept of identity.

 
 

WHOLE VALUE

An object that models a single, complete concept.
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