

Praise for Accelerate

“is is the kind of foresight that CEOs, CFOs, and CIOs desperately need if their company is going to

survive in this new software-centric world.

Anyone that doesn’t read this book will be replaced by someone who has.”

— Thomas A. Limoncelli, coauthor of
The Practice of Cloud System Administration

“‘Here, do this!’ e evidence presented in Accelerate is a triumph of research, tenacity, and insight,

proving not just correlation but a causal link between good technical and management behaviors and

business performance. It also exposes the myth of ‘maturity models’ and offers a realistic, actionable

alternative. As an independent consultant working at the intersection of people, technology, process, and

organization design this is manna from heaven!

As chapter 3 concludes: ‘You can act your way to a better culture by implementing these practices in

technology organizations’ [emphasis mine]. ere is no mystical culture magic, just 24 concrete, speci�c

capabilities that will lead not only to better business results, but more importantly to happier, healthier,

more motivated people and an organization people want to work at. I will be giving copies of this book to

all my clients.”

— Dan North, independent technology and organization consultant

“Whether they recognize it or not, most organizations today are in the business of software development in

one way, shape, or form. And most are being dragged down by slow lead times, buggy output, and

complicated features that add expense and frustrate users. It doesn’t need to be this way. Forsgren,

Humble, and Kim shine a compelling light on the what, why, and how of DevOps so you, too, can

experience what outstanding looks and feels like.”

— Karen Martin, author of
Clarity First and The Outstanding Organization

“Accelerate does a fantastic job of explaining not only what changes organizations should make to improve

their software delivery performance, but also the why, enabling people at all levels to truly understand how

to level up their organizations.”

—Ryn Daniels, Infrastructure Operations Engineer at Travis CI
and author of E�ective DevOps

“e ‘art’ of constructing a building is a well-understood engineering practice nowadays. However, in the

software world, we have been looking for patterns and practices that can deliver the same predictable and

reliable results whilst minimising waste and producing the increasingly high performance our businesses

demand.

Accelerate provides research-backed, quanti�able, and real-world principles to create world-class,

high-performing IT teams enabling amazing business outcomes.

Backed by the two leading thought leaders (Kim and Humble) in the DevOps community and world-

class research from PhD Forsgren, this book is a highly recommended asset!”

—Jonathan Fletcher, Group CTO, Hiscox

“In their book Accelerate, Nicole Forsgren, Jez Humble, and Gene Kim don’t break any new conceptual

ground regarding Agile, Lean, and DevOps. Instead, they provide something that might be even more

valuable, which is a look inside the methodological rigor of their data collection and analysis approach

which led them to their earlier conclusions on the key capabilities that make IT organizations better

contributors to the business. is is a book that I will gladly be placing on my bookshelf next to the other

great works by the authors.”

—Cameron Haight, VP and CTO, Americas, VMware

“e organizations that thrive in the future will be those that leverage digital technologies to improve their

offerings and operations. Accelerate summarizes the best metrics, practices, and principles to use for

improving software delivery and digital product performance, based on years of well-documented research.

We strongly recommend this book to anyone involved in a digital transformation for solid guidance about

what works, what doesn’t work, and what doesn’t matter.”

—Tom Poppendieck and Mary Poppendieck, authors of
the Lean Software Development series of books

“With this work, the authors have made a signi�cant contribution to the understanding and application of

DevOps. ey show that when properly understood, DevOps is more than just a fad or a new name for an

old concept. eir work illustrates how DevOps can improve the state of the art in organizational design,

software development culture, and systems architecture. And beyond merely showing, they advance the

DevOps community’s qualitative �ndings with research-based insights that I have heard from no other

source.”

—Baron Schwartz, Founder and CEO of VividCortex
and coauthor of High Performance MySQL

ACCELERATE

25 NW 23rd Pl, Suite 6314

Portland, OR 97210

Copyright © 2018 by Nicole Forsgren, Jez Humble, and Gene Kim.

Chapter 16 Copyright © 2018 by Karen Whitley Bell and Steve Bell,

Lean IT Strategies, LLC.

All rights reserved, for information about permission

to reproduce selections from this book, write to Permissions, IT Revolution Press,

LLC, 25 NW 23rd Pl, Suite 6314, Portland, OR 97210

First Edition

Printed in the United States of America

22 21 20 19 18 1 2 3 4 5 6

Cover and book design by Devon Smith Creative, LLC

Library of Congress Catalog-in-Publication Data is available upon request.

ISBN: 978-1942788331

eBook ISBN: 978-194278355

Kindle ISBN: 978-194278362

Web PDF ISBN: 978-194278379

Publisher’s note to readers: Although the authors and publisher have made every

effort to ensure that the information in this book is correct, the authors and

publisher do not assume and hereby disclaim any liability to any party for any loss,

damage, or disruption caused by errors or omissions, whether such errors or

omissions result from negligence, accident, or any other cause.

For information about special discounts for bulk purchases or for information on

booking authors for an event, please visit our website at www.ITRevolution.com.

ACCELERATE

http://www.itrevolution.com/

Contents

Foreword by Martin Fowler

Foreword by Courtney Kissler

Quick Reference: Capabilities to Drive Improvement

Preface

Part I: What We Found

1 Accelerate

2 Measuring Performance

3 Measuring and Changing Culture

4 Technical Practices

5 Architecture

6 Integrating Infosec into the Delivery Lifecycle

7 Management Practices for Software

8 Product Development

9 Making Work Sustainable

10 Employee Satisfaction, Identity, and Engagement

11 Leaders and Managers

Part II: The Research

12 e Science Behind is Book

13 Introduction to Psychometrics

14 Why Use a Survey

15 e Data for the Project

Part III: Transformation

16 High-Performance Leadership and Management

Conclusion

Appendix A: Capabilities to Drive Improvement

Appendix B: e Stats

Appendix C: Statistical Methods Used in Our Research

Acknowledgments

Bibliography

Index

About the Authors

Figures

2.1 Software Delivery Performance

2.2 Year over Year Trends: Tempo

2.3 Year over Year Trends: Stability

2.4 Impacts of Software Delivery Performance

3.1 Likert-Type Questions for Measuring Culture

3.2 Westrum Organizational Culture’s Outcomes

3.3 Westrum Organizational Culture’s Drivers

4.1 Drivers of Continuous Delivery

4.2 Impacts of Continuous Delivery

4.3 Continuous Delivery Makes Work More Sustainable

4.4 New Work vs. Unplanned Work

5.1 Deploys per Developer per Day

7.1 Components of Lean Management

7.2 Impacts of Lean Management Practices

8.1 Components of Lean Product Management

8.2 Impacts of Lean Product Management

9.1 Impacts of Technical and Lean Practices on Work Life

10.1 Impacts of Technical and Lean Practices on Identity

10.2 Impacts of Technical and Lean Practices on Job Satisfaction

10.3 Gender Demographics in 2017 Study

10.4 Underrepresented Minority Demographics in 2017 Study

11.1 Impacts of Transformational Leadership on Technical and Lean

Capabilities

12.1 Spurious Correlation: Per Capita Cheese Consumption and

Strangulation by Bedsheets

16.1 Leadership Obeya (360-Degree Panorama)

16.2 ING’s New Agile Organizational Model Has No Fixed Structure—It

Constantly Evolves

16.3 Stand-up and Catchball Rhythm

16.4 High-Performance Team, Management, and Leadership Behaviors

and Practices

A.1 Overall Research Program

B.1 Firmographics: Organization Size, Industry, Number of Servers in

2017

Tables

2.1 Design vs. Delivery

2.2 Software Delivery Performance for 2016

2.3 Software Delivery Performance for 2017

3.1 Westrum’s Typology of Organizational Culture

13.1 Westrum’s Typology of Organizational Culture

B.1 Manual Work Percentages

A

FOREWORD

By Martin Fowler

few years ago I read a report that said, “We can now assert with

con�dence that high IT performance correlates with strong business

performance, helping to boost productivity, pro�tability, and market

share.” When I read something like that, my usual response is to toss it

with great force into the rubbish bin, because that’s usually a tell for some

bogus bullshit masquerading as science. I hesitated this time, however, for

this was the “2014 State of DevOps Report.” One of its authors was Jez

Humble, a colleague and friend who I knew was equally allergic to this kind

of twaddle. (Although I have to confess that another reason for not tossing

it was that I was reading it on my iPad.)

So, instead I emailed Jez to �nd out what lay behind this statement. A

few weeks later I was on a call with him and Nicole Forsgren, who patiently

walked me though the reasoning. While I’m no expert on the methods

they used, she said enough to convince me there was some real analysis

going on here, far more than I usually see, even in academic papers. I

followed the subsequent State of DevOps reports with interest, but also

with growing frustration. e reports gave the results of their work but

never contained the explanation that Nicole walked through with me on

the phone. is greatly undermined their credibility, as there was little

evidence that these reports were based on more than speculation. Finally,

those of us that had seen behind the curtains convinced Nicole, Jez, and

Gene to reveal their methods by writing this book. For me, it’s been a long

wait, but I’m glad I now have something that I can genuinely recommend

as a way to look at IT delivery effectiveness—one that’s based on more

than a few analysts’ scattered experiences.

e picture they paint is compelling. ey describe how effective IT

delivery organizations take about an hour to get code from “committed to

mainline” to “running in production,” a journey lesser organizations take

months to do. ey, thus, update their software many times a day instead

of once every few months, increasing their ability to use software to

explore the market, respond to events, and release features faster than

their competition. is huge increase in responsiveness does not come at a

cost in stability, since these organizations �nd their updates cause failures

at a fraction of the rate of their less-performing peers, and these failures

are usually �xed within the hour. eir evidence refutes the bimodal IT

notion that you have to choose between speed and stability—instead,

speed depends on stability, so good IT practices give you both.

So, as you may expect, I’m delighted that they’ve put this book into

production, and I will be recommending it willy-nilly over the next few

years. (I’ve already been using many bits from its drafts in my talks.)

However, I do want to put in a few notes of caution. ey do a good job of

explaining why their approach to surveys makes them a good basis for

their data. However, they are still surveys that capture subjective

perceptions, and I wonder how their population sample re�ects the

general IT world. I’ll have more con�dence in their results when other

teams, using different approaches, are able to con�rm their reasoning. e

book already has some of this, as the work done by Google on team

cultures provides further evidence to support their judgment on how

important a Westrum-generative organizational culture is for effective

software teams. Such further work would also make me less concerned

that their conclusions con�rm much of my advocacy— con�rmation bias

is a strong force (although I mostly notice it in others ;-)). We should also

remember that their book focuses on IT delivery, that is, the journey from

commit to production, not the entire software development process.

But these quibbles, while present, shouldn’t distract us from the main

thrust of this book. ese surveys, and the careful analysis done on them,

provide some of the best justi�cation around for practices that can

signi�cantly improve most IT organizations. Anyone running an IT group

should take a good hard look at these techniques and work to use them to

improve their practice. Anyone working with an IT group, either internally

or from an IT delivery company like ours, should look for these practices in

place and a steady program of continuous improvement to go with them.

Forsgren, Humble, and Kim have laid out a picture of what effective IT

looks like in 2017, and IT practitioners should be using this as a map to

join the high performers.

Martin Fowler

Chief Scientist, oughtWorks

M

FOREWORD

By Courtney Kissler

y journey started in the summer of 2011. I was working at

Nordstrom and we had made a strategic decision to focus on digital as the

growth engine. Up until that point, our IT organization was optimized for

cost; I shared in my DevOps Enterprise Summit 2014 presentation that

one of my “aha” moments was the shift to optimizing for speed. I made a

lot of mistakes along the way and wish I had access to the information in

this book back then. Common traps were stepped in—like trying a top-

down mandate to adopt Agile, thinking it was one size �ts all, not focusing

on measurement (or the right things to measure), leadership behavior not

changing, and treating the transformation like a program instead of

creating a learning organization (never done).

roughout the journey, the focus was moving to outcome-based team

structures, knowing our cycle time (by understanding our value stream

map), limiting the blast radius (starting with one to two teams vs. boiling

the ocean), using data to drive actions and decisions, acknowledging that

work is work (don’t have a backlog of features and a backlog of technical

debt and a backlog of operational work; instead, have a single backlog

because NFRs are features and reducing technical debt improves stability

of the product). None of this happened overnight, and it took a lot of

experimentation and adjusting along the way.

What I know to be true based on my experience is that adopting the

guidance in this book will make your organization higher performing. It

works for all types of software delivery and is methodology agnostic. I

have personally experienced it and have multiple examples of applying

these practices within mainframe environments, traditional packaged

software application delivery teams, and product teams. It can work across

the board. It takes discipline, persistence, transformational leadership,

and a focus on people. After all, people are an organization’s #1 asset, but

so often that is not how organizations operate. Even though the journey

will not be easy, I can say that it is de�nitely worth it, and not only will you

see better results, your team will be happier. As an example, when we

started measuring eNPS, the teams practicing these techniques had the

highest scores throughout our technology organization.

Another thing I learned along the way is how critical it is to have senior

leadership support. And support in actions, not words. Senior leaders need

to demonstrate their commitment to creating a learning organization. I

will share the behaviors I try to model with my teams. I believe

passionately in honoring and extracting reality. If I am a senior leader and

my team doesn’t feel comfortable sharing risks, then I will never truly

know reality. And, if I’m not genuinely curious and only show up when

there’s a failure, then I am failing as a senior leader. It’s important to build

trust and to demonstrate that failure leads to inquiry (see the Westrum

model in this book).

You will encounter skeptics along the way. I heard things like “DevOps

is the new Agile,” “Lean doesn’t apply to software delivery,” “Of course this

worked for the mobile app team. ey are a unicorn.” When I encountered

the skeptics, I attempted to use external examples to in�uence the

discussion. I leveraged mentors along the way—without them, it would

have been challenging to stay focused. Having the information in this book

would have been extremely helpful and I strongly encourage you to use it

within your organization. I have spent most of my career in retail; in that

industry, it has become more and more critical to evolve, and shipping

software is now part of the DNA of every organization. Don’t ignore the

science outlined in this book. It will help you accelerate your

transformation to a high-performing technology organization.

Courtney Kissler

VP Digital Platform Engineering, Nike

O

QUICK REFERENCE:

CAPABILITIES TO DRIVE

IMPROVEMENT

ur research has uncovered 24 key capabilities that drive

improvements in software delivery performance. is reference will point

you to them in the book. A detailed guide is found in Appendix A. ey are

presented in no particular order.

e capabilities are classi�ed into �ve categories:

Continuous delivery

Architecture

Product and process

Lean management and monitoring

Cultural

CONTINUOUS DELIVERY CAPABILITIES

1. Version control: Chapter 4

2. Deployment automation: Chapter 4

3. Continuous integration: Chapter 4

4. Trunk-based development: Chapter 4

5. Test automation: Chapter 4

6. Test data management: Chapter 4

7. Shift left on security: Chapter 6

8. Continuous delivery (CD): Chapter 4

ARCHITECTURE CAPABILITIES

9. Loosely coupled architecture: Chapter 5

10. Empowered teams: Chapter 5

PRODUCT AND PROCESS CAPABILITIES

11. Customer feedback: Chapter 8

12. Value stream: Chapter 8

13. Working in small batches: Chapter 8

14. Team experimentation: Chapter 8

LEAN MANAGEMENT AND MONITORING

CAPABILITIES

15. Change approval processes: Chapter 7

16. Monitoring: Chapter 7

17. Proactive noti�cation: Chapter 13

18. WIP limits: Chapter 7

19. Visualizing work: Chapter 7

CULTURAL CAPABILITIES

20. Westrum organizational culture: Chapter 3

21. Supporting learning: Chapter 10

22. Collaboration among teams: Chapters 3 and 5

23. Job satisfaction: Chapter 10

24. Transformational leadership: Chapter 11

B

PREFACE

eginning in late 2013, we embarked on a four-year research journey

to investigate what capabilities and practices are important to accelerate

the development and delivery of software and, in turn, value to

companies. ese results are seen in their pro�tability, productivity, and

market share. We see similarly strong effects in noncommercial outcomes

of effectiveness, efficiency, and customer satisfaction.

is research �lls a need that isn’t currently served in the market. By

using rigorous research methods traditionally only found in academia, and

making it accessible to industry, our goal is to advance the state of

software development and delivery. By helping the industry identify and

understand the capabilities that actually drive performance improvements

in a statistically meaningful way—more than just anecdote, and beyond

the experiences of one or a few teams—we can help the industry improve.

To conduct the research found in this book (in addition to research we

still actively conduct), we use cross-sectional studies. e same methods

are used in healthcare research (e.g., to investigate the relationship

between beer and obesity, Bobak et al. 2003), workplace research (e.g., to

study the relationship between the work environment and cardiovascular

disease, Johnson and Hall 1988), and memory research (e.g., to investigate

differences in development and decline in memory, Alloway and Alloway

2013). As we want to truly investigate the industry and understand what

drives improvement in software and organizational performance in a

meaningful way, we use rigorous academic research design methods and

publish much of our work in academic peer-reviewed journals. For more

information about the methods used in our research, check out Part II: e

Research.

THE RESEARCH

Our research collected over 23,000 survey responses from around the

world. We heard from over 2,000 unique organizations, from small

startups of under �ve employees to large enterprises with over 10,000

employees. We collected data from startups and cutting-edge internet

companies as well as highly regulated industries, such as �nance,

healthcare, and government. Our data and analysis includes software

developed on brand new “green�eld” platforms as well as legacy code

maintenance and development.

e �ndings in this book will apply whether you’re using a traditional

“waterfall” methodology (also known as gated, structured, or plan-driven)

and just beginning your technology transformation, or whether you have

been implementing Agile and DevOps practices for years. is is true

because software delivery is an exercise in continuous improvement, and

our research shows that year over year the best keep getting better, and

those who fail to improve fall further and further behind.

Improvement Is Possible for Everyone

Our quest to understand how to measure and improve software delivery

was full of insights and surprises. e moral of the story, borne out in the

data, is this: improvements in software delivery are possible for every

team and in every company, as long as leadership provides consistent

support— including time, actions, and resources—demonstrating a true

commitment to improvement, and as long as team members commit

themselves to the work.

Our goal in writing this book is to share what we have learned so that

we can help organizations excel, grow happier teams who deliver better

software faster, and help individuals and organizations thrive. e rest of

this preface brie�y describes the research, how it began, and how it was

conducted. More detail about the science behind the study can be found in

Part II of this book.

THE JOURNEY AND THE DATA

We are often asked about the genesis story of this research. It is based on a

compelling curiosity for what makes high-performing technology

organizations great, and how software makes organizations better. Each

author spent time on parallel paths working to understand superior

technical performance before joining forces in late 2013:

Nicole Forsgren has a PhD in Management Information Systems.

Prior to 2013, she spent several years researching the factors that

make technology impactful in organizations, particularly among

the professionals that make software and support infrastructure.

She has authored dozens of peer-reviewed articles on the subject.

Before her PhD, she was a software and hardware engineer and a

sysadmin.

Jez Humble is the coauthor of Continuous Delivery, Lean

Enterprise, and e DevOps Handbook. His �rst job after college was

working at a startup in London in 2000, and then from 2005-2015

he spent a decade at oughtWorks delivering software products

and consulting as an infrastructure specialist, developer, and

product manager.

Gene Kim has been studying high-performing technology

organizations since 1999. He was the founder and CTO of Tripwire

for thirteen years and is the coauthor of many books, including e

Phoenix Project and e Visible Ops Handbook.

In late 2013, Nicole, Jez, and Gene started working together with the

team at Puppet in preparation for the 2014 State of DevOps Report.1 By

combining practical expertise and academic rigor, the team was able to

generate something unique in the industry: a report containing insights

into how to help technology deliver value to employees, organizations, and

customers in predictive ways. Over the next four reports, Nicole, Jez, and

Gene continued collaborating with the Puppet team to iterate on research

design and continuously improve the industry’s understanding of what

contributes to great software delivery, what enables great technical teams,

and how companies can become high-performing organizations and win in

the market by leveraging technology. is book covers four years of

research �ndings, starting with that report (2014 through 2017).

To collect the data, each year we emailed invitations to our mailing lists

and leveraged social media, including Twitter, LinkedIn, and Facebook.

Our invitations targeted professionals working in technology, especially

those familiar with software development and delivery paradigms and

DevOps. We encouraged our readers to invite friends and peers who might

also work in software development and delivery to help us broaden our

reach. is is called snowball sampling, and we talk about why this was an

appropriate data collection method for this research project in Chapter 15,

“e Data for the Project.”

e data for our project came from surveys. We used surveys because

they are the best way to collect a large amount of data from thousands of

organizations in a short amount of time. For a detailed discussion of why

good research can be conducted from surveys, as well as the steps we took

to ensure the data we collected was trustworthy and accurate, see Part II

which covers the science and research behind the book.

Here is a brief outline of the research and how it evolved over the

years.

2014: LAYING THE FOUNDATION. DELIVERY PERFORMANCE AND

ORGANIZATIONAL PERFORMANCE

Our research goals for the �rst year were to lay a foundation for

understanding software development and delivery in organizations. Some

key research questions were:

What does it mean to deliver software, and can it be measured?

Does software delivery impact organizations?

Does culture matter, and how do we measure it?

What technical practices appear to be important?

We were pleasantly surprised by many of the results in the �rst year.

We discovered that software development and delivery can be measured in

a statistically meaningful way, and that high performers do it in

consistently good ways that are signi�cantly better than many other

companies. We also found that throughput and stability move together,

and that an organization’s ability to make software positively impacts

pro�tability, productivity, and market share. We saw that culture and

technical practices matter, and found how to measure them. is is

covered in Part I of this book.

e team also revised the way most of the data had been measured in

the past, moving from simple yes/no questions to Likert-type questions

(in which respondents choose from a range of options from “Strongly

Disagree” to “Strongly Agree”). is simple change in survey questions let

the team collect more nuanced data—shades of gray instead of black and

white. is allowed for more detailed analysis. For a discussion of the

authors’ choice to use surveys for this research project and why you can

trust their survey-based data, see Chapter 14, “Why Use a Survey.”

2015: EXTENDING THE WORK AND DEEPENING THE ANALYSIS

Much like technology transformations and business growth, conducting

research is all about iteration, incremental improvements, and revalidation

of important results. Armed with our �ndings from the �rst year, our

goals in year two were to revalidate and con�rm some key �ndings (e.g.,

software delivery can be de�ned and measured in a statistically

meaningful way, software delivery impacts organizational performance)

while also extending the model.

ese were some of the research questions:

Can we revalidate that software delivery impacts organizational

performance?

Do technical practices and automation impact software delivery?

Do lean management practices impact software delivery?

Do technical practices and Lean management practices impact

aspects of work that affect our workforce—such as anxiety

associated with code deployments and burnout?

Once again, we got some great con�rmations and some surprises. Our

hypotheses were supported, con�rming and extending the work we had

done the previous year. ese results can be found in Part I.

2016: EXPANDING OUR LOOK INTO TECHNICAL PRACTICES AND

EXPLORING THE FUZZY FRONT END

In year three, we again built on the core foundation of our model and

extended it to explore the signi�cance of additional technical practices

(such as security, trunk-based development, and test data management).

Inspired by conversations with colleagues working in product

management, we also extended our investigation further upstream, to see

if we could measure the impact of the current move away from traditional

project management practices to applying Lean principles in product

management. We extended our investigation to include quality measures

such as defects, rework, and security remediation. Finally, we included

additional questions to help us understand how technical practices

in�uence human capital: employee Net Promoter Score (eNPS) and work

identity—a factor that is likely to decrease burnout.

ese were our research questions:

Does the integration of security into software development and

delivery help the process or slow it down?

Does trunk-based development contribute to better software

delivery?

Is a Lean approach to product management an important aspect of

software development and delivery?

Do good technical practices contribute to strong company loyalty?

2017: INCLUDING ARCHITECTURE, EXPLORING THE ROLE OF

LEADERS, AND MEASURING SUCCESS IN NOT-FOR-PROFIT

ORGANIZATIONS

Year four of the research saw us moving into questions about how systems

are architected and the impact architecture has on teams’ and

organizations’ ability to deliver software and value. We also extended our

research to include measures of value that extended beyond pro�tability,

productivity, and market share, allowing the analysis to speak to a not-for-

pro�t audience. e research this year also explored the role of leaders to

measure the impact of transformational leadership in organizations.

Our driving research questions in year four were:

What architectural practices drive improvements in software

delivery performance?

How does transformational leadership impact software delivery?

Does software delivery impact not-for-pro�t outcomes?

CONCLUSION

We hope that as you read this book you discover, as a technologist and

technology leader, the essential components to making your organization

better—starting with software delivery. It is through improving our ability

to deliver software that organizations can deliver features faster, pivot

when needed, respond to compliance and security changes, and take

advantage of fast feedback to attract new customers and delight existing

ones.

In the chapters that follow, we identify the key capabilities that drive

the software delivery performance (and de�ne what software delivery

performance is) and brie�y touch on the key points in each. Part I of the

book presents our �ndings, Part II discusses the science and research

behind our results, and �nally, Part III presents a case study of what is

possible when organizations adopt and implement these capabilities in

order to drive performance.

1 It is important to note that the State of DevOps Report got its start prior to 2014. In 2012, the

team at Puppet Inc. invited Gene to participate in the second iteration of a study it was developing

to better understand a little known phenomenon called DevOps, how it was being adopted, and

the performance advantages organizations were seeing. Puppet had been a big proponent and

driver of the movement as the idea of “DevOps” began to take shape following the �rst

DevOpsDays, discussions on Twitter, and a seminal talk by John Allspaw and Paul Hammond.

Gene then invited Jez to join the study, and together they collected and analyzed 4,000 survey

responses from around the world, making it the largest survey of its kind.

Armed with robust data-gathering and statistical analysis

techniques (discussed in detail in Part II), we have been able to

discover significant and sometimes surprising results over the

past several years working on the State of DevOps Report.

We’ve been able to measure and quantify software delivery

performance, its impact on organizational performance, and

the various capabilities that contribute to these outcomes.

These capabilities fall into various categories—such as

technical, process, and cultural. We’ve measured the impact of

technical practices on culture, and the e�ect of culture on

delivery and organizational performance. For capabilities as

disparate as architecture and product management, we’ve

looked at their contribution to these and other important

sustainability outcomes such as burnout and deployment pain.

In this part of the book we present our results.

“B

CHAPTER 1

ACCELERATE

usiness as usual” is no longer enough to remain competitive.

Organizations in all industries, from �nance and banking to retail,

telecommunications, and even government, are turning away from

delivering new products and services using big projects with long lead

times. Instead, they are using small teams that work in short cycles and

measure feedback from users to build products and services that delight

their customers and rapidly deliver value to their organizations. ese high

performers are working incessantly to get better at what they do, letting

no obstacles stand in their path, even in the face of high levels of risk and

uncertainty about how they may achieve their goals.

To remain competitive and excel in the market, organizations must

accelerate:

delivery of goods and services to delight their customers;

engagement with the market to detect and understand customer

demand;

anticipation of compliance and regulatory changes that impact

their systems; and

response to potential risks such as security threats or changes in

the economy.

At the heart of this acceleration is software. is is true of

organizations in any industry vertical. Banks no longer deliver value by

holding gold bars in vaults but by trading faster and more securely, and by

discovering new channels and products to engage customers. Retailers win

and retain customers by offering them superior selection and service, with

service coming in the form of a fast check-out experience, recommended

goods at check-out, or a seamless online/offline shopping experience—all

of which are enabled by technology. Government organizations cite the

ability to harness technology as the key to serving the public more

effectively and efficiently while being parsimonious with taxpayer dollars.

Software and technology are key differentiators for organizations to

deliver value to customers and stakeholders. We’ve found it in our own

research outlined in this book—and others have found it, too. For

example, a recent study by James Bessen of Boston University found that

the strategic use of technology explains revenue and productivity gains

more than mergers and acquisitions (M&A) and entrepreneurship (2017).

Andrew McAfee and Erik Brynjolfsson have also found a link between

technology and pro�tability (2008).

Software is transforming and accelerating organizations of all kinds.

e practices and capabilities we talk about in this book have emerged

from what is now known as the DevOps movement, and they are

transforming industries everywhere. DevOps emerged from a small

number of organizations facing a wicked problem: how to build secure,

resilient, rapidly evolving distributed systems at scale. In order to remain

competitive, organizations must learn how to solve these problems. We

see that large enterprises with long histories and decades-old technologies

also gain signi�cant bene�ts, such as accelerated delivery and lower costs,

through adopting the capabilities we outline in this book.

Although many organizations have achieved great success with their

technology transformations (notable examples include web-scale tech

giants such as Net�ix, Amazon, Google, and Facebook, as well as more

traditional large organizations including Capital One, Target, and the US

Federal Government’s Technology Transformation Service and US Digital

Service), there is still a lot of work to be done—both in the broader

industry and within individual organizations. A recent Forrester (Stroud et

al. 2017) report found that 31% of the industry is not using practices and

principles that are widely considered to be necessary for accelerating

technology transformations, such as continuous integration and

continuous delivery, Lean practices, and a collaborative culture (i.e.,

capabilities championed by the DevOps movement). However, we also

know that technology and software transformations are imperative in

organizations today. A recent Gartner study found that 47% of CEOs face

pressure from their board to digitally transform (Panetta 2017).

Within organizations, technology transformation journeys are at

different stages, and reports suggest there is more work to be done than

many of us currently believe. Another Forrester report states that DevOps

is accelerating technology, but that organizations often overestimate their

progress (Klavens et al. 2017). Furthermore, the report points out that

executives are especially prone to overestimating their progress when

compared to those who are actually doing the work.

ese �ndings about the disconnect between executive and

practitioner estimates of DevOps maturity highlight two considerations

that are often missed by leaders. First, if we assume the estimates of

DevOps maturity or capabilities from practitioners are more accurate—

because they are closer to the work—the potential for value delivery and

growth within organizations is much greater than executives currently

realize. Second, the disconnect makes clear the need to measure DevOps

capabilities accurately and to communicate these measurement results to

leaders, who can use them to make decisions and inform strategy about

their organization’s technology posture.

FOCUS ON CAPABILITIES, NOT MATURITY

Technology leaders need to deliver software quickly and reliably to win in

the market. For many companies, this requires signi�cant changes to the

way we deliver software. e key to successful change is measuring and

understanding the right things with a focus on capabilities—not on

maturity.

While maturity models are very popular in the industry, we cannot

stress enough that maturity models are not the appropriate tool to use or

mindset to have. Instead, shifting to a capabilities model of measurement

is essential for organizations wanting to accelerate software delivery. is

is due to four factors.

First, maturity models focus on helping an organization “arrive” at a

mature state and then declare themselves done with their journey,

whereas technology transformations should follow a continuous

improvement paradigm. Alternatively, capability models focus on helping

an organization continually improve and progress, realizing that the

technological and business landscape is ever-changing. e most

innovative companies and highest-performing organizations are always

striving to be better and never consider themselves “mature” or “done”

with their improvement or transformation journey—and we see this in

our research.

Second, maturity models are quite often a “lock-step” or linear

formula, prescribing a similar set of technologies, tooling, or capabilities

for every set of teams and organizations to progress through. Maturity

models assume that “Level 1” and “Level 2” look the same across all teams

and organizations, but those of us who work in technology know this is

not the case. In contrast, capability models are multidimensional and

dynamic, allowing different parts of the organization to take a customized

approach to improvement, and focus on capabilities that will give them the

most bene�t based on their current context and their short and long-term

goals. Teams have their own context, their own systems, their own goals,

and their own constraints, and what we should focus on next to accelerate

our transformation depends on those things.

ird, capability models focus on key outcomes and how the

capabilities, or levers, drive improvement in those outcomes—that is, they

are outcome based. is provides technical leadership with clear direction

and strategy on high-level goals (with a focus on capabilities to improve

key outcomes). It also enables team leaders and individual contributors to

set improvement goals related to the capabilities their team is focusing on

for the current time period. Most maturity models simply measure the

technical pro�ciency or tooling install base in an organization without

tying it to outcomes. ese end up being vanity metrics: while they can be

relatively easy to measure, they don’t tell us anything about the impact

they have on the business.

Fourth, maturity models de�ne a static level of technological, process,

and organizational abilities to achieve. ey do not take into account the

ever-changing nature of the technology and business landscape. Our own

research and data have con�rmed that the industry is changing: what is

good enough and even “high-performing” today is no longer good enough

in the next year. In contrast, capability models allow for dynamically

changing environments and allow teams and organizations to focus on

developing the skills and capabilities needed to remain competitive.

By focusing on a capabilities paradigm, organizations can continuously

drive improvement. And by focusing on the right capabilities,

organizations can drive improvements in their outcomes, allowing them to

develop and deliver software with improved speed and stability. In fact, we

see that the highest performers do exactly this, continually reaching for

gains year over year and never settling for yesterday’s accomplishments.

EVIDENCE-BASED TRANSFORMATIONS

FOCUS ON KEY CAPABILITIES

Within both capability and maturity model frameworks, there are

disagreements about which capabilities to focus on. Product vendors often

favor capabilities that align with their product offerings. Consultants favor

capabilities that align with their background, their offering, and their

homegrown assessment tool. We have seen organizations try to design

their own assessment models, choose solutions that align with the skill

sets of internal champions, or succumb to analysis paralysis because of the

sheer number of areas that need improvement in their organization.

A more guided, evidence-based solution is needed, and the approach

discussed in this book describes such a solution.

Our research has yielded insights into what enables both software

delivery performance and organizational performance as seen in

pro�tability, productivity, and market share. In fact, our research shows

that none of the following often-cited factors predicted performance:

age and technology used for the application (for example,

mainframe “systems of record” vs. green�eld “systems of

engagement”)

whether operations teams or development teams performed

deployments

whether a change approval board (CAB) is implemented

e things that do make a difference in the success of software delivery

and organizational performance are those that the highest performers and

most innovative companies use to get ahead. Our research has identi�ed

24 key capabilities that drive improvement in software delivery

performance and, in turn, organizational performance. ese capabilities

are easy to de�ne, measure, and improve.1 is book will get you started

on de�ning and measuring these capabilities. We will also point you to

some fantastic resources for improving them, so you can accelerate your

own technology transformation journey.

THE VALUE OF ADOPTING DEVOPS

You may be asking yourself: How do we know that these capabilities are

drivers of technology and organizational performance, and why can we say

it with such con�dence?

e �ndings from our research program show clearly that the value of

adopting DevOps is even larger than we had initially thought, and the gap

between high and low performers continues to grow.

We discuss how we measure software delivery performance and how

our cohort performs in detail in the following chapter. To summarize, in

2017 we found that, when compared to low performers, the high

performers have:

46 times more frequent code deployments

440 times faster lead time from commit to deploy

170 times faster mean time to recover from downtime

5 times lower change failure rate (1/5 as likely for a change to fail)

When compared to the 2016 results, the gap between high performers

and low performers narrowed for tempo (deployment frequency and

change lead time) and widened for stability (mean time to recover and

change failure rate). We speculate that this is due to low-performing teams

working to increase tempo but not investing enough in building quality

into the process. e result is larger deployment failures that take more

time to restore service. High performers understand that they don’t have

to trade speed for stability or vice versa, because by building quality in

they get both.

You may be wondering: How do high-performing teams achieve such

amazing software delivery performance? ey do this by turning the right

levers—that is, by improving the right capabilities.

Over our four-year research program we have been able to identify the

capabilities that drive performance in software delivery and impact

organizational performance, and we have found that they work for all

types of organizations. Our research investigated organizations of all sizes,

in all industries, using legacy and green�eld technology stacks around the

world—so the �ndings in this book will apply to the teams in your

organization too.

1
ese 24 capabilities are listed, along with a pointer to the chapter that discusses them, in

Appendix A.

T

CHAPTER 2

MEASURING PERFORMANCE

here are many frameworks and methodologies that aim to improve

the way we build software products and services. We wanted to discover

what works and what doesn’t in a scienti�c way, starting with a de�nition

of what “good” means in this context. is chapter presents the framework

and methods we used to work towards this goal, and in particular the key

outcome measures applied throughout the rest of this book.

By the end of this chapter, we hope you’ll know enough about our

approach to feel con�dent in the results we present in the rest of the book.

Measuring performance in the domain of software is hard—in part

because, unlike manufacturing, the inventory is invisible. Furthermore,

the way we break down work is relatively arbitrary, and the design and

delivery activities—particularly in the Agile software development

paradigm—happen simultaneously. Indeed, it’s expected that we will

change and evolve our design based on what we learn by trying to

implement it. So our �rst step must be to de�ne a valid, reliable measure

of software delivery performance.

THE FLAWS IN PREVIOUS ATTEMPTS TO

MEASURE PERFORMANCE

ere have been many attempts to measure the performance of software

teams. Most of these measurements focus on productivity. In general, they

suffer from two drawbacks. First, they focus on outputs rather than

outcomes. Second, they focus on individual or local measures rather than

team or global ones. Let’s take three examples: lines of code, velocity, and

utilization.

Measuring productivity in terms of lines of code has a long history in

software. Some companies even required developers to record the lines of

code committed per week.1 However, in reality we would prefer a 10-line

solution to a 1,000-line solution to a problem. Rewarding developers for

writing lines of code leads to bloated software that incurs higher

maintenance costs and higher cost of change. Ideally, we should reward

developers for solving business problems with the minimum amount of

code—and it’s even better if we can solve a problem without writing code

at all or by deleting code (perhaps by a business process change). However,

minimizing lines of code isn’t an ideal measure either. At the extreme, this

too has its drawbacks: accomplishing a task in a single line of code that no

one else can understand is less desirable than writing a few lines of code

that are easily understood and maintained.

With the advent of Agile software development came a new way to

measure productivity: velocity. In many schools of Agile, problems are

broken down into stories. Stories are then estimated by developers and

assigned a number of “points” representing the relative effort expected to

complete them. At the end of an iteration, the total number of points

signed off by the customer is recorded—this is the team’s velocity. Velocity

is designed to be used as a capacity planning tool; for example, it can be

used to extrapolate how long it will take the team to complete all the work

that has been planned and estimated. However, some managers have also

used it as a way to measure team productivity, or even to compare teams.

Using velocity as a productivity metric has several �aws. First, velocity

is a relative and team-dependent measure, not an absolute one. Teams

usually have signi�cantly different contexts which render their velocities

incommensurable. Second, when velocity is used as a productivity

measure, teams inevitably work to game their velocity. ey in�ate their

estimates and focus on completing as many stories as possible at the

expense of collaboration with other teams (which might decrease their

velocity and increase the other team’s velocity, making them look bad).

Not only does this destroy the utility of velocity for its intended purpose,

it also inhibits collaboration between teams.

Finally, many organizations measure utilization as a proxy for

productivity. e problem with this method is that high utilization is only

good up to a point. Once utilization gets above a certain level, there is no

spare capacity (or “slack”) to absorb unplanned work, changes to the plan,

or improvement work. is results in longer lead times to complete work.

Queue theory in math tells us that as utilization approaches 100%, lead

times approach in�nity—in other words, once you get to very high levels

of utilization, it takes teams exponentially longer to get anything done.

Since lead time—a measure of how fast work can be completed—is a

productivity metric that doesn’t suffer from the drawbacks of the other

metrics we’ve seen, it’s essential that we manage utilization to balance it

against lead time in an economically optimal way.

MEASURING SOFTWARE DELIVERY

PERFORMANCE

A successful measure of performance should have two key characteristics.

First, it should focus on a global outcome to ensure teams aren’t pitted

against each other. e classic example is rewarding developers for

throughput and operations for stability: this is a key contributor to the

“wall of confusion” in which development throws poor quality code over

the wall to operations, and operations puts in place painful change

management processes as a way to inhibit change. Second, our measure

should focus on outcomes not output: it shouldn’t reward people for

putting in large amounts of busywork that doesn’t actually help achieve

organizational goals.

In our search for measures of delivery performance that meet these

criteria, we settled on four: delivery lead time, deployment frequency, time

to restore service, and change fail rate. In this section, we’ll discuss why we

picked these particular measures.

e elevation of lead time as a metric is a key element of Lean theory.

Lead time is the time it takes to go from a customer making a request to

the request being satis�ed. However, in the context of product

development, where we aim to satisfy multiple customers in ways they

may not anticipate, there are two parts to lead time: the time it takes to

design and validate a product or feature, and the time to deliver the

feature to customers. In the design part of the lead time, it’s often unclear

when to start the clock, and often there is high variability. For this reason,

Reinertsen calls this part of the lead time the “fuzzy front end”

(Reinertsen 2009). However, the delivery part of the lead time—the time it

takes for work to be implemented, tested, and delivered—is easier to

measure and has a lower variability. Table 2.1 (Kim et al. 2016) shows the

distinction between these two domains.

Table 2.1 Design vs. Delivery

Product Design and Development Product Delivery (Build, Testing, Deployment)

Create new products and services that solve
customer problems using hypothesis-driven

delivery, modern UX, design thinking.

Enable fast flow from development to production
and reliable releases by standardizing work, and

reducing variability and batch sizes.

Feature design and implementation may require
work that has never been performed before.

Integration, test, and deployment must be
performed continuously as quickly as possible.

Estimates are highly uncertain. Cycle times should be well-known and predictable.

Outcomes are highly variable. Outcomes should have low variability.

Shorter product delivery lead times are better since they enable faster

feedback on what we are building and allow us to course correct more

rapidly. Short lead times are also important when there is a defect or

outage and we need to deliver a �x rapidly and with high con�dence. We

measured product delivery lead time as the time it takes to go from code

committed to code successfully running in production, and asked survey

respondents to choose from one of the following options:

less than one hour

less than one day

between one day and one week

between one week and one month

between one month and six months

more than six months

e second metric to consider is batch size. Reducing batch size is

another central element of the Lean paradigm—indeed, it was one of the

keys to the success of the Toyota production system. Reducing batch sizes

reduces cycle times and variability in �ow, accelerates feedback, reduces

risk and overhead, improves efficiency, increases motivation and urgency,

and reduces costs and schedule growth (Reinertsen 2009, Chapter 5).

However, in software, batch size is hard to measure and communicate

across contexts as there is no visible inventory. erefore, we settled on

deployment frequency as a proxy for batch size since it is easy to measure

and typically has low variability.2 By “deployment” we mean a software

deployment to production or to an app store. A release (the changes that

get deployed) will typically consist of multiple version control commits,

unless the organization has achieved a single-piece �ow where each

commit can be released to production (a practice known as continuous

deployment). We asked survey respondents how often their organization

deploys code for the primary service or application they work on, offering

the following options:

on demand (multiple deploys per day)

between once per hour and once per day

between once per day and once per week

between once per week and once per month

between once per month and once every six months

fewer than once every six months

Delivery lead times and deployment frequency are both measures of

software delivery performance tempo. However, we wanted to investigate

whether teams who improved their performance were doing so at the

expense of the stability of the systems they were working on.

Traditionally, reliability is measured as time between failures. However, in

modem software products and services, which are rapidly changing

complex systems, failure is inevitable, so the key question becomes: How

quickly can service be restored? We asked respondents how long it

generally takes to restore service for the primary application or service

they work on when a service incident (e.g., unplanned outage, service

impairment) occurs, offering the same options as for lead time (above).

Finally, a key metric when making changes to systems is what

percentage of changes to production (including, for example, software

releases and infrastructure con�guration changes) fail. In the context of

Lean, this is the same as percent complete and accurate for the product

delivery process, and is a key quality metric. We asked respondents what

percentage of changes for the primary application or service they work on

either result in degraded service or subsequently require remediation (e.g.,

lead to service impairment or outage, require a hot�x, a rollback, a �x-

forward, or a patch). e four measures selected are shown in Figure 2.1.

Figure 2.1: Software Delivery Performance

In order to analyze delivery performance across the cohort we

surveyed, we used a technique called cluster analysis. Cluster analysis is a

foundational technique in statistical data analysis that attempts to group

responses so that responses in the same group are more similar to each

other than to responses in other groups. Each measurement is put on a

separate dimension, and the clustering algorithm attempts to minimize

the distance between all cluster members and maximize differences

between clusters. is technique has no understanding of the semantics of

responses—in other words, it doesn’t know what counts as a “good” or

“bad” response for any of the measures.3

is data-driven approach that categorizes the data without any bias

toward “good” or “bad” gives us an opportunity to view trends in the

industry without biasing the results a priori. Using cluster analysis also

allowed us to identify categories of software delivery performance seen in

the industry: Are there high performers and low performers, and what

characteristics do they have?

We applied cluster analysis in all four years of the research project and

found that every year, there were signi�cantly different categories of

software delivery performance in the industry. We also found that all four

measures of software delivery performance are good classi�ers and that

the groups we identi�ed in the analysis—high, medium, and low

performers—were all signi�cantly different across all four measures.

Tables 2.2 and 2.3 show you the details for software delivery

performance for the last two years of our research (2016 and 2017).

Table 2.2 Software. Delivery Performance for 2016

2016 High Performers Medium Performers Low Performers

Deployment
Frequency

On demand (multiple
deploys per day)

Between once per week
and once per month

Between once per month and
once every six months

Lead Time for
Changes

Less than one hour Between one week and one
month

Between one month and six
months

MTTR Less than one hour Less than one day Less than one day*

Change
Failure Rate

0-15% 31-45% 16-30%

Table 2.3 Software Delivery Performance for 2017

2017 High Performers Medium Performers Low Performers

Deployment
Frequency

On demand (multiple
deploys per day)

Between once per week and
once per month

Between once per week and
once per month*

Lead Time for
Changes

Less than one hour Between one week and one
month

Between one week and one
month*

MTTR Less than one hour Less than one day Between one day and one
week

Change Failure
Rate

0-15% 0-15% 31-45%

* Low performers were lower on average (at a statistically significant level) but had the same median as

the medium performers.

Astonishingly, these results demonstrate that there is no tradeoff

between improving performance and achieving higher levels of stability

and quality. Rather, high performers do better at all of these measures.

is is precisely what the Agile and Lean movements predict, but much

dogma in our industry still rests on the false assumption that moving

faster means trading off against other performance goals, rather than

enabling and reinforcing them.4

Furthermore, over the last few years we’ve found that the high-

performing cluster is pulling away from the pack. e DevOps mantra of

continuous improvement is both exciting and real, pushing companies to

be their best, and leaving behind those who do not improve. Clearly, what

was state of the art three years ago is just not good enough for today’s

business environment.

Compared to 2016, high performers in 2017 maintained or improved

their performance, consistently maximizing both tempo and stability. Low

performers, on the other hand, maintained the same level of throughput

from 2014-2016 and only started to increase in 2017—likely realizing that

the rest of the industry was pulling away from them. In 2017, we saw low

performers lose some ground in stability. We suspect this is due to

attempts to increase tempo (“work harder!”) which fail to address the

underlying obstacles to improved overall performance (for example,

rearchitecture, process improvement, and automation). We show the

trends in Figures 2.2 and 2.3.

Figure 2.2: Year over Year Trends: Tempo

Figure 2.3: Year over Year Trends: Stability

Surprise!

Observant readers will notice that medium performers do worse than

low performers on change fail rate in 2016. 2016 is the first year of our

research where we see slightly inconsistent performance across our

measures in any of our performance groups, and we see it in medium and

low performers. Our research doesn’t conclusively explain this, but we

have a few ideas about why this might be the case.

One possible explanation is that medium performers are working

along their technology transformation journey and dealing with the

challenges that come from large-scale rearchitecture work, such as

transitioning legacy code bases. is would also match another piece of

the data from the 2016 study, where we found that medium performers

spend more time on unplanned rework than low performers— because

they report spending a greater proportion of time on new work.

We believe this new work could be occurring at the expense of

ignoring critical rework, thus racking up technical debt which in turn

leads to more fragile systems and, therefore, a higher change fail rate.

We have found a valid, reliable way to measure software delivery

performance that satis�es the requirements we laid out. It focuses on

global, system-level goals, and measures outcomes that different functions

must collaborate in order to improve. e next question we wanted to

answer is: Does software delivery performance matter?

THE IMPACT OF DELIVERY PERFORMANCE

ON ORGANIZATIONAL PERFORMANCE

In order to measure organizational performance, survey respondents were

asked to rate their organization’s relative performance across several

dimensions: pro�tability, market share, and productivity. is is a scale

that has been validated multiple times in prior research (Widener 2007).

is measure of organizational performance has also been found to be

highly correlated to measures of return on investment (ROI), and it is

robust to economic cycles—a great measure for our purposes. Analysis

over several years shows that high-performing organizations were

consistently twice as likely to exceed these goals as low performers. is

demonstrates that your organization’s software delivery capability can in

fact provide a competitive advantage to your business.

In 2017, our research also explored how IT performance affects an

organization’s ability to achieve broader organizational goals—that is,

goals that go beyond simple pro�t and revenue measures. Whether you’re

trying to generate pro�ts or not, any organization today depends on

technology to achieve its mission and provide value to its customers or

stakeholders quickly, reliably, and securely. Whatever the mission, how a

technology organization performs can predict overall organizational

performance. To measure noncommercial goals, we used a scale that has

been validated multiple times and is particularly well-suited for this

purpose (Cavalluzzo and Ittner 2004). We found that high performers

were also twice as likely to exceed objectives in quantity of goods and

services, operating efficiency, customer satisfaction, quality of products or

services, and achieving organization or mission goals. We show this

relationship in Figure 2.4.

Figure 2.4: Impacts of Software Delivery Performance

Reading the Figures in is Book

We will include figures to help guide you through the research.

When you see a box, this is a construct we have measured. (For

details on constructs, see Chapter 13.)

When you see an arrow linking boxes, this signifies a predictive

relationship. You read that right: the research in this book includes

analyses that go beyond correlation into prediction. (For details, see

Chapter 12 on inferential prediction.) You can read these arrows

using the words “drives,” “predicts,” “affects,” or “impacts.” ese are

all positive relationships unless otherwise noted.

For example, Figure 2.4 could be read as “software delivery

performance impacts organizational performance and noncommercial

performance.”

In software organizations, the ability to work and deliver in small

batches is especially important, because it allows you to gather user

feedback quickly using techniques such as A/B testing. It’s worth noting

that the ability to take an experimental approach to product development

is highly correlated with the technical practices that contribute to

continuous delivery.

e fact that software delivery performance matters provides a strong

argument against outsourcing the development of software that is

strategic to your business, and instead bringing this capability into the

core of your organization. Even the US Federal Government, through

initiatives such as the US Digital Service and its agency affiliates and the

General Services Administration’s Technology Transformation Service

team, has invested in bringing software development capability in-house

for strategic initiatives.

In contrast, most software used by businesses (such as office

productivity software and payroll systems) are not strategic and should in

many cases be acquired using the software-as-a-service model.

Distinguishing which software is strategic and which isn’t, and managing

them appropriately, is of enormous importance. is topic is dealt with at

length by Simon Wardley, creator of the Wardley mapping method

(Wardley 2015).

DRIVING CHANGE

Now that we have de�ned software delivery performance in a way that is

rigorous and measurable, we can make evidence-based decisions on how to

improve the performance of teams building software-based products and

services. We can compare and benchmark teams against the larger

organizations they work in and against the wider industry. We can

measure their improvement—or backsliding—over time. And perhaps

most exciting of all, we can go beyond correlation and start testing

prediction. We can test hypotheses about which practices—from

managing work in process to test automation—actually impact delivery

performance and the strength of these effects. We can measure other

outcomes we care about, such as team burnout and deployment pain. We

can answer questions like, “Do change management boards actually

improve delivery performance?” (Spoiler alert: they do not; they are

negatively correlated with tempo and stability.)

As we show in the next chapter, it is also possible to model and

measure culture quantitatively. is enables us to measure the effect of

DevOps and continuous delivery practices on culture and, in turn, the

effect of culture on software delivery performance and organizational

performance. Our ability to measure and reason about practices, culture,

and outcomes is an incredibly powerful tool that can be used to great

positive effect in the pursuit of ever higher performance.

You can, of course, use these tools to model your own performance.

Use Table 2.3 to discover where in our taxonomy you fall. Use our

measures for lead time, deployment frequency, time to restore service, and

change fail rate, and ask your teams to set targets for these measures.

However, it is essential to use these tools carefully. In organizations

with a learning culture, they are incredibly powerful. But “in pathological

and bureaucratic organizational cultures, measurement is used as a form

of control, and people hide information that challenges existing rules,

strategies, and power structures. As Deming said, ’whenever there is fear,

you get the wrong numbers’” (Humble et al. 2014, p. 56). Before you are

ready to deploy a scienti�c approach to improving performance, you must

�rst understand and develop your culture. It is to this topic we now turn.

1 ere’s a good story about how the Apple Lisa team’s management discovered that lines of code

were meaningless as a productivity metric: http://www.folklore.org/StoryView.py?

story=Negative_2000_Lines_Of_Code.txt.

http://www.folklore.org/StoryView.py?story=Negative_2000_Lines_Of_Code.txt

2 Strictly, deployment frequency is the reciprocal of batch size-the more frequently we deploy, the

smaller the size of the batch. For more on measuring batch size in the context of IT service

management, see Forsgren and Humble (2016).
3 For more on cluster analysis, see Appendix B.
4 See https://continuousdelivery.com/2016/04/the-�aw-at-the-heart-of-bimodal-it/ for an analysis

of problems with the bimodal approach to ITSM, which rests on this false assumption.

https://continuousdelivery.com/2016/04/the-flaw-at-the-heart-of-bimodal-it/

I

CHAPTER 3

MEASURING AND CHANGING

CULTURE

t is practically a truism in DevOps circles that culture is of huge

importance. However, culture is intangible; there exist many de�nitions

and models of culture. Our challenge was to �nd a model of culture that

was well-de�ned in the scienti�c literature, could be measured effectively,

and would have predictive power in our domain. Not only did we achieve

these objectives, we also discovered that it is possible to in�uence and

improve culture by implementing DevOps practices.

MODELING AND MEASURING CULTURE

ere are many approaches to modeling culture in the literature. You can

choose to look at national culture—for example, what country one belongs

to. You may also talk about what organizational cultural values are enacted

that in�uence the way teams behave. And even within organizational

culture, there are several ways to de�ne and model “culture.”

Organizational culture can exist at three levels in organizations: basic

assumptions, values, and artifacts (Schein 1985). At the �rst level, basic

assumptions are formed over time as members of a group or organization

make sense of relationships, events, and activities. ese interpretations

are the least “visible” of the levels—and are the things that we just “know,”

and may �nd difficult to articulate, after we have been long enough in a

team.

e second level of organizational culture are values, which are more

“visible” to group members as these collective values and norms can be

discussed and even debated by those who are aware of them. Values provide

a lens through which group members view and interpret the relationships,

events, and activities around them. Values also in�uence group interactions

and activities by establishing social norms, which shape the actions of

group members and provide contextual rules (Bansal 2003). ese are quite

often the “culture” we think of when we talk about the culture of a team

and an organization.

e third level of organizational culture is the most visible and can be

observed in artifacts. ese artifacts can include written mission

statements or creeds, technology, formal procedures, or even heroes and

rituals (Pettigrew 1979).

Based on discussions in DevOps circles and the importance of

“organizational culture” at the second level, we decided to select a model

de�ned by sociologist Ron Westrum. Westrum had been researching

human factors in system safety, particularly in the context of accidents in

technological domains that were highly complex and risky, such as aviation

and healthcare. In 1988, he developed a typology of organizational cultures

(Westrum 2014):

Pathological (power-oriented) organizations are characterized by

large amounts of fear and threat. People often hoard information or

withhold it for political reasons, or distort it to make themselves

look better.

Bureaucratic (rule-oriented) organizations protect departments.

ose in the department want to maintain their “turf,” insist on

their own rules, and generally do things by the book—their book.

Generative (performance-oriented) organizations focus on the

mission. How do we accomplish our goal? Everything is

subordinated to good performance, to doing what we are supposed

to do.

Westrum’s further insight was that the organizational culture predicts

the way information �ows through an organization. Westrum provides

three characteristics of good information:

1. It provides answers to the questions that the receiver needs

answered.

2. It is timely.

3. It is presented in such a way that it can be effectively used by the

receiver.

Good information �ow is critical to the safe and effective operation of

high-tempo and high-consequence environments, including technology

organizations. Westrum describes the characteristics of organizations that

fall into his three types in Table 3.1.

An additional insight from Westrum was that this de�nition of

organizational culture predicts performance outcomes. We keyed in on this

in particular, because we hear so often that culture is important in DevOps,

and we were interested in understanding if culture could predict software

delivery performance.

Table 3.1 Westrums Typology of Organizational Culture.

Pathological (Power-Oriented) Bureaucratic (Rule-Oriented) Generative (Performance-Oriented)

Low cooperation Modest cooperation High cooperation

Messengers “shot” Messengers neglected Messengers trained

Responsibilities shirked Narrow responsibilities Risks are shared

Bridging discouraged Bridging tolerated Bridging encouraged

Failure leads to scapegoating Failure leads to justice Failure leads to inquiry

Novelty crushed Novelty leads to problems Novelty implemented

MEASURING CULTURE

In order to measure the culture of organizations, we take advantage of the

fact that these types form “points on a scale . . . a ‘Westrum continuum’”

(Westrum 2014). is makes it an excellent candidate for Likert-type

questions. In psychometrics, the Likert scale is used to measure people’s

perceptions by asking them to rate how strongly they agree or disagree with

a statement. When people answer a Likert-type question, we assign the

answer a value on a scale from 1 to 7, where 1 means “Strongly disagree”

and 7 means “Strongly agree.”

For this approach to work, the statement must be worded strongly, so

that people can strongly agree or disagree (or indeed feel neutral) about it.

You can see a re-creation from the survey showing the statements we

created from Westrum’s model, along with the Likert scale, in Figure 3.1.

Figure 3.1: Likert-Type Questions for Measuring Culture

Once we have the responses to these questions from several people

(often dozens or hundreds of people), we need to determine if our measure

of organizational culture is valid and reliable from a statistical point of

view. at is, we need to �nd out if the questions are being understood

similarly by all people taking the survey and if, taken together, they are

actually measuring organizational culture. If analyses using several

statistical tests con�rm these properties, we call what we have measured a

“construct” (in this case, our construct would be “Westrum organizational

culture”), and we can then use this measure in further research.

Analyzing Constructs

Prior to conducting any analysis between our measures—for example,

does organizational culture impact software delivery performance?—we

must analyze the data and measures themselves. When using robust

survey measures, we use constructs.

In this first step, we conducted several analyses to ensure our survey

measures were valid and reliable. ese analyses included tests for

discriminant validity, convergent validity, and reliability.

Discriminant validity: making sure that items that are not

supposed to be related are actually unrelated (e.g., that items that we

believe are not capturing organizational culture are not, in fact,

related to it).

Convergent validity: making sure that items that are supposed to

be related are actually related (e.g., if measures are supposed to

measure organizational culture, they do measure it).

Reliability: making sure the items are read and interpreted

similarly by those who take the survey. is is also referred to as

internal consistency.

Taken together, validity and reliability analyses confirm our measures

and come before any additional analyses to test for relationships, like

correlation or prediction. For more on validity and reliability, refer to

Chapter 13. Additional information about the statistical tests used to

confirm validity and reliability can be found in Appendix C.

Our research has consistently found our Westrum construct—an

indicator of the level of organizational culture that prioritizes trust and

collaboration in the team—to be both valid and reliable.1 is means you

can use these questions in your surveys too. To calculate the “score” for

each survey response, take the numerical value (1-7) corresponding to the

answer to each question and calculate the mean across all questions. en

you can perform statistical analysis on the responses as a whole.

Culture enables information processing through three mechanisms.

First, in organizations with a generative culture, people collaborate more

effectively and there is a higher level of trust both across the organization

and up and down the hierarchy. Second, “generative culture emphasizes the

mission, an emphasis that allows people involved to put aside their

personal issues and also the departmental issues that are so evident in

bureaucratic organizations. e mission is primary. And third, generativity

encourages a ‘level playing �eld,’ in which hierarchy plays less of a role”

(Westrum 2014, p. 61).

We should emphasize that bureaucracy is not necessarily bad. As Mark

Schwartz points out in e Art of Business Value, the goal of bureaucracy is

to “ensure fairness by applying rules to administrative behavior. e rules

would be the same for all cases—no one would receive preferential or

discriminatory treatment. Not only that, but the rules would represent the

best products of the accumulated knowledge of the organization:

Formulated by bureaucrats who were experts in their �elds, the rules would

impose efficient structures and processes while guaranteeing fairness and

eliminating arbitrariness” (Schwartz 2016, p. 56).

Westrum’s description of a rule-oriented culture is perhaps best

thought of as one where following the rules is considered more important

than achieving the mission—and we have worked with teams in the US

Federal Government we would have no issue describing as generative, as

well as startups that are clearly pathological.

WHAT DOES WESTRUM ORGANIZATIONAL

CULTURE PREDICT?

Westrum’s theory posits that organizations with better information �ow

function more effectively. According to Westrum, this type of

organizational culture has several important prerequisites, which means

that it is a good proxy for the characteristics described by these

prerequisites.

First, a good culture requires trust and cooperation between people

across the organization, so it re�ects the level of collaboration and trust

inside the organization.

Second, better organizational culture can indicate higher quality

decision-making. In a team with this type of culture, not only is better

information available for making decisions, but those decisions are more

easily reversed if they turn out to be wrong because the team is more likely

to be open and transparent rather than closed and hierarchical.

Finally, teams with these cultural norms are likely to do a better job

with their people, since problems are more rapidly discovered and

addressed.

We hypothesized that culture would predict both software delivery

performance and organizational performance. We also predicted that it

would lead to higher levels of job satisfaction.2 Both of these hypotheses

proved to be true. We show these relationships in Figure 3.2.

Figure 3.2: Westrum Organizational Culture’s Outcomes

CONSEQUENCES OF WESTRUM‘S THEORY FOR

TECHNOLOGY ORGANIZATIONS

For modern organizations that hope to thrive in the face of increasingly

rapid technological and economic change, both resilience and the ability to

innovate through responding to this change are essential. Our research into

the application of Westrum’s theory to technology shows that these two

characteristics are connected. Initially developed to predict safety

outcomes, our research shows it also predicts both software delivery and

organizational performance. is makes sense, because safety outcomes are

performance outcomes in a healthcare setting. By extending this to

technology, we expected this type of organizational culture to positively

impact software delivery and organizational performance. is mirrors

research performed by Google into how to create high-performing teams.

e Delivery Performance Construct

In Chapter 2, we said that delivery performance combines four metrics:

lead time, release frequency, time to restore service, and change fail rate.

When performing cluster analysis, all four metrics together meaningfully

classify and discriminate among our high, medium, and low performers.

at is, all four measures are good at categorizing teams. However, when

we tried to turn these four metrics into a construct, we ran into a problem:

the four measures don’t pass all of the statistical tests of validity and

reliability. Analysis showed that only lead time, release frequency, and

time to restore together form a valid and reliable construct. us, in the

rest of book, when we talk about software delivery performance it is defined

using only the combination of those three metrics. Also, when software

delivery performance is shown to correlate with some other construct, or

when we talk about predictions involving software delivery performance,

we’re only talking about the construct as defined and measured this way.

Note, however, that change fail rate is strongly correlated with the

software delivery performance construct, which means that in most cases,

things correlated with the software delivery performance construct are

also correlated with change fail rate.

Google wanted to discover if there were any common factors among its

best-performing teams. ey started a two-year research project to

investigate what made Google teams effective, conducting “200+ interviews

with . . . employees and [looking] at more than 250 attributes of 180+

active Google teams” (Google 2015). ey expected to �nd a combination of

individual traits and skills that would be key ingredients of high-

performing teams. What they found instead was that “who is on a team

matters less than how the team members interact, structure their work,

and view their contributions” (Google 2015). In other words, it all comes

down to team dynamics.

How organizations deal with failures or accidents is particularly

instructive. Pathological organizations look for a “throat to choke”:

Investigations aim to �nd the person or persons “responsible” for the

problem, and then punish or blame them. But in complex adaptive systems,

accidents are almost never the fault of a single person who saw clearly what

was going to happen and then ran toward it or failed to act to prevent it.

Rather, accidents typically emerge from a complex interplay of contributing

factors. Failure in complex systems is, like other types of behavior in such

systems, emergent (Perrow 2011).

us, accident investigations that stop at “human error” are not just

bad but dangerous. Human error should, instead, be the start of the

investigation. Our goal should be to discover how we could improve

information �ow so that people have better or more timely information, or

to �nd better tools to help prevent catastrophic failures following

apparently mundane operations.

HOW DO WE CHANGE CULTURE?

John Shook, describing his experiences transforming the culture of the

teams at the Fremont, California, car manufacturing plant that was the

genesis of the Lean manufacturing movement in the US, wrote, “what my . .

. experience taught me that was so powerful was that the way to change

culture is not to �rst change how people think, but instead to start by

changing how people behave—what they do” (Shook 2010).3

us we hypothesize that, following the theory developed by the Lean

and Agile movements, implementing the practices of these movements can

have an effect on culture. We set out to look at both technical and

management practices, and to measure their impact on culture. Our

research shows that Lean management, along with a set of other technical

practices known collectively as continuous delivery (Humble and Farley

2010), do in fact impact culture, as shown in Figure 3.3.

Figure 3.3: Westrum Organizational Culture’s Drivers

You can act your way to a better culture by implementing these

practices in technology organizations, just as you can in manufacturing. In

the next chapter we’ll examine the technical practices, and then in Chapters

7 and 8 we’ll discuss management practices.

1 In 2016, 31% of respondents were classi�ed as pathological, 48% bureaucratic, and 21% generative.
2 ese hypotheses are based on previous research and existing theories, and bolstered by our own

experiences and the experiences we see and hear from others in the industry. Our research

hypotheses are all built this way. is is an example of inferential predictive research, which you can

read more about in Chapter 12.
3 e story of this transformation is told in episode 561 of the WBEZ radio show is American Life

(is American Life 2015).

A

CHAPTER 4

TECHNICAL PRACTICES

t the time the Agile Manifesto was published in 2001, Extreme

Programming (XP) was one of the most popular Agile frameworks.1 In

contrast to Scrum, XP prescribes a number of technical practices such as

test-driven development and continuous integration. Continuous Delivery

(Humble and Farley 2010) also emphasizes the importance of these

technical practices (combined with comprehensive con�guration

management) as an enabler of more frequent, higher-quality, and lower-

risk software releases.

Many Agile adoptions have treated technical practices as secondary

compared to the management and team practices that some Agile

frameworks emphasize. Our research shows that technical practices play a

vital role in achieving these outcomes.

In this chapter, we discuss the research we performed to measure

continuous delivery as a capability and to assess its impact on software

delivery performance, organizational culture, and other outcome measures,

such as team burnout and deployment pain. We �nd that continuous

delivery practices do in fact have a measurable impact on these outcomes.

WHAT IS CONTINUOUS DELIVERY?

Continuous delivery is a set of capabilities that enable us to get changes of

all kinds—features, con�guration changes, bug �xes, experiments—into

production or into the hands of users safely, quickly, and sustainably. ere

are �ve key principles at the heart of continuous delivery:

Build quality in. e third of W. Edwards Deming’s fourteen

points for management states, “Cease dependence on inspection to

achieve quality. Eliminate the need for inspection on a mass basis

by building quality into the product in the �rst place” (Deming

2000). In continuous delivery, we invest in building a culture

supported by tools and people where we can detect any issues

quickly, so that they can be �xed straight away when they are cheap

to detect and resolve.

Work in small batches. Organizations tend to plan work in big

chunks—whether building new products or services or investing in

organizational change. By splitting work up into much smaller

chunks that deliver measurable business outcomes quickly for a

small part of our target market, we get essential feedback on the

work we are doing so that we can course correct. Even though

working in small chunks adds some overhead, it reaps enormous

rewards by allowing us to avoid work that delivers zero or negative

value for our organizations.

A key goal of continuous delivery is changing the economics of

the software delivery process so the cost of pushing out individual

changes is very low.

Computers perform repetitive tasks; people solve problems.

One important strategy to reduce the cost of pushing out changes

is to take repetitive work that takes a long time, such as regression

testing and software deployments, and invest in simplifying and

automating this work. us, we free up people for higher-value

problem-solving work, such as improving the design of our systems

and processes in response to feedback.

Relentlessly pursue continuous improvement. e most

important characteristic of high-performing teams is that they are

never satis�ed: they always strive to get better. High performers

make improvement part of everybody’s daily work.

Everyone is responsible. As we learned from Ron Westrum, in

bureaucratic organizations teams tend to focus on departmental

goals rather than organizational goals. us, development focuses

on throughput, testing on quality, and operations on stability.

However, in reality these are all system-level outcomes, and they

can only be achieved by close collaboration between everyone

involved in the software delivery process.

A key objective for management is making the state of these

system-level outcomes transparent, working with the rest of the

organization to set measurable, achievable, time-bound goals for

these outcomes, and then helping their teams work toward them.

In order to implement continuous delivery, we must create the

following foundations:

Comprehensive con�guration management. It should be

possible to provision our environments and build, test, and deploy

our software in a fully automated fashion purely from information

stored in version control. Any change to environments or the

software that runs on them should be applied using an automated

process from version control. is still leaves room for manual

approvals—but once approved, all changes should be applied

automatically.

Continuous integration (CI). Many software development teams

are used to developing features on branches for days or even weeks.

Integrating all these branches requires signi�cant time and rework.

Following our principle of working in small batches and building

quality in, high- performing teams keep branches short-lived (less

than one day’s work) and integrate them into trunk/master

frequently. Each change triggers a build process that includes

running unit tests. If any part of this process fails, developers �x it

immediately.

Continuous testing. Testing is not something that we should only

start once a feature or a release is “dev complete.” Because testing is

so essential, we should be doing it all the time as an integral part of

the development process. Automated unit and acceptance tests

should be run against every commit to version control to give

developers fast feedback on their changes. Developers should be

able to run all automated tests on their workstations in order to

triage and �x defects. Testers should be performing exploratory

testing continuously against the latest builds to come out of CI. No

one should be saying they are “done” with any work until all

relevant automated tests have been written and are passing.

Implementing continuous delivery means creating multiple feedback

loops to ensure that high-quality software gets delivered to users more

frequently and more reliably.2 When implemented correctly, the process of

releasing new versions to users should be a routine activity that can be

performed on demand at any time. Continuous delivery requires that

developers and testers, as well as UX, product, and operations people,

collaborate effectively throughout the delivery process.

THE IMPACT OF CONTINUOUS DELIVERY

In the �rst few iterations of our research from 2014-2016, we modeled and

measured a number of capabilities:

e use of version control for application code, system

con�guration, application con�guration, and build and

con�guration scripts

Comprehensive test automation that is reliable, easy to �x, and

runs regularly

Deployment automation

Continuous integration

Shifting left on security: bringing security—and security teams—in

process with software delivery rather than as a downstream phase

Using trunk-based development as opposed to long-lived feature

branches

Effective test data management

Most of these capabilities are measured in the form of constructs, using

Likert-type questions.3 For example, to measure the version control

capability, we ask respondents to report, on a Likert scale, the extent to

which they agree or disagree with the following statements:

Our application code is in a version control system.

Our system con�gurations are in a version control system.

Our application con�gurations are in a version control system.

Our scripts for automating build and con�guration are in a version

control system.

We then use statistical analysis to determine the extent to which these

capabilities in�uence the outcomes we care about. As expected, when taken

together, these capabilities have a strong positive impact on software

delivery performance. (We discuss some of the nuances of how to

implement these practices later in this chapter.) However, they also have

other signi�cant bene�ts: they help to decrease deployment pain and team

burnout. While we have heard in the organizations we work with anecdotal

evidence of these quality-of-work bene�ts for years, seeing evidence in the

data was fantastic. And it makes sense: we expect this because when teams

practice CD, deployment to production is not an enormous, big-bang event

—it’s something that can be done during normal business hours as a part

of regular daily work. (We cover team health in more depth in Chapter 9.)

Interestingly, teams that did well with continuous delivery also identi�ed

more strongly with the organization they worked for—a key predictor of

organizational performance that we discuss in Chapter 10.

As discussed in Chapter 3, we hypothesized that implementing CD

would in�uence organizational culture. Our analysis shows that this is

indeed the case. If you want to improve your culture, implementing CD

practices will help. By giving developers the tools to detect problems when

they occur, the time and resources to invest in their development, and the

authority to �x problems straight away, we create an environment where

developers accept responsibility for global outcomes such as quality and

stability. is has a positive in�uence on the group interactions and

activities of team members’ organizational environment and culture.

In 2017, we extended our analysis and were more explicit in how we

measured the relationship between the technical capabilities that were

important to CD. To do this, we created a �rst-order continuous delivery

construct. at is, we measured CD directly, which gave us insights into a

team’s ability to achieve the following outcomes:

Teams can deploy to production (or to end users) on demand,

throughout the software delivery lifecycle.

Fast feedback on the quality and deployability of the system is

available to everyone on the team, and people make acting on this

feedback their highest priority.

Our analysis showed that the original capabilities measured in 2014-

2016 had a strong and statistically signi�cant impact on these outcomes.4

We also measured two new capabilities, which also turned out to have a

strong and statistically signi�cant impact on continuous delivery:

A loosely coupled, well-encapsulated architecture (this is discussed

in more detail in Chapter 5)

Teams that can choose their own tools based on what is best for the

users of those tools

We show these relationships in Figure 4.1.

Figure 4.1: Drivers of Continuous Delivery

Since achieving continuous delivery for the sake of continuous delivery

is not enough, we wanted to investigate its impacts on organizations. We

hypothesized that it should drive performance improvements in software

delivery, and prior research suggested it could even improve culture. As

before, we found that teams that did well at continuous delivery achieved

the following outcomes:

Strong identi�cation with the organization you work for (see

Chapter 10)

Higher levels of software delivery performance (lead time, deploy

frequency, time to restore service)

Lower change fail rates

A generative, performance-oriented culture (see Chapter 3)

ese relationships are shown in Figure 4.2.

Figure 4.2: Impacts of Continuous Delivery

Even better, our research found that improvements in CD brought

payoffs in the way that work felt. is means that investments in

technology are also investments in people, and these investments will make

our technology process more sustainable (Figure 4.3). us, CD helps us

achieve one of the twelve principles of the Agile Manifesto: “Agile processes

promote sustainable development. e sponsors, developers, and users

should be able to maintain a constant pace inde�nitely” (Beck et al. 2001).

Lower levels of deployment pain

Reduced team burnout (see Chapter 9)

Figure 4.3: Continuous Delivery Makes Work More Sustainable

THE IMPACT OF CONTINUOUS DELIVERY ON

QUALITY

A crucial question we wanted to address is: Does continuous delivery

increase quality? In order to answer this, we �rst have to �nd some way to

measure quality. is is challenging because quality is very contextual and

subjective. As software quality expert Jerry Weinberg says, “Quality is value

to some person” (Weinberg 1992, p. 7).

We already know that continuous delivery predicts lower change fail

rates, which is an important quality metric. However, we also tested several

additional proxy variables for quality:

e quality and performance of applications, as perceived by those

working on them

e percentage of time spent on rework or unplanned work

e percentage of time spent working on defects identi�ed by end

users

Our analysis found that all measures were correlated with software

delivery performance. However, the strongest correlation was seen in the

percentage of time spent on rework or unplanned work, including break/�x

work, emergency software deployments and patches, responding to urgent

audit documentation requests, and so forth. Furthermore, continuous

delivery predicts lower levels of unplanned work and rework in a

statistically signi�cant way. We found that the amount of time spent on

new work, unplanned work or rework, and other kinds of work, was

signi�cantly different between high performers and low performers. We

show these differences in Figure 4.4.

Figure 4.4: New Work vs. Unplanned Work

High performers reported spending 49% of their time on new work and

21% on unplanned work or rework. In contrast, low performers spend 38%

of their time on new work and 27% on unplanned work or rework.

Unplanned work and rework are useful proxies for quality because they

represent a failure to build quality into our products. In e Visible Ops

Handbook, unplanned work is described as the difference between “paying

attention to the low fuel warning light on an automobile versus running

out of gas on the highway” (Behr et al. 2004). In the �rst case, the

organization can �x the problem in a planned manner, without much

urgency or disruption to other scheduled work. In the second case, they

must �x the problem in a highly urgent manner, often requiring all hands

on deck—for example, have six engineers drop everything and run down

the highway with full gas cans to refuel a stranded truck.

Similarly, John Seddon, creator of the Vanguard Method, emphasizes

the importance of reducing what he calls failure demand— demand for

work caused by the failure to do the right thing the �rst time by improving

the quality of service we provide. is is one of the key goals of continuous

delivery, with its focus on working in small batches with continuous in-

process testing.

CONTINUOUS DELIVERY PRACTICES: WHAT

WORKS AND WHAT DOESN’T

In our research, we discovered nine key capabilities that drive continuous

delivery, listed earlier in this chapter. Some of these capabilities have

interesting nuances which we’ll discuss in this section—with the exception

of architecture and tool choice, which get a whole chapter to themselves

(Chapter 5). Continuous integration and deployment automation are not

discussed further in this chapter.

VERSION CONTROL

e comprehensive use of version control is relatively uncontroversial. We

asked if respondents were keeping application code, system con�guration,

application con�guration, and scripts for automating build and

con�guration in version control. ese factors together predict IT

performance and form a key component of continuous delivery. What was

most interesting was that keeping system and application con�guration in

version control was more highly correlated with software delivery

performance than keeping application code in version control.

Con�guration is normally considered a secondary concern to application

code in con�guration management, but our research shows that this is a

misconception.

TEST AUTOMATION

As discussed above, test automation is a key part of continuous delivery.

Based on our analysis, the following practices predict IT performance:

Having automated tests that are reliable: when the automated tests

pass, teams are con�dent that their software is releasable.

Furthermore, they are con�dent that test failures indicate a real

defect. Too many test suites are �aky and unreliable, producing

false positives and negatives—it’s worth investing ongoing effort

into a suite that is reliable. One way to achieve this is to put

automated tests that are not reliable in a separate quarantine suite

that is run independently.5 Or, of course, you could just delete

them. If they’re version-controlled (as they should be), you can

always get them back.

Developers primarily create and maintain acceptance tests, and

they can easily reproduce and �x them on their development

workstations. It’s interesting to note that having automated tests

primarily created and maintained either by QA or an outsourced

party is not correlated with IT performance. e theory behind this

is that when developers are involved in creating and maintaining

acceptance tests, there are two important effects. First, the code

becomes more testable when developers write tests. is is one of

the main reasons why test-driven development (TDD) is an

important practice—it forces developers to create more testable

designs. Second, when developers are responsible for the

automated tests, they care more about them and will invest more

effort into maintaining and �xing them.

None of this means that we should be getting rid of testers. Testers

serve an essential role in the software delivery lifecycle, performing manual

testing such as exploratory, usability, and acceptance testing, and helping

to create and evolve suites of automated tests by working alongside

developers.

Once you have these automated tests, our analysis shows it’s important

to run them regularly. Every commit should trigger a build of the software

and running a set of fast, automated tests. Developers should get feedback

from a more comprehensive suite of acceptance and performance tests

every day. Furthermore, current builds should be available to testers for

exploratory testing.

TEST DATA MANAGEMENT

When creating automated tests, managing test data can be hard. In our

data, successful teams had adequate test data to run their fully automated

test suites and could acquire test data for running automated tests on

demand. In addition, test data was not a limit on the automated tests they

could run.

TRUNK-BASED DEVELOPMENT

Our research also found that developing off trunk/master rather than on

long-lived feature branches was correlated with higher delivery

performance. Teams that did well had fewer than three active branches at

any time, their branches had very short lifetimes (less than a day) before

being merged into trunk and never had “code freeze” or stabilization

periods. It’s worth re-emphasizing that these results are independent of

team size, organization size, or industry.

Even after �nding that trunk-based development practices contribute

to better software delivery performance, some developers who are used to

the “GitHub Flow” work�ow6 remain skeptical. is work�ow relies heavily

on developing with branches and only periodically merging to trunk. We

have heard, for example, that branching strategies are effective if

development teams don’t maintain branches for too long—and we agree

that working on short-lived branches that are merged into trunk at least

daily is consistent with commonly accepted continuous integration

practices.

We conducted additional research and found that teams using branches

that live a short amount of time (integration times less than a day)

combined with short merging and integration periods (less than a day) do

better in terms of software delivery performance than teams using longer-

lived branches. Anecdotally, and based on our own experience, we

hypothesize that this is because having multiple long-lived branches

discourages both refactoring and intrateam communication. We should

note, however, that GitHub Flow is suitable for open source projects whose

contributors are not working on a project full time. In that situation, it

makes sense for branches that part-time contributors are working on to live

for longer periods of time without being merged.

INFORMATION SECURITY

High-performing teams were more likely to incorporate information

security into the delivery process. eir infosec personnel provided

feedback at every step of the software delivery lifecycle, from design

through demos to helping with test automation. However, they did so in a

way that did not slow down the development process, integrating security

concerns into the daily work of teams. In fact, integrating these security

practices contributed to software delivery performance.

ADOPTING CONTINUOUS DELIVERY

Our research shows that the technical practices of continuous delivery have

a huge impact on many aspects of an organization. Continuous delivery

improves both delivery performance and quality, and also helps improve

culture and reduce burnout and deployment pain. However, implementing

these practices often requires rethinking everything—from how teams

work, to how they interact with each other, to what tools and processes

they use. It also requires substantial investment in test and deployment

automation, combined with relentless work to simplify systems

architecture on an ongoing basis to ensure that this automation isn’t

prohibitively expensive to create and maintain.

us, a critical obstacle to implementing continuous delivery is

enterprise and application architecture. We’ll discuss the results of our

research into this important topic in Chapter 5.

1 According to Google Trends, Scrum overtook Extreme Programming around January 2006, and has

continued to grow in popularity while Extreme Programming has �atlined.
2 e key pattern which connects these feedback loops is known as a deployment pipeline, see

https://continuousdelivery.com/implementing/patterns/.
3 A notable exception is deployment automation.
4 Only a subset of technical capabilities was tested due to length limitations. See the diagram at the

end of Appendix A for these capabilities.
5 For more information, see https://martinfowler.com/articles/nonDeterminism.html.
6 For a description of GitHub Flow, see https://guides.github.com/introduction/�ow/.

https://continuousdelivery.com/implementing/patterns/
https://martinfowler.com/articles/nonDeterminism.html
https://guides.github.com/introduction/flow/

W

CHAPTER 5

ARCHITECTURE

e’ve seen that adopting continuous delivery practices improves

delivery performance, impacts culture, and reduces burnout and

deployment pain. However, the architecture of your software and the

services it depends on can be a signi�cant barrier to increasing both the

tempo and stability of the release process and the systems delivered.

Furthermore, DevOps and continuous delivery originated in web-

based systems, so it’s legitimate to ask if they can be applied to mainframe

systems, �rmware, or to an average big-ball-of-mud enterprise

environment (Foote and Yoder 1997) consisting of thousands of tightly

coupled systems.

We set out to discover the impact of architectural decisions and

constraints on delivery performance, and what makes an effective

architecture. We found that high performance is possible with all kinds of

systems, provided that systems—and the teams that build and maintain

them—are loosely coupled.

is key architectural property enables teams to easily test and deploy

individual components or services even as the organization and the

number of systems it operates grow—that is, it allows organizations to

increase their productivity as they scale.

TYPES OF SYSTEMS AND DELIVERY

PERFORMANCE

We examined a large number of types of systems to discover if there was a

correlation between the type of system and team performance. We looked

at the following types of systems, both as the primary system under

development and as a service being integrated against:

Green�eld: new systems that have not yet been released

Systems of engagement (used directly by end users)

Systems of record (used to store business-critical information

where data consistency and integrity is critical)

Custom software developed by another company

Custom software developed in-house

Packaged, commercial off-the-shelf software

Embedded software that runs on a manufactured hardware device

Software with a user-installed component (including mobile apps)

Non-mainframe software that runs on servers operated by another

company

Non-mainframe software that runs on our own servers

Mainframe software

We discovered that low performers were more likely to say that the

software they were building—or the set of services they had to interact

with—was custom software developed by another company (e.g., an

outsourcing partner). Low performers were also more likely to be working

on mainframe systems. Interestingly, having to integrate against

mainframe systems was not signi�cantly correlated with performance.

In the rest of the cases, there was no signi�cant correlation between

system type and delivery performance. We found this surprising: we had

expected teams working on packaged software, systems of record, or

embedded systems to perform worse, and teams working on systems of

engagement and green�eld systems to perform better. e data shows that

this is not the case.

is reinforces the importance of focusing on the architectural

characteristics, discussed below, rather than the implementation details of

your architecture. It’s possible to achieve these characteristics even with

packaged software and “legacy” mainframe systems—and, conversely,

employing the latest whizzy microservices architecture deployed on

containers is no guarantee of higher performance if you ignore these

characteristics.

As we said in Chapter 2, given that software delivery performance

impacts organizational performance, it’s important to invest in your

capabilities to create and evolve the core, strategic software products and

services that provide a key differentiator for your business. e fact that

low performers were more likely to be using—or integrating against—

custom software developed by another company underlines the

importance of bringing this capability in-house.

FOCUS ON DEPLOYABILITY AND TESTABILITY

Although in most cases the type of system you are building is not

important in terms of achieving high performance, two architectural

characteristics are. ose who agreed with the following statements were

more likely to be in the high-performing group:

We can do most of our testing without requiring an integrated

environment.1

We can and do deploy or release our application independently of

other applications/services it depends on.

It appears that these characteristics of architectural decisions, which we

refer to as testability and deployability, are important in creating high

performance. To achieve these characteristics, design systems are loosely

coupled—that is, can be changed and validated independently of each

other. In the 2017 survey, we expanded our analysis to test the extent to

which a loosely coupled, well-encapsulated architecture drives IT

performance. We discovered that it does; indeed, the biggest contributor

to continuous delivery in the 2017 analysis—larger even than test and

deployment automation—is whether teams can:

Make large-scale changes to the design of their system without the

permission of somebody outside the team

Make large-scale changes to the design of their system without

depending on other teams to make changes in their systems or

creating signi�cant work for other teams

Complete their work without communicating and coordinating

with people outside their team

Deploy and release their product or service on demand, regardless

of other services it depends upon

Do most of their testing on demand, without requiring an

integrated test environment

Perform deployments during normal business hours with

negligible downtime

In teams which scored highly on architectural capabilities, little

communication is required between delivery teams to get their work done,

and the architecture of the system is designed to enable teams to test,

deploy, and change their systems without dependencies on other teams. In

other words, architecture and teams are loosely coupled. To enable this, we

must also ensure delivery teams are cross-functional, with all the skills

necessary to design, develop, test, deploy, and operate the system on the

same team.

is connection between communication bandwidth and systems

architecture was �rst discussed by Melvin Conway, who said,

“organizations which design systems . . . are constrained to produce

designs which are copies of the communication structures of these

organizations” (Conway 1968). Our research lends support to what is

sometimes called the “inverse Conway Maneuver,”2 which states that

organizations should evolve their team and organizational structure to

achieve the desired architecture. e goal is for your architecture to

support the ability of teams to get their work done—from design through

to deployment—without requiring high-bandwidth communication

between teams.

Architectural approaches that enable this strategy include the use of

bounded contexts and APIs as a way to decouple large domains into

smaller, more loosely coupled units, and the use of test doubles and

virtualization as a way to test services or components in isolation. Service-

oriented architectures are supposed to enable these outcomes, as should

any true microservices architecture. However, it’s essential to be very

strict about these outcomes when implementing such architectures.

Unfortunately, in real life, many so-called service-oriented architectures

don’t permit testing and deploying services independently of each other,

and thus will not enable teams to achieve higher performance.3

Of course DevOps is all about better collaboration between teams, and

we don’t mean to suggest teams shouldn’t work together. e goal of a

loosely coupled architecture is to ensure that the available communication

bandwidth isn’t overwhelmed by �ne-grained decision-making at the

implementation level, so we can instead use that bandwidth for discussing

higher-level shared goals and how to achieve them.

A LOOSELY COUPLED ARCHITECTURE

ENABLES SCALING

If we achieve a loosely coupled, well-encapsulated architecture with an

organizational structure to match, two important things happen. First, we

can achieve better delivery performance, increasing both tempo and

stability while reducing the burnout and the pain of deployment. Second,

we can substantially grow the size of our engineering organization and

increase productivity linearly—or better than linearly—as we do so.

To measure productivity, we calculated the following metric from our

data: number of deploys per day per developer. e orthodox view of

scaling software development teams states that while adding developers to

a team may increase overall productivity, individual developer productivity

will in fact decrease due to communication and integration overheads.

However, when looking at number of deploys per day per developer for

respondents who deploy at least once per day, we see the results plotted in

Figure 5.1.

Figure 5.1: Deploys per Developer per Day

As the number of developers increases, we found:

Low performers deploy with decreasing frequency.

Medium performers deploy at a constant frequency.

High performers deploy at a signi�cantly increasing frequency.

By focusing on the factors that predict high delivery performance—a

goal-oriented generative culture, a modular architecture, engineering

practices that enable continuous delivery, and effective leadership—we

can scale deployments per developer per day linearly or better with the

number of developers. is allows our business to move faster as we add

more people, not slow down, as is more typically the case.

ALLOW TEAMS TO CHOOSE THEIR OWN

TOOLS

In many organizations, engineers must use tools and frameworks from an

approved list. is approach typically serves one or more of the following

purposes:

Reducing the complexity of the environment

Ensuring the necessary skills are in place to manage the

technology throughout its lifecycle

Increasing purchasing power with vendors

Ensuring all technologies are correctly licensed

However, there is a downside to this lack of �exibility: it prevents

teams from choosing technologies that will be most suitable for their

particular needs, and from experimenting with new approaches and

paradigms to solve their problems.

Our analysis shows that tool choice is an important piece of technical

work. When teams can decide which tools they use, it contributes to

software delivery performance and, in turn, to organizational

performance. is isn’t surprising. e technical professionals who

develop and deliver software and run complex infrastructures make these

tool choices based on what is best for completing their work and

supporting their users. Similar results have been found in other studies of

technical professionals (e.g., Forsgren et al. 2016), suggesting that the

upsides of delegating tool choice to teams may outweigh the

disadvantages.

at said, there is a place for standardization, particularly around the

architecture and con�guration of infrastructure. e bene�ts of a

standardized operational platform are discussed at length by Humble

(2017). Another example is Steve Yegge’s description of Amazon’s move to

an SOA, in which he notes, “Debugging problems with someone else’s code

gets a LOT harder, and is basically impossible unless there is a universal

standard way to run every service in a debuggable sandbox” (Yegge 2011).

Another �nding in our research is that teams that build security into

their work also do better at continuous delivery. A key element of this is

ensuring that information security teams make preapproved, easy-to-

consume libraries, packages, toolchains, and processes available for

developers and IT operations to use in their work.

ere is no contradiction here. When the tools provided actually make

life easier for the engineers who use them, they will adopt them of their

own free will. is is a much better approach than forcing them to use

tools that have been chosen for the convenience of other stakeholders. A

focus on usability and customer satisfaction is as important when

choosing or building tools for internal customers as it is when building

products for external customers, and allowing your engineers to choose

whether or not to use them ensures that we keep ourselves honest in this

respect.

ARCHITECTS SHOULD FOCUS ON ENGINEERS

AND OUTCOMES, NOT TOOLS OR

TECHNOLOGIES

Discussions around architecture often focus on tools and technologies.

Should the organization adopt microservices or serverless architectures?

Should they use Kubernetes or Mesos? Which CI server, language, or

framework should they standardize on? Our research shows that these are

wrong questions to focus on.

What tools or technologies you use is irrelevant if the people who must

use them hate using them, or if they don’t achieve the outcomes and

enable the behaviors we care about. What is important is enabling teams

to make changes to their products or services without depending on other

teams or systems. Architects should collaborate closely with their users—

the engineers who build and operate the systems through which the

organization achieves its mission—to help them achieve better outcomes

and provide them the tools and technologies that will enable these

outcomes.

1 We de�ne an integrated environment as one in which multiple independent services are deployed

together, such as a staging environment. In many enterprises, integrated environments are

expensive and require signi�cant set-up time.
2 See https://www.thoughtworks.com/radar/techniques/inverse-conway-maneuver for more

information.
3 Steve Yegge’s “platform rant” contains some excellent advice on achieving these goals:

http://bit.ly/yegge-platform-rant.

https://www.thoughtworks.com/radar/techniques/inverse-conway-maneuver
http://bit.ly/yegge-platform-rant

A

CHAPTER 6

INTEGRATING INFOSEC INTO

THE DELIVERY LIFECYCLE

rguably the DevOps movement is poorly named—ignoring functions

such as testing, product management, and information security. e

original intent of the DevOps movement was—in part—to bring together

developers and operations teams to create win-win solutions in the pursuit

of system-level goals, rather than throwing work over the wall and

pointing �ngers when things went wrong. However, this kind of behavior

is not limited to just development and operations, it occurs wherever

different functions within the software delivery value stream do not work

effectively together.

is is particularly true when discussing the role of information

security teams. Infosec is a vitally important function in an era where

threats are ubiquitous and ongoing. However, infosec teams are often

poorly staffed—James Wickett, Head of Research at Signal Sciences, cites

a ratio of 1 infosec person per 10 infrastructure people per 100 developers

in large companies (Wickett 2014)—and they are usually only involved at

the end of the software delivery lifecycle when it is often painful and

expensive to make changes necessary to improve security. Furthermore,

many developers are ignorant of common security risks, such as the

OWASP Top 10,1 and how to prevent them.

Our research shows that building security into software development

not only improves delivery performance but also improves security

quality. Organizations with high delivery performance spend signi�cantly

less time remediating security issues.

SHIFTING LEFT ON SECURITY

We found that when teams “shift left” on information security— that is,

when they build it into the software delivery process instead of making it a

separate phase that happens downstream of the development process—

this positively impacts their ability to practice continuous delivery. is, in

turn, positively impacts delivery performance.

What does “shifting left” entail? First, security reviews are conducted

for all major features, and this review process is performed in such a way

that it doesn’t slow down the development process. How can we ensure

that paying attention to security doesn’t reduce development throughput?

is is the focus of the second aspect of this capability: information

security should be integrated into the entire software delivery lifecycle

from development through operations. is means infosec experts should

contribute to the process of designing applications, attend and provide

feedback on demonstrations of the software, and ensure that security

features are tested as part of the automated test suite. Finally, we want to

make it easy for developers to do the right thing when it comes to infosec.

is can be achieved by ensuring that there are easy-to-consume,

preapproved libraries, packages, toolchains, and processes available for

developers and IT operations.

What we see here is a shift from information security teams doing the

security reviews themselves to giving the developers the means to build

security in. is re�ects two realities: First, it’s much easier to make sure

that the people building the software are doing the right thing than

inspect nearly completed systems and features to �nd signi�cant

architectural problems and defects that involve a substantial rework.

Second, information security teams simply don’t have the capacity to be

doing security reviews when deployments are frequent. In many

organizations, security and compliance is a signi�cant bottleneck for

taking systems from “dev complete” to live. Involving infosec professionals

throughout the development process also has the effect of improving

communication and information �ow—a win-win and a core goal of

DevOps.

Compliance in the Federal Government

Federal information systems are subject to the Federal Information

Security Management Act of 2002 (FISMA). FISMA requires that federal

agencies follow NIST’s Risk Management Framework (RMF). e RMF

includes multiple steps, such as the preparation of a System Security Plan

which documents how the relevant information security controls (325

for a moderate-impact system) have been implemented, and then an

assessment resulting in a report (the security assessment report or SAR)

which documents the validation of the implementation. is process can

take from several months to over a year, and is often only begun once the

system is “dev complete.”

In order to reduce the time and cost taken to deliver federal

information systems, a small team of civil servants at 18F created a

platform as a service called cloud.gov based on an open-source version of

Pivotal’s Cloud Foundry, hosted on Amazon Web Services. Most of the

controls in systems hosted on cloud.gov—269 of the 325 required for a

moderate-impact information system—are taken care of at the platform

http://cloud.gov/
http://cloud.gov/

level. Systems hosted on cloud.gov can go from dev complete to live in

weeks, not months. is significantly reduces the amount of work—and

thus cost—needed to implement the requirements of the Risk

Management Framework.

Read more at https://18f.gsa.gov/2017/02/02/cloud-gov-is-now-

fedramp-authorized/.

When building security into software is part of the daily work of

developers, and when infosec teams provide tools, training, and support to

make it easy for developers to do the right thing, delivery performance

gets better. Furthermore, this has a positive impact on security. We found

that high performers were spending 50% less time remediating security

issues than low performers. In other words, by building security into their

daily work, as opposed to retro�tting security concerns at the end, they

spent signi�cantly less time addressing security issues.

THE RUGGED MOVEMENT

Other names have been proposed to extend DevOps to cover infosec

concerns. One is DevSecOps (coined by a few in the industry, including

Topo Pal of Capital One and Shannon Lietz of Intuit). Another is Rugged

DevOps, coined by Josh Corman and James Wickett. Rugged DevOps is

the combination of DevOps with the Rugged Manifesto.

I am rugged and, more importantly, my code is rugged.

I recognize that software has become a foundation of our modern

world.

http://cloud.gov/
https://18f.gsa.gov/2017/02/02/cloud-gov-is-now-fedramp-authorized/

I recognize the awesome responsibility that comes with this

foundational role.

I recognize that my code will be used in ways I cannot anticipate,

in ways it was not designed, and for longer than it was ever

intended.

I recognize that my code will be attacked by talented and

persistent adversaries who threaten our physical, economic, and

national security.

I recognize these things—and I choose to be rugged.

I am rugged because I refuse to be a source of vulnerability or

weakness.

I am rugged because I assure my code will support its mission.

I am rugged because my code can face these challenges and persist

in spite of them.

I am rugged, not because it is easy, but because it is necessary and

I am up for the challenge (Corman et al. 2012).

For the Rugged movement to succeed—and in line with DevOps

principles—being rugged is everybody’s responsibility.

1 For more information, see https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project.

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

T

CHAPTER 7

MANAGEMENT PRACTICES FOR

SOFTWARE

he theory and practice of management in the context of software

delivery has gone through signi�cant change over the decades, with

multiple paradigms in play. For many years, the project and program

management paradigm, found in frameworks such as the Project

Management Institute and PRINCE2, dominated. Following the release of

the Agile Manifesto in 2001, Agile methods rapidly gained traction.

Meanwhile, ideas from the Lean movement in manufacturing began to

be applied to software. is movement derives from Toyota’s approach to

manufacturing, originally designed to solve the problem of creating a wide

variety of different types of cars for the relatively small Japanese market.

Toyota’s commitment to relentless improvement enabled the company to

build cars faster, cheaper, and with higher quality than the competition.

Companies such as Toyota and Honda cut deeply into the US auto

manufacturing industry, which survived only by adopting their ideas and

methods. e Lean philosophy was initially adapted for software

development by Mary and Tom Poppendieck in their Lean Software

Development book series.

In this chapter, we discuss management practices derived from the

Lean movement and how they drive software delivery performance.

LEAN MANAGEMENT PRACTICES

In our research, we modeled Lean management and its application to

software delivery with three components (Figure 7.1 along with

lightweight change management, discussed later in this chapter):

1. Limiting work in progress (WIP), and using these limits to drive

process improvement and increase throughput

2. Creating and maintaining visual displays showing key quality and

productivity metrics and the current status of work (including

defects), making these visual displays available to both engineers

and leaders, and aligning these metrics with operational goals

3. Using data from application performance and infrastructure

monitoring tools to make business decisions on a daily basis

Figure 7.1: Components of Lean Management

e use of WIP limits and visual displays is well known in the Lean

community. ey are used to ensure that teams don’t become

overburdened (which may lead to longer lead times) and to expose

obstacles to �ow. What is most interesting is that WIP limits on their own

do not strongly predict delivery performance. It’s only when they’re

combined with the use of visual displays and have a feedback loop from

production monitoring tools back to delivery teams or the business that

we see a strong effect. When teams use these tools together, we see a much

stronger positive effect on software delivery performance.

It is also worth going into a bit more detail on what exactly we’re

measuring. In the case of WIP, we’re not just asking teams whether they

are good at limiting their WIP and have processes in place to do so. We’re

also asking if their WIP limits make obstacles to higher �ow visible, and if

teams remove these obstacles through process improvement, leading to

improved throughput. WIP limits are no good if they don’t lead to

improvements that increase �ow.

In the case of visual displays, we ask if visual displays or dashboards

are used to share information, and if teams use tools such as kanban or

storyboards to organize their work. We also ask whether information on

quality and productivity is readily available, if failures or defect rates are

shown publicly using visual displays, and how readily this information is

available. e central concepts here are the types of information being

displayed, how broadly it is being shared, and how easy it is to access.

Visibility, and the high-quality communication it enables, are key.

We hypothesized that in combination these practices increase delivery

performance—and indeed they do. In fact, they also have positive effects

on team culture and performance. As shown in Figure 7.2, these Lean

management practices both decrease burnout (which we discuss in

Chapter 9) and lead to a more generative culture (as described in

Westrum’s model in Chapter 3).

Figure 7.2: Impacts of Lean Management Practices

IMPLEMENT A LIGHTWEIGHT CHANGE

MANAGEMENT PROCESS

Every organization will have some kind of process for making changes to

their production environments. In a startup, this change management

process may be something as simple as calling over another developer to

review your code before pushing a change live. In large organizations, we

often see change management processes that take days or weeks, requiring

each change to be reviewed by a change advisory board (CAB) external to

the team in addition to team-level reviews, such as a formal code review

process.

We wanted to investigate the impact of change approval processes on

software delivery performance. us, we asked about four possible

scenarios:

1. All production changes must be approved by an external body

(such as a manager or CAB).

2. Only high-risk changes, such as database changes, require

approval.

3. We rely on peer review to manage changes.

4. We have no change approval process.

e results were surprising. We found that approval only for high-risk

changes was not correlated with software delivery performance. Teams

that reported no approval process or used peer review achieved higher

software delivery performance. Finally, teams that required approval by an

external body achieved lower performance.

We investigated further the case of approval by an external body to see

if this practice correlated with stability. We found that external approvals

were negatively correlated with lead time, deployment frequency, and

restore time, and had no correlation with change fail rate. In short,

approval by an external body (such as a manager or CAB) simply doesn’t

work to increase the stability of production systems, measured by the time

to restore service and change fail rate. However, it certainly slows things

down. It is, in fact, worse than having no change approval process at all.

Our recommendation based on these results is to use a lightweight

change approval process based on peer review, such as pair programming

or intrateam code review, combined with a deployment pipeline to detect

and reject bad changes. is process can be used for all kinds of changes,

including code, infrastructure, and database changes.

What About Segregation of Duties?

In regulated industries, segregation of duties is often required either

explicitly in the wording of the regulation (for instance, in the case of PCI

DSS) or by auditors. However, implementing this control does not

require the use of a CAB or separate operations team. ere are two

mechanisms which can be effectively used to satisfy both the letter and

the spirit of this control.

First, when any kind of change is committed, somebody who wasn’t

involved in authoring the change should review it either before or

immediately following commit to version control. is can be somebody

on the same team. is person should approve the change by recording

their approval in a system of record such as GitHub (by approving the

pull request) or a deployment pipeline tool (by approving a manual stage

immediately following commit).

Second, changes should only be applied to production using a fully

automated process that forms part of a deployment pipeline.1 at is, no

changes should be able to be made to production unless they have been

committed to version control, validated by the standard build and test

process, and then deployed through an automated process triggered

through a deployment pipeline. As a result of implementing a

deployment pipeline, auditors will have a complete record of which

changes have been applied to which environments, where they come

from in version control, what tests and validations have been run against

them, and who approved them and when. A deployment pipeline is, thus,

particularly valuable in the context of safety-critical or highly regulated

industries.

Logically, it’s clear why approval by external bodies is problematic.

After all, software systems are complex. Every developer has made a

seemingly innocuous change that took down part of the system. What are

the chances that an external body, not intimately familiar with the

internals of a system, can review tens of thousands of lines of code change

by potentially hundreds of engineers and accurately determine the impact

on a complex production system? is idea is a form of risk management

theater: we check boxes so that when something goes wrong, we can say

that at least we followed the process. At best, this process only introduces

time delays and handoffs.

We think that there’s a place for people outside teams to do effective

risk management around changes. However, this is more of a governance

role than actually inspecting changes. Such teams should be monitoring

delivery performance and helping teams improve it by implementing

practices that are known to increase stability, quality, and speed, such as

the continuous delivery and Lean management practices described in this

book.

1 For more on deployment pipelines, see https://continuousdelivery.com/implementing/patterns/.

https://continuousdelivery.com/implementing/patterns/

T

CHAPTER 8

PRODUCT DEVELOPMENT

he Agile brand has more or less won the methodology wars. However,

much of what has been implemented is faux Agile—people following some

of the common practices while failing to address wider organizational

culture and processes. For example, in larger companies it’s still common to

see months spent on budgeting, analysis, and requirements-gathering

before work starts; to see work batched into big projects with infrequent

releases; and for customer feedback to be treated as an afterthought. In

contrast, both Lean product development and the Lean startup movement

emphasize testing your product’s design and business model by performing

user research frequently, from the very beginning of the product lifecycle.

Eric Ries’ book e Lean Startup (Ries 2011) created a surge of interest

in lightweight approaches to exploring new business models and product

ideas in conditions of uncertainty. Ries’ work is a synthesis of ideas from

the Lean movement, design thinking, and the work of entrepreneur Steve

Blank (Blank 2013), which emphasizes the importance of taking an

experimental approach to product development. is approach, based on

our research, includes building and validating prototypes from the

beginning, working in small batches, and evolving or “pivoting” products

and the business models behind them early and often.

We wanted to test whether these practices have a direct impact on

organizational performance, measured in terms of productivity, market

share, and pro�tability.

LEAN PRODUCT DEVELOPMENT PRACTICES

We examined four capabilities which make up our model of a Lean

approach to product development (see also Figure 8.1).

1. e extent to which teams slice up products and features into small

batches that can be completed in less than a week and released

frequently, including the use of MVPs (minimum viable products).

2. Whether teams have a good understanding of the �ow of work

from the business all the way through to customers, and whether

they have visibility into this �ow, including the status of products

and features.

3. Whether organizations actively and regularly seek customer

feedback and incorporate this feedback into the design of their

products.

4. Whether development teams have the authority to create and

change speci�cations as part of the development process without

requiring approval.

Analysis showed that these factors were statistically signi�cant in

predicting higher software delivery performance and organizational

performance, as well as improving organizational culture and decreasing

burnout. By conducting our research over multiple years, we also found

that software delivery performance predicts Lean product management

practices. is reciprocal relationship, suggested by the literature, forms

what is known as a virtuous cycle. Improving your software delivery

effectiveness will improve your ability to work in small batches and

incorporate customer feedback along the way.

Figure 8.1: Components of Lean Product Management

Working in Small Batches

e key to working in small batches is to have work decomposed into

features that allow for rapid development, instead of complex features

developed on branches and released infrequently. is idea can be applied

at both the feature and the product level. An MVP is a prototype of a

product with just enough features to enable validated learning about the

product and its business model. Working in small batches enables short

lead times and faster feedback loops.

In software organizations, the capability to work and deliver in small

batches is especially important because it allows you to gather user

feedback quickly using techniques such as A/B testing. It’s worth noting

that an experimental approach to product development is highly

correlated with the technical practices that contribute to continuous

delivery.

Gathering customer feedback includes multiple practices: regularly

collecting customer satisfaction metrics, actively seeking customer insights

on the quality of products and features, and using this feedback to inform

the design of products and features. e extent to which teams actually

have the authority to respond to this feedback also turns out to be

important.

TEAM EXPERIMENTATION

Many development teams working in organizations that claim to be Agile

are nonetheless obliged to follow requirements created by different teams.

is restriction can create some real problems and can result in products

that don’t actually delight and engage customers and won’t deliver the

expected business results.

One of the points of Agile development is to seek input from customers

throughout the development process, including early stages. is allows the

development team to gather important information, which then informs

the next stages of development. But if a development team isn’t allowed,

without authorization from some outside body, to change requirements or

speci�cations in response to what they discover, their ability to innovate is

sharply inhibited.

Our analysis showed that the ability of teams to try out new ideas and

create and update speci�cations during the development process, without

requiring the approval of people outside the team, is an important factor in

predicting organizational performance as measured in terms of

pro�tability, productivity, and market share.

We’re not proposing that you set your developers free to work on

whatever ideas they like. To be effective, experimentation should be

combined with the other capabilities we measure here: working in small

batches, making the �ow of work through the delivery process visible to

everyone, and incorporating customer feedback into the design of

products. is ensures that your teams are making well-reasoned, informed

choices about the design, development, and delivery of work, and changing

it based on feedback. is also ensures that the informed decisions they

make are communicated throughout the organization. at increases the

probability that the ideas and features they build will deliver delight to

customers and add value to the organization.

EFFECTIVE PRODUCT MANAGEMENT DRIVES

PERFORMANCE

We conducted our analysis of Lean product management capabilities over

two years, from 2016-2017. In our �rst model, we saw that Lean product

management practices positively impact software delivery performance,

stimulate a generative culture, and decrease burnout.

In the following year, we �ipped the model and con�rmed that software

delivery performance drives Lean product management practices.

Improving your software delivery capability enables working in small

batches and performing user research along the way, leading to better

products. If we combine the models across years, it becomes a reciprocal

model or, colloquially, a virtuous cycle. We also found that Lean product

management practices predict organizational performance, measured in

terms of productivity, pro�tability, and market share. e virtuous cycle of

increased delivery performance and Lean product management practices

drives better outcomes for your organization (see Figure 8.2).

Figure 8.2: Impacts of Lean Product Management

In software organizations, the ability to work and deliver in small

batches is especially important because it enables teams to integrate user

research into product development and delivery. Furthermore, the ability

to take an experimental approach to product development is highly

correlated with the technical practices that contribute to continuous

delivery.

T

CHAPTER 9

MAKING WORK SUSTAINABLE

o ensure that software delivery performance is not achieved through

brute force or at the expense of the mental health of your team, our

project investigated both burnout on teams and how painful the

deployment process is. We measured these because we know they are

important issues in the technology industry that contribute to illness,

attrition, and millions of dollars of lost productivity.

DEPLOYMENT PAIN

e fear and anxiety that engineers and technical staff feel when they push

code into production can tell us a lot about a team’s software delivery

performance. We call this deployment pain, and it is important to measure

because it highlights the friction and disconnect that exist between the

activities used to develop and test software and the work done to maintain

and keep software operational. is is where development meets IT

operations, and it is where there is the greatest potential for differences: in

environment, in process and methodology, in mindset, and even in the

words teams use to describe the work they do.

Our experience in the �eld and our interactions over the years with

professionals building and deploying software kept highlighting the

importance and salience of deployment pain. Because of this, we wanted

to investigate deployment pain to see if it could be measured and, more

importantly, if it was affected by DevOps practices. We found that where

code deployments are most painful, you’ll �nd the poorest software

delivery performance, organizational performance, and culture.

e Benefits of Continuous Delivery at Microsoft

Microsoft engineering is one example of engineering teams feeling the

benefits of continuous delivery. iago Almeida is a Senior Software

Development Engineer Lead at Microsoft who drives cloud computing,

open source, and DevOps practices on the Azure team. He spoke about

the additional benefits of continuous delivery practices to his team,

saying, “You may think that all of the benefits [are] going to your

customers, but even inside of your company . . . [there are benefits].”1

Before implementing the technical practices and discipline of continuous

delivery on the Bing team, engineers reported work/life balance

satisfaction scores of just 38%. After implementing these technical

practices, the scores jumped to 75%. e difference is striking. It means

the technical staff were better able to manage their professional duties

during work hours, they didn’t have to do deployment processes

manually, and they were able to keep the stresses of work at work.

While deployment pain can be an indication that software

development and delivery is not sustainable in your organization, it is also

a concern when development and test teams have no idea what

deployments are like. If your teams have no visibility into code

deployments—that is, if you ask your teams what software deployments

are like and the answer is, “I don’t know . . . I’ve never thought about it!”—

that’s another warning that software delivery performance could be low,

because if developers or testers aren’t aware of the deployment process,

there are probably barriers hiding the work from them. And barriers that

hide the work of deployment from developers are rarely good, because

they isolate developers from the downstream consequences of their work.

We often have developers, and especially operations professionals, ask

us, “What can be done to relieve deployment pain and improve the work of

technical staff?” To answer this question, we included deployment pain in

our research in 2015, 2016, and 2017. Based on our own experiences in

software development and delivery and our time spent talking to people

working with systems, we created a measure to capture how people feel

when code is deployed. Measuring deployment pain ended up being

relatively straightforward: we asked respondents if deployments were

feared, disruptive in their work, or, in contrast, if they were easy and pain-

free.

Our research shows that improving key technical capabilities reduces

deployment pain: teams that implement comprehensive test and

deployment automation; use continuous integration, including trunk-

based development; shift left on security; effectively manage test data; use

loosely coupled architectures; can work independently; and use version

control of everything required to reproduce production environments

decrease their deployment pain.

Put another way, the technical practices that improve our ability to

deliver software with both speed and stability also reduce the stress and

anxiety associated with pushing code to production. ese technical

practices are outlined in Chapters 4 and 5.

Statistical analysis also revealed a high correlation between

deployment pain and key outcomes: the more painful code deployments

are, the poorer the IT performance, organizational performance, and

organizational culture.

How Painful Are Your Deployments?

If you want to know how your team is doing, just ask your team how

painful deployments are and what specific things are causing that pain.

In particular, be aware that if deployments have to be performed

outside of normal business hours, that’s a sign of architectural problems

that should be addressed. It’s entirely possible—given sufficient

investment—to build complex, large-scale distributed systems which

allow for fully automated deployments with zero downtime.

Fundamentally, most deployment problems are caused by a complex,

brittle deployment process. is is typically the result of three factors.

First, software is often not written with deployability in mind. A common

symptom here is when complex, orchestrated deployments are required

because the software expects its environment and dependencies to be set

up in a very particular way and does not tolerate any kind of deviation

from these expectations, giving little useful information to administrators

on what is wrong and why it is failing to operate correctly. (ese

characteristics also represent poor design for distributed systems.)

Second, the probability of a failed deployment rises substantially when

manual changes must be made to production environments as part of the

deployment process. Manual changes can easily lead to errors caused by

typing, copy/paste mistakes, or poor or out-of-date documentation.

Furthermore, environments whose con�guration is managed manually

often deviate substantially from each other (a problem known as

“con�guration drift”), leading to signi�cant amounts of work at deploy

time as operators debug to understand con�guration differences,

potentially making further manual changes that add to the problem.

Finally, complex deployments often require multiple handoffs between

teams, particularly in siloed organizations where database administrators,

network administrators, systems administrators, infosec, testing/QA, and

developers all work in separate teams.

In order to reduce deployment pain, we should:

Build systems that are designed to be deployed easily into multiple

environments, can detect and tolerate failures in their

environments, and can have various components of the system

updated independently

Ensure that the state of production systems can be reproduced

(with the exception of production data) in an automated fashion

from information in version control

Build intelligence into the application and the platform so that the

deployment process can be as simple as possible

Applications designed for a platform-as-a-service, such as Heroku,

Pivotal Cloud Foundry, Red Hat OpenShift, Google Cloud Platform,

Amazon Web Services, or Microsoft Azure, can typically be deployed using

a single command.2

Now that we’ve discussed deployment pain and covered some

strategies to counteract it, let’s move on to burnout. Deployment pain can

lead to burnout if left unchecked.

BURNOUT

Burnout is physical, mental, or emotional exhaustion caused by overwork

or stress—but it is more than just being overworked or stressed. Burnout

can make the things we once loved about our work and life seem

insigni�cant and dull. It often manifests itself as a feeling of helplessness,

and is correlated with pathological cultures and unproductive, wasteful

work.

e consequences of burnout are huge—for individuals and for their

teams and organizations. Research shows that stressful jobs can be as bad

for physical health as secondhand smoke (Goh et al. 2015) and obesity

(Chandola et al. 2006). Symptoms of burnout include feeling exhausted,

cynical, or ineffective; little or no sense of accomplishment in your work;

and feelings about your work negatively affecting other aspects of your

life. In extreme cases, burnout can lead to family issues, severe clinical

depression, and even suicide.

Job stress also affects employers, costing the US economy $300 billion

per year in sick time, long-term disability, and excessive job turnover

(Maslach 2014). us, employers have both a duty of care toward

employees and a �duciary obligation to ensure staff do not become burned

out.

Burnout can be prevented or reversed, and DevOps can help.

Organizations can �x the conditions that lead to burnout by fostering a

supportive work environment, by ensuring work is meaningful, and

ensuring employees understand how their own work ties to strategic

objectives.

As in other fast-paced, high-consequence work, software and

technology is plagued by employee burnout. Technology managers, like so

many other well-meaning managers, often try to �x the person while

ignoring the work environment, even though changing the environment is

far more vital for long-term success. Managers who want to avert

employee burnout should concentrate their attention and efforts on:

Fostering a respectful, supportive work environment that

emphasizes learning from failures rather than blaming

Communicating a strong sense of purpose

Investing in employee development

Asking employees what is preventing them from achieving their

objectives and then �xing those things

Giving employees time, space, and resources to experiment and

learn

Last but not least, employees must be given the authority to make

decisions that affect their work and their jobs, particularly in areas where

they are responsible for the outcomes.

COMMON PROBLEMS THAT CAN LEAD TO

BURNOUT

Christina Maslach, a professor of psychology at the University of

California at Berkeley and a pioneering researcher on job burnout, found

six organizational risk factors that predict burnout (Leiter and Maslach

2008):3

1. Work overload: job demands exceed human limits.

2. Lack of control: inability to in�uence decisions that affect your

job.

3. Insufficient rewards: insufficient �nancial, institutional, or social

rewards.

4. Breakdown of community: unsupportive workplace environment.

5. Absence of fairness: lack of fairness in decision-making processes.

6. Value con�icts: mismatch in organizational values and the

individual’s values.

Maslach found that most organizations try to �x the person and ignore

the work environment, even though her research shows that �xing the

environment has a higher likelihood of success. All of the risk factors

above are things that management and organizations have the power to

change. We also refer the reader to Chapter 11 for more on the importance

and impact of leadership and management in DevOps.

To measure burnout, we asked respondents:

If they felt burned out or exhausted. Many of us know what

burnout feels like, and we’re often exhausted by it.

If they felt indifferent or cynical about their work, or if they

felt ineffective. A classic hallmark of burnout is indifference and

cynicism, as well as feelings that your work is no longer helpful or

effective.

If their work was having a negative effect on their life.

When your work starts negatively impacting your life outside of

work, burnout has often set in.

Our research found that improving technical practices (such as those

that contribute to continuous delivery) and Lean practices (such as those

in Lean management and Lean product management) reduce feelings of

burnout among our survey respondents.

HOW TO REDUCE OR FIGHT BURNOUT

Our own research tells us which organizational factors are most strongly

correlated with high levels of burnout, and suggests where to look for

solutions. e �ve most highly correlated factors are:

1. Organizational culture. Strong feelings of burnout are found in

organizations with a pathological, power-oriented culture.

Managers are ultimately responsible for fostering a supportive and

respectful work environment, and they can do so by creating a

blame-free environment, striving to learn from failures, and

communicating a shared sense of purpose. Managers should also

watch for other contributing factors and remember that human

error is never the root cause of failure in systems.

2. Deployment pain. Complex, painful deployments that must be

performed outside of business hours contribute to high stress and

feelings of lack of control.4 With the right practices in place,

deployments don’t have to be painful events. Managers and

leaders should ask their teams how painful their deployments are

and �x the things that hurt the most.

3. Effectiveness of leaders. Responsibilities of a team leader

include limiting work in process and eliminating roadblocks for

the team so they can get their work done. It’s not surprising that

respondents with effective team leaders reported lower levels of

burnout.

4. Organizational investments in DevOps. Organizations that

invest in developing the skills and capabilities of their teams get

better outcomes. Investing in training and providing people with

the necessary support and resources (including time) to acquire

new skills are critical to the successful adoption of DevOps.

5. Organizational performance. Our data shows that Lean

management and continuous delivery practices help improve

software delivery performance, which in turn improves

organizational performance. At the heart of Lean management is

giving employees the necessary time and resources to improve

their own work. is means creating a work environment that

supports experimentation, failure, and learning, and allows

employees to make decisions that affect their jobs. is also means

creating space for employees to do new, creative, value-add work

during the work week—and not just expecting them to devote extra

time after hours. A good example of this is Google’s 20% time

policy, where the company allows employees 20% of their week to

work on new projects, or IBM’s “THINK Friday” program, where

Friday afternoons are designated for time without meetings and

employees are encouraged to work on new and exciting projects

they normally don’t have time for.

A point worth mentioning is the importance of values alignment and

its role in �ghting burnout. When organizational values and individual

values aren’t aligned, you are more likely to see burnout in employees,

particularly in demanding and high-risk work like technology. We have

seen this all too often, and the effects are unfortunate and widespread.

We think the opposite is more promising and actionable: when

organizational values and individual values are aligned, the effects of

burnout can be lessened and even counteracted. For example, if an

individual strongly values environmental causes, but the organization

dumps waste into nearby rivers and spends money to lobby their

government representatives to allow this to continue, there will be a lack

of alignment. is individual will likely be much happier working for an

organization with a strong commitment to corporate social responsibility

in green initiatives. is is an area of potential impact that organizations

neglect at their own peril. By aligning organizational values with

individual values, employee burnout can be reduced. Imagine the effects

on employee satisfaction, productivity, and retention. e potential value

to organizations and the economy is staggering.

It is important to note that the organizational values we mention here

are the real, actual, lived organizational values felt by employees. If the

organizational values felt by employees differ from the official values of

the organization—the mission statements printed on pieces of paper or

even on placards—it will be the everyday, lived values that count. If there

is a values mismatch— either between an employee and their

organization, or between the organization’s stated values and their actual

values—burnout will be a concern. When there is alignment, employees

will thrive.

In summary, our research found evidence that technical and Lean

management practices contributed to reductions in both burnout and

deployment pain. is is summarized in Figure 9.1. ese �ndings have

serious implications for technology organizations: not only do

investments in technology make our software development and delivery

better, they make the work lives of our professionals better.

Figure 9.1: Impacts of Technical and Lean Practices on Work Life

We have discussed the important components of organizational

culture and ways to both improve and measure it. We will now turn to

details of identity and employee satisfaction—and what it means for

technology transformations.

1 https://www.devopsdays.org/events/2016-london/program/thiago-almeida/.
2 One example of a set of architectural patterns that enable this kind of process can be found at

https://12factor.net/.
3 We note that there are other models of burnout in the literature as well; one notable example is

the work of Marie Asberg, senior professor in the Department of Clinical Sciences at the

Karolinska Institutet, Sweden. We focused on Maslach’s work in our research.
4 Note that postdeployment pain is also important to watch for. Broken systems that are constantly

paging your on-call staff after hours are disruptive and unhealthy.

https://www.devopsdays.org/events/2016-london/program/thiago-almeida/
https://12factor.net/

P

CHAPTER 10

EMPLOYEE SATISFACTION,

IDENTITY, AND ENGAGEMENT

eople are at the heart of every technology transformation. With

market pressures to deliver technology and solutions ever faster, the

importance of hiring, retaining, and engaging our workforce is greater than

ever. Every good manager knows this, but there is still a lack of information

on how to measure these outcomes and on what impacts them, particularly

in the context of technology transformations.

We wanted to include in our study the people affected by DevOps

adoptions—to see what could improve their work and if these

improvements had impacts on the organization. Our research found that

employee engagement and satisfaction are indicative of employee loyalty

and identity, can help reduce burnout, and can drive key organizational

outcomes like pro�tability, productivity, and market share. We also show

you how to measure these key employee factors so you can implement them

in your own teams—whether you’re a leader, manager, or an interested

practitioner.

In this chapter, we discuss employee loyalty (as measured by employee

Net Promoter Score and identity) and job satisfaction, and then close with a

discussion of diversity.

EMPLOYEE LOYALTY

To understand employee engagement in the context of technology

transformations and DevOps, we looked at it through the lens of a broadly

used benchmark of customer loyalty: Net Promoter Score (NPS).

High performers have better employee loyalty, as measured by

employee Net Promoter Score (eNPS). Our research found that employees

in high-performing organizations were 2.2 times more likely to recommend

their organization as a great place to work, and other studies have also

shown that this is correlated with better business outcomes (Azzarello et al.

2012).

MEASURING NPS

Net Promoter Score is calculated based on a single question: How likely is it

that you would recommend our company/product/service to a friend or

colleague?

Net Promoter Score is scored on a 0-10 scale, and is categorized as

follows:

Customers who give a score of 9 or 10 are considered promoters.

Promoters create greater value for the company because they tend

to buy more, cost less to acquire and retain, stay longer, and

generate positive word of mouth.

ose giving a score of 7 or 8 are passives. Passives are satis�ed, but

much less enthusiastic customers. ey are less likely to provide

referrals and more likely to defect if something better comes along.

ose giving a score from 0 to 6 are detractors. Detractors are more

expensive to acquire and retain, they defect faster, and can hurt the

business through negative word of mouth.

In our study, we asked two questions to capture the employee Net

Promoter Score:

1. Would you recommend your ORGANIZATION as a place to work to

a friend or colleague?

2. Would you recommend your TEAM as a place to work to a friend or

colleague?

We compared the proportion of promoters (those who scored 9 or 10)

in the high-performing group against those in the low-performing group.

We found that employees in high-performing teams were 2.2 times more

likely to recommend their organization to a friend as a great place to work,

and 1.8 times more likely to recommend their team to a friend.

is is a signi�cant �nding, as research has shown that “companies with

highly engaged workers grew revenues two and a half times as much as

those with low engagement levels. And [publicly traded] stocks of

companies with a high-trust work environment outperformed market

indexes by a factor of three from 1997 through 2011” (Azzarello et al.

2012).

Employee engagement is not just a feel-good metric—it drives business

outcomes. We found that the employee Net Promoter Score was

signi�cantly correlated with the following constructs:

e extent to which the organization collects customer feedback

and uses it to inform the design of products and features

e ability of teams to visualize and understand the �ow of

products or features through development all the way to the

customer

e extent to which employees identify with their organization’s

values and goals, and the effort they are willing to put in to make

the organization successful

As we demonstrated in Chapter 8, when employees see the connection

between the work they do and its positive impact on customers, they

identify more strongly with the company’s purpose, which leads to better

software delivery and organizational performance.

NPS Explained

While this may seem like a simplistic measure, research has shown that

NPS correlates to company growth in many industries (Reichheld 2003).

Similar to company NPS, employee Net Promoter Score (eNPS) is used to

measure employee loyalty.

ere’s a link between employees’ loyalty and their work: loyal

employees are the most engaged and do their best work, often going the

extra mile to deliver better customer experiences—which in turn drives

company performance.

NPS is calculated by subtracting the percentage of detractors from the

percentage of promoters. For example, if 40% of employees are detractors

and only 20% are promoters, the Net Promoter Score is -20%.

CHANGING ORGANIZATIONAL CULTURE AND

IDENTITY

People are an organization’s greatest asset—yet so often they’re treated like

expendable resources. When leaders invest in their people and enable them

to do their best work, employees identify more strongly with the

organization and are willing to go the extra mile to help it be successful. In

return, organizations get higher levels of performance and productivity,

which lead to better outcomes for the business. ese �ndings are shown in

Figure 10.1.

Figure 10.1: Impacts of Technical and Lean Practices on Identity

Effective management practices combined with technical approaches,

such as continuous delivery, don’t just impact performance, they also have

a measurable effect on organizational culture. As we continued our

research, we added a new measure: the extent to which survey respondents

identify with the organizations they work for. To measure this, we asked

people the extent to which they agreed with the following statements

(adapted from Kankanhalli et al. 2005):

I am glad I chose to work for this organization rather than another

company.

I talk of this organization to my friends as a great company to work

for.

I am willing to put in a great deal of effort beyond what is normally

expected to help my organization be successful.

I �nd that my values and my organization’s values are very similar.

In general, the people employed by my organization are working

toward the same goal.

I feel that my organization cares about me.

We used a Likert-type scale to measure agreement or disagreement with

these statements. e items met all statistical conditions for measuring a

construct (in this case, identity); therefore, to measure identity in your own

teams, you can average the �ve item scores together into a single score for a

person’s identity. (Refer to Chapter 13 for a discussion of psychometrics

and latent constructs.)

Our key hypothesis in asking these questions was that teams

implementing continuous delivery practices and taking an experimental

approach to product development will build better products, and will also

feel more connected to the rest of their organization. is, in turn, creates a

virtuous cycle: by creating higher levels of software delivery performance,

we increase the rate at which teams can validate their ideas, creating higher

levels of job satisfaction and organizational performance.

Another key point is that identity includes values alignment with the

goals of the team and organization. Recall from the previous chapter that

one of the key contributors to burnout is a mismatch of personal and

organizational values. What this tells us is that a sense of identity can help

reduce burnout by aligning personal and organizational values. erefore,

investments in continuous delivery and Lean management practices, which

contribute to a stronger sense of identity, may very well help reduce

burnout. Once again, this creates a virtuous circle of value creation in the

business where investments in technology and process that make the work

better for our people are essential for delivering value for our customers

and the business.

is is in contrast to the way many companies still work: requirements

are handed down to development teams who must then deliver large stacks

of work in batches. In this model, employees feel little control over the

products they build and the customer outcomes they create, and little

connection to the organizations they work for. is is immensely

demotivating for teams and leads to employees feeling emotionally

disconnected from their work— and to worse organizational outcomes.

e extent to which people identi�ed with their organization predicted

a generative, performance-oriented culture and also predicted

organizational performance, as measured in terms of productivity, market

share, and pro�tability. at shouldn’t surprise us. If people are a

company’s greatest asset—and many corporate leaders declare they are—

then having employees who strongly identify with the company should

prove a competitive advantage.

Adrian Cockcroft, Net�ix’s seminal cloud architect, was once asked by a

senior leader in a Fortune 500 company where he got his amazing people

from. Cockcroft replied, “I hired them from you!” (personal

communication). Our analysis is clear: in today’s fast-moving and

competitive world, the best thing you can do for your products, your

company, and your people is institute a culture of experimentation and

learning, and invest in the technical and management capabilities that

enable it. As Chapter 3 shows, a healthy organizational culture contributes

to hiring and retention, and the best, most innovative companies are

capitalizing on this.

HOW DOES JOB SATISFACTION IMPACT

ORGANIZATIONAL PERFORMANCE?

We mentioned the virtuous circle earlier in reference to software delivery

performance, and we see it at work here, too: people who feel supported by

their employers, who have the tools and resources to do their work, and

who feel their judgment is valued, turn out better work. Better work results

in higher software delivery performance, which results in a higher level of

organizational performance. We show these �ndings in Figure 10.2.

Figure 10.2: Impacts of Technical and Lean Practices on Job Satisfaction

is cycle of continuous improvement and learning is what sets

successful companies apart, enabling them to innovate, get ahead of the

competition—and win.

HOW DOES DEVOPS CONTRIBUTE TO JOB SATISFACTION?

Although DevOps is �rst and foremost about culture, it’s important to note

that job satisfaction depends strongly on having the right tools and

resources to do your work. In fact, our measure of job satisfaction looks at a

few key things: if you are satis�ed in your work, if you are given the tools

and resources to do your work, and if your job makes good use of your skills

and abilities. It’s important to call these out, because taken together, this is

what makes job satisfaction so impactful.

Tools are an important component of DevOps practices, and many of

these tools enable automation. Furthermore, we found that good DevOps

technical practices predict job satisfaction. Automation matters because it

gives over to computers the things computers are good at—rote tasks that

require no thinking and that in fact are done better when you don’t think

too much about them. Since humans are so bad at these kinds of tasks,

turning them over to computers allows people to focus on the things

they’re good at: weighing the evidence, thinking through problems, and

making decisions. Being able to apply one’s judgment and experience to

challenging problems is a big part of what makes people satis�ed with their

work.

Looking at the measures that correlate strongly with job satisfaction,

we see some commonalities. Practices like proactive monitoring and test

and deployment automation all automate menial tasks and require people

to make decisions based on a feedback loop. Instead of managing tasks,

people get to make decisions, employing their skills, experience, and

judgment.

DIVERSITY IN TECH-WHAT OUR RESEARCH

FOUND

Diversity matters. Research shows that teams with more diversity with

regard to gender or underrepresented minorities are smarter (Rock and

Grant 2016), achieve better team performance (Deloitte 2013), and achieve

better business outcomes (Hunt et al. 2015). Our research shows that few

teams are diverse in this regard. We recommend that teams wanting to

achieve high performance do their best to recruit and retain more women

and underrepresented minorities, and work to improve diversity in other

areas too, such as people with disabilities.

It is also important to note that diversity is not enough. Teams and

organizations must also be inclusive. An inclusive organization is one

where “all organizational members feel welcome and valued for who they

are and what they ’bring to the table.’ All stakeholders share a high sense of

belonging and ful�lled mutual purpose” (Smith and Lindsay 2014, p. 1).

Inclusion must be present in order for diversity to take hold.

WOMEN IN DEVOPS

We started asking questions about gender in 2015, which sparked some

lively discussion in social media on the topic of women in tech. We heard

everything from wholehearted support from many women and men in the

DevOps community to questions about why gender diversity in tech

matters. Of the total respondents, 5% self-identi�ed as female in 2015, 6%

in 2016, and 6.5% in 2017. ese numbers were much lower than we

expected, given that women made up about 7% in 2011 (SAGE 2012), down

from 13% in 2008 (SAGE 2008) in systems administration and 27% in

computer and information management (Diaz and King 2013). We were

hoping to �nd more reassuring numbers of women working on technical

teams.

Among survey respondents:

33% reported working on teams with no women.

56% reported working on teams that were less than 10% female.

81% reported working on teams that were less than 25% female.

Figure 10.3: Gender Demographics in 2017 Study

We started our research around binary gender because that allowed us

to compare our results with existing research. We hope to extend our work

into non-binary gender in the future. We can report basic statistics about

reported gender for the 2017 study (see also Figure 10.3):

91% Male

6% Female

3% Non-binary or other

UNDERREPRESENTED MINORITIES IN DEVOPS

Figure 10.4: Underrepresented Minority Demographics in 2017 Study

We also asked if respondents identi�ed as an underrepresented

minority (see also Figure 10.4).

77% responded no, I do not identify as underrepresented.

12% responded yes, I identify as underrepresented.

11% responded that they preferred not to respond or NA.

Because the data was collected around the world, this sel�denti�cation

was as speci�c as we could get. For example, the United States identi�es

and de�nes several ethnicities and nationalities as minority groups (e.g.,

African American, Hispanic, Paci�c Islander, etc.) that do not exist or would

not make sense as identi�ers in other countries around the world.

We have not extended our research into people with disabilities yet, but

hope to in the future.

WHAT OTHER RESEARCH TELLS US ABOUT DIVERSITY

Most research in diversity looks at binary gender, so let’s start there. What

does the current research tell us? ere’s plenty of research linking the

presence of women in leadership positions to higher �nancial performance

(McGregor 2014), stock market performance (Covert July 2014), and hedge

fund returns (Covert January 2014). Furthermore, a study conducted by

Anita Woolley and omas W. Malone measured group intelligence and

found that teams with more women tended to fall above average on the

collective intelligence scale (Woolley and Malone 2011). Despite all of these

clear advantages, organizations are failing to recruit and retain women in

technical �elds.

Since there are no signi�cant differences between men and women in

terms of ability or aptitude in STEM (science, technology, engineering, and

mathematics) �elds (Leslie et al. 2015), what’s keeping women and other

underrepresented groups out of tech?1 e answer could be nothing more

than the pervasive belief that some men are naturally more suited to

technical work because they possess innate brilliance (Leslie et al. 2015).

It is that pervasive belief that seeps into our culture, creating an

environment in which it is increasingly difficult for women to stay (Snyder

2014). Women are leaving tech at a 45% higher rate than men (Quora

2017), and the outlook for minorities is likely similar. Women and

underrepresented minorities report harassment, microaggressions, and

unequal pay (e.g., Mundy 2017). ese are all things we can actively watch

for and improve as leaders and peers.

WHAT WE CAN DO

It’s up to all of us to prioritize diversity and promote inclusive

environments. It’s good for your team and it’s good for the business. Here

are some resources to help you get started:

Anita Borg Institute has excellent tools for advancing women in

technology. It includes the Grace Hopper Conference. ough not

without its issues, it’s an empowering experience for many women

to be able to attend an all- or largely-women technical conference,

pulling over 18,000 women in 2017 alone.2

Geek Feminism is a great online resource for supporting women in

geek communities.3

Project Include is a fantastic resource to support diversity along

several axes, all online and open source.4

1 Note that Leslie et al.’s study only investigated women and African Americans, but the �ndings are

likely generalizable to other underrepresented minorities.
2 https://anitab.org/.

https://anitab.org/

3 http://geekfeminism.wikia.com/wiki/Geek_Feminism_Wiki.
4 http://projectinclude.org/.

http://geekfeminism.wikia.com/wiki/Geek_Feminism_Wiki
http://projectinclude.org/

O

CHAPTER 11

LEADERS AND MANAGERS

ver the years, our research has investigated the effects of various

technical and Lean management practices on software delivery

performance as well as team culture. However, in the early years of the

project, we hadn’t directly studied the effects of leadership on DevOps

practices.

is chapter will present our �ndings on the role of leaders and

managers in technology transformations, as well as outline some steps that

leaders can take to improve the culture in their own teams.

TRANSFORMATIONAL LEADERSHIP

Not sure of how important technology leadership is? Consider this: by

2020, half of the CIOs who have not transformed their teams’ capabilities

will be displaced from their organizations’ digital leadership teams

(Gartner).

at’s because leadership really does have a powerful impact on results.

Being a leader doesn’t mean you have people reporting to you on an

organizational chart—leadership is about inspiring and motivating those

around you. A good leader affects a team’s ability to deliver code, architect

good systems, and apply Lean principles to how the team manages its work

and develops products. All of these have a measurable impact on an

organization’s pro�tability, productivity, and market share. ese also have

an impact on customer satisfaction, efficiency, and the ability to achieve

organizational goals—noncommercial goals that are important for pro�t-

seeking and not-for-pro�t organizations alike. However, these effects on

organizational and noncommercial goals are all indirect, through the

technical and Lean practices that leaders support in their teams.

In our opinion, the role of leadership on technology transformation has

been one of the more overlooked topics in DevOps, despite the fact that

transformational leadership is essential for:

Establishing and supporting generative and high-trust cultural

norms

Creating technologies that enable developer productivity, reducing

code deployment lead times and supporting more reliable

infrastructures

Supporting team experimentation and innovation, and creating

and implementing better products faster

Working across organizational silos to achieve strategic alignment

Unfortunately, within the DevOps community we have sometimes been

guilty of maligning leadership—for example, when middle managers or

conservative holdouts prevent teams from making changes needed to

improve software delivery and organizational performance.

And yet, one of the most common questions we hear is, “How do we get

leaders on board, so we can make the necessary changes?” We all recognize

that engaged leadership is essential for successful DevOps transformations.

Leaders have the authority and budget to make the large-scale changes that

are often needed, to provide air cover when a transformation is underway,

and to change the incentives of entire groups of technical professionals—

whether they are in development, QA, operations, or information security.

Leaders are those who set the tone of the organization and reinforce the

desired cultural norms.

To capture transformational leadership, we used a model that includes

�ve dimensions (Rafferty and Griffin 2004). According to this model, the

�ve characteristics of a transformational leader are:

Vision. Has a clear understanding of where the organization is

going and where it should be in �ve years.

Inspirational communication. Communicates in a way that

inspires and motivates, even in an uncertain or changing

environment.

Intellectual stimulation. Challenges followers to think about

problems in new ways.

Supportive leadership. Demonstrates care and consideration of

followers’ personal needs and feelings.

Personal recognition. Praises and acknowledges achievement of

goals and improvements in work quality; personally compliments

others when they do outstanding work.

What Is Transformational Leadership?

Transformational leadership means leaders inspiring and motivating

followers to achieve higher performance by appealing to their values and

sense of purpose, facilitating wide-scale organizational change. Such

leaders encourage their teams to work toward a common goal through

their vision, values, communication, example-setting, and their evident

caring about their followers’ personal needs.

It has been observed that there are similarities between servant

leadership and transformational leadership, but they differ in the leader’s

focus. Servant leaders focus on their followers’ development and

performance, whereas transformational leaders focus on getting followers

to identify with the organization and engage in support of organizational

objectives.

We also selected transformational leadership as the model to use in

our research because it is more predictive of performance outcomes in

other contexts, and we were interested in understanding how to improve

performance in technology.

We measured transformational leadership using survey questions

adapted from Rafferty and Griffin (2004):1

My leader or manager:

(Vision)

Has a clear understanding of where we are going.

Has a clear sense of where he/she wants our team to be in �ve

years.

Has a clear idea of where the organization is going.

(Inspirational communication)

Says things that make employees proud to be a part of this

organization.

Says positive things about the work unit.

Encourages people to see changing environments as situations

full of opportunities.

(Intellectual stimulation)

Challenges me to think about old problems in new ways.

Has ideas that have forced me to rethink some things that I have

never questioned before.

–

–

–

–

–

–

–

–

Has challenged me to rethink some of my basic assumptions

about my work.

(Supportive leadership)

Considers my personal feelings before acting.

Behaves in a manner which is thoughtful of my personal needs.

Sees that the interests of employees are given due consideration.

(Personal recognition)

Commends me when I do a better than average job.

Acknowledges improvement in my quality of work.

Personally compliments me when I do outstanding work.

Our analysis found that these characteristics of transformational

leadership are highly correlated with software delivery performance. In

fact, we observed signi�cant differences in leadership characteristics among

high-, medium-, and low-performing teams. High-performing teams

reported having leaders with the strongest behaviors across all dimensions:

vision, inspirational communication, intellectual stimulation, supportive

leadership, and personal recognition. In contrast, low-performing teams

reported the lowest levels of these leadership characteristics. ese

differences were all at statistically signi�cant levels. When we take our

analysis one step further, we �nd that teams with the least transformative

leaders are far less likely to be high performers. Speci�cally, teams that

report leadership in the bottom one-third of leadership strength are only

half as likely to be high performers. is validates our common experience:

though we often hear stories of DevOps and technology transformation

success coming from the grassroots, it is far easier to achieve success when

you have leadership support.

We also found that transformational leadership is highly correlated

with employee Net Promoter Score. We �nd transformational leaders in

places where employees are happy, loyal, and engaged. Although our

–

–

–

–

–

–

–

research didn’t include measures of transformational leadership and

organizational culture in the same year, other studies have found that

strong transformational leaders build and support healthy team and

organizational cultures (Rafferty and Griffin 2004).

A transformational leader’s in�uence is seen through their support of

their teams’ work, be that in technical practices or product management

capabilities. e positive (or negative) in�uence of leadership �ows all the

way through to software delivery performance and organizational

performance. We show this in Figure 11.1.

Said another way, we found evidence that leaders alone cannot achieve

high DevOps outcomes. We looked at the performance of teams with the

strongest transformational leaders—those with the top 10% of reported

transformational leadership characteristics. One might think that these

teams would have better than average performance. However, these teams

were equally or even less likely to be high performers compared to the

entire population of teams represented in survey results.

is makes sense, because leaders cannot achieve goals on their own. ey

need their teams executing the work on a suitable architecture, with good

technical practices, use of Lean principles, and all the other factors that

we’ve studied over the years.

Figure 11.1: Impacts of Transformational Leadership on Technical and Lean Capabilities

In summary, we found that leadership helps build great teams, great

technology, and great organizations—but indirectly, leadership enables

teams to rearchitect their systems and implement the necessary continuous

delivery and Lean management practices.

Transformational leadership enables the practices that correlate with

high performance, and it also supports effective communication and

collaboration between team members in pursuit of organizational goals.

Such leadership also provides the foundation for a culture in which

continuous experimentation and learning is part of everybody’s daily work.

e behavior of transformational leaders thus enhances and enables the

values, processes, and practices that our research has identi�ed. It is not a

separate behavior or a new set of practices—it just ampli�es the

effectiveness of the technical and organizational practices we have been

studying over several years.

THE ROLE OF MANAGERS

We see that leaders play a critical role in any technology transformation.

When those leaders are managers, they may have an even bigger role in

affecting change.

Managers are those who have responsibility for people, and often

budgets and resources, in organizations. In the best case, managers are also

leaders and take on the characteristics of transformational leadership

outlined above.

Managers, in particular, play a critical role in connecting the strategic

objectives of the business to the work their teams do. Managers can do a lot

to improve their team’s performance by creating a work environment where

employees feel safe, investing in developing the capabilities of their people,

and removing obstacles to work.

We also found that investment in DevOps is highly correlated with

software delivery performance. When it comes to culture, managers can

improve matters by enabling speci�c DevOps practices in their teams and

by visibly investing in DevOps and in their employees’ professional

development.

Managers can also facilitate big improvements in software delivery

performance by taking measures to make deployments less painful. Last

but not least, managers should make performance metrics visible and take

pains to align these with organizational goals, and should delegate more

authority to their employees. Knowledge is power, and you should give

power to those who have the knowledge.

You may be asking yourself: What could investment in DevOps

initiatives and my teams look like? ere are a number of ways technology

leaders can invest in their teams:

Ensure that existing resources are made available and accessible to

everyone in the organization. Create space and opportunities for

learning and improving.

Establish a dedicated training budget and make sure people know

about it. Also, give your staff the latitude to choose training that

interests them. is training budget may include dedicated time

during the day to make use of resources that already exist in the

organization.

Encourage staff to attend technical conferences at least once a year

and summarize what they learned for the entire team.

Set up internal hack days, where cross-functional teams can get

together to work on a project.

Encourage teams to organize internal “yak days,” where teams get

together to work on technical debt. ese are great events because

technical debt is so rarely prioritized.

Hold regular internal DevOps mini-conferences. We’ve seen

organizations achieve success using the classic DevOpsDays format,

which combines pre-prepared talks with “open spaces” where

participants self-organize to propose and facilitate their own

sessions.

Give staff dedicated time, such as 20% time or several days after a

release, to experiment with new tools and technologies. Allocate

budget and infrastructure for special projects.

TIPS TO IMPROVE CULTURE AND SUPPORT

YOUR TEAMS

As the real value of a leader or manager is manifest in how they amplify the

work of their teams, perhaps the most valuable work they can do is growing

and supporting a strong organizational culture among those they serve:

their teams. is allows the experts that work with and for them to operate

at maximum effectiveness, creating value for the organization.

In this section, we list some easy ways managers, team leads, and even

engaged practitioners can support the culture in their teams. Our research

shows that three things are highly correlated with software delivery

performance and contribute to a strong team culture: cross-functional

collaboration, a climate for learning, and tools.

Enable cross-functional collaboration by:

Building trust with your counterparts on other teams.

Building trust between teams is the most important thing you can

do, and it must be built over time. Trust is built on kept promises,

open communication, and behaving predictably even in stressful

situations. Your teams will be able to work more effectively, and the

relationship will signal to the organization that cross-functional

collaboration is valued.

Encouraging practitioners to move between departments. An

admin or engineer may �nd as they build their skills that they’re

interested in a role in a different department. is sort of lateral

move can be incredibly valuable to both teams. Practitioners bring

valuable information about processes and challenges to their new

team, and members of the previous team have a natural point

person when reaching out to collaborate.

Actively seeking, encouraging, and rewarding work that

facilitates collaboration. Make sure success is reproducible and

pay attention to latent factors that make collaboration easier.

Use Disaster Recovery Testing Exercises to Build Relationships

Many large technology companies run disaster recovery testing exercises,

or “game days,” in which outages are simulated or actually created

according to a pre-prepared plan, and teams must work together to

maintain or restore service levels.

Kripa Krishnan, Director of Cloud Operations at Google, runs a team

that plans and executes these exercises. She reports, “For DiRT-style

events to be successful, an organization first needs to accept system and

process failures as a means of learning . . . We design tests that require

engineers from several groups who might not normally work together to

interact with each other. at way, should a real large-scale disaster ever

strike, these people will already have strong working relationships”

(ACMQueue 2012).

Help create a climate of learning by:

Creating a training budget and advocating for it internally.

Emphasize how much the organization values a climate of learning

by putting resources behind formal education opportunities.

Ensuring that your team has the resources to engage in

informal learning and the space to explore ideas. Learning

often happens outside of formal education. Some companies, like

3M and Google, have famously set aside a portion of time (15% and

20%, respectively) for focused free-thinking and exploration of side

projects.

Making it safe to fail. If failure is punished, people won’t try new

things. Treating failures as opportunities to learn and holding

blameless postmortems to work out how to improve processes and

systems helps people feel comfortable taking (reasonable) risks,

and helps create a culture of innovation.

Creating opportunities and spaces to share information.

Whether you create weekly lightning talks or offer resources for

monthly lunch-and-learns, set up a regular cadence of

opportunities for employees to share their knowledge.

Encourage sharing and innovation by having demo days and

forums. is allows teams to share what they have created with

each other. is also lets the teams celebrate their work and learn

from each other.

Make effective use of tools:

Make sure your team can choose their tools. Unless there’s a

good reason not to, practitioners should choose their own tools. If

they can build infrastructure and applications the way they want,

they’re much more likely to be invested in their work. is is backed

up in the data: one of the major contributors to job satisfaction is

whether employees feel they have the tools and resources to do

their job (see Chapter 10). We also see this in our data as one of the

predictors of continuous delivery: teams that are empowered to

choose their own tools drive software delivery performance (see

Chapter 5). If your organization must standardize tools, ensure

that procurement and �nance are acting in the interests of teams,

not the other way around.

Make monitoring a priority. Re�ne your infrastructure and

application monitoring system, and make sure you’re collecting

information on the right services and putting that information to

good use. e visibility and transparency yielded by effective

monitoring are invaluable. Proactive monitoring was strongly

related to performance and job satisfaction in our survey, and it is a

key part of a strong technical foundation (see Chapters 7 and 10).

While many DevOps success stories highlight the fantastic grassroots

efforts of the technical teams involved, our experience and our research

shows that technology transformations bene�t from truly engaged and

transformational leaders who can support and amplify the work of their

teams. is support carries through to deliver value to the business, so

organizations would be wise to see leadership development as an

investment in their teams, their technology, and their products.

1 Our analysis con�rmed these questions were good measures of transformational leadership. See

Chapter 13 for a discussion of latent constructs and Appendix C for the statistical methods used.

To establish what we presented in Part I, we had to go beyond

case studies and stories and into rigorous research methods.

This allowed us to identify the practices that are the strongest

predictors of success for all organizations of any size in any

industry.

In the first part of the book, we discussed the results of this

research program and outlined why technology is a key value

driver and di�erentiator for all organizations today. Now, we

present the science behind the research findings in Part I.

E

CHAPTER 12

THE SCIENCE BEHIND THIS

BOOK

very day, our news feeds are full of strategies designed to make our

lives easier, make us happier, and help us take over the world. We also hear

stories about how teams and organizations use different strategies to

transform their technology and win in the market. But how are we to know

which actions we take just happen to correspond to the changes we observe

in our environment and which actions are driving these changes? is is

where rigorous primary research comes into play. But what do we mean by

“rigorous” and “primary”?

PRIMARY AND SECONDARY RESEARCH

Research falls into two broad classes: primary and secondary research. e

key difference between these two types is who collects the data. Secondary

research utilizes data that was collected by someone else. Examples of

secondary research you are probably familiar with are book reports or

research reports we all completed in school or university: we collected

existing information, summarized it, and (hopefully) added in our own

insights about what was found. Common examples of this also include case

studies and some market research reports. Secondary research reports can

be valuable, particularly if the existing data is difficult to �nd, the summary

is particularly insightful, or the reports are delivered at regular intervals.

Secondary research is generally faster and less expensive to conduct, but

the data may not be well suited to the research team because they are

bound by whatever data already exists.

In contrast, primary research involves collecting new data by the

research team. An example of primary research includes the United States

Census. e research team collects new data every ten years to report on

demographic and population statistics for the country. Primary research is

valuable because it can report information that is not already known and

provide insights that are not available in existing datasets. Primary

research gives researchers more power and control over the questions they

can address, though it is generally more costly and time intensive to

conduct. is book and the State of DevOps Reports are based on primary

research.

QUALITATIVE AND QUANTITATIVE RESEARCH

Research can be qualitative or quantitative. Qualitative research is any kind

of research whose data isn’t in numerical form. is can include interviews,

blog posts, Twitter posts, long-form log data, and long-form observations

from ethnographers. Many people assume that survey research is

qualitative because it doesn’t come from computer systems, but that isn’t

necessarily true; it depends on the kinds of questions asked in the survey.

Qualitative data is very descriptive and can allow for more insights and

emergent behavior to be discovered by researchers, particularly in complex

or new areas. However, it is often more difficult and costly to analyze;

efforts to analyze qualitative data using automated means often codify the

data into a numerical format, making it quantitative.

Quantitative research is any kind of research with data that includes

numbers. ese can include system data (in numerical format) or stock

data. System data is any data generated from our tools; one example is log

data. It can also include survey data, if the survey asks questions that

capture responses in numerical format—preferably on a scale. e research

presented in this book is quantitative, because it was collected using a

Likert-type survey instrument.

What Is a Likert-Type Scale?

A Likert-type scale records responses and assigns them a number value.

For example, “Strongly disagree” would be given a value of 1, neutral a

value of 4, and “Strongly agree” a value of 7. is provides a consistent

approach to measurement across all research subjects, and provides a

numerical base for researchers to use in their analysis.

TYPES OF ANALYSIS

Quantitative research allows us to do statistical data analysis. According to

a framework presented by Dr. Jeffrey Leek at Johns Hopkins Bloomberg

School of Public Health (Leek 2013), there are six types of data analysis

(given below in the order of increasing complexity). is complexity is due

to the knowledge required by the data scientist, the costs involved in the

analysis, and the time required to perform the analysis. ese levels of

analysis are:

1. Descriptive

2. Exploratory

3. Inferential predictive

4. Predictive

5. Causal

6. Mechanistic

e analyses presented in this book fall into the �rst three categories of

Dr. Leek’s framework. We also describe an additional type of analysis,

classi�cation, which doesn’t �t cleanly into the above framework.

DESCRIPTIVE ANALYSIS

Descriptive analysis is used in census reports. e data is summarized and

reported—that is, described. is type of analysis takes the least amount of

effort, and is often done as the �rst step of data analysis to help the

research team understand their dataset (and, by extension, their sample

and possibly population of users). In some cases, a report will stop at

descriptive analysis, as in the case of population census reports.

What Is a Population and Sample, and Why Are ey Important?

When talking about statistics and data analysis, the terms “population”

and “sample” have special meanings. e population is the entire group of

something you are interested in researching; this might be all of the

people undergoing technology transformations, everyone who is a Site

Reliability Engineer at an organization, or even every line in a log file

during a certain time period. A sample is a portion of that population that

is carefully defined and selected. e sample is the dataset on which

researchers perform their analyses. Sampling is used when the entire

population is too big or not easily accessible for research. Careful and

appropriate sampling methods are important to make sure the

conclusions drawn from analyzing the sample are true for the population.

e most common example of descriptive analysis is the government

census where population statistics are summarized and reported. Other

examples include most vendor and analyst reports that collect data and

report summary and aggregate statistics about the state of tool usage in an

industry or the level of education and certi�cation among technology

professionals. e percentage of �rms that have started their Agile or

DevOps journeys as reported by Forrester (Klavens et al. 2017), the IDC

report on average downtime cost (Elliot 2014), and the O’Reilly Data

Science Salary Survey (King and Magoulas 2016) belong in this category.

ese reports are very useful as a gauge of the current state of the

industry, where reference groups (such as populations or industries)

currently are, where they once were, and where the trends are pointing.

However, descriptive �ndings are only as good as the underlying research

design and data collection methods. Any reports that aim to represent the

underlying population must be sure to sample that population carefully and

discuss any limitations. A discussion of these considerations is beyond the

scope of this book.

An example of descriptive analysis found in this book is the

demographic information about our survey participants and the

organizations they work in—what countries they come from, how large

their organizations are, the industry vertical they work in, their job titles,

and their gender (see Chapter 10).

EXPLORATORY ANALYSIS

Exploratory analysis is the next level of statistical analysis. is is a broad

categorization that looks for relationships among the data and may include

visualizations to identify patterns in the data. Outliers may also be

detected in this step, though the researchers have to be careful to make

sure that outliers are, in fact, outliers, and not legitimate members of the

group.

Exploratory analyses are a fun and exciting part of the research process.

For those who are divergent thinkers, this is often the stage where new

ideas, new hypotheses, and new research projects are generated and

proposed. Here, we discover how the variables in our data are related and

we look for possible new connections and relationships. However, this

should not be the end for a team that wants to make statements about

prediction or causation.

Many people have heard the phrase “correlation doesn’t imply

causation,” but what does that mean? e analyses done in the exploratory

stage include correlation but not causation. Correlation looks at how

closely two variables move together—or don’t—but it doesn’t tell us if one

variable’s movement predicts or causes the movement in another variable.

Correlation analysis only tells us if two variables move in tandem or in

opposition; it doesn’t tell us why or what is causing it. Two variables

moving together can always be due to a third variable or, sometimes, just

chance.

A fantastic and fun set of examples that highlight high correlations due

to chance can be found at the website Spurious Correlations.1 e author

Tyler Vigen has calculated examples of highly correlated variables that

common sense tells us are not predictive and certainly not causal. For

example, he shows (Figure 12.1) that the per capita cheese consumption is

highly correlated with the number of people who died by becoming tangled

in their bedsheets (with a correlation of 94.71% or r = 0.9471; see footnote

2 on correlations in this chapter). Surely cheese consumption doesn’t cause

strangulation by bedsheets. (And if it does—what kind of cheese?) It would

be just as difficult to imagine strangulation by bedsheets causing cheese

consumption—unless that is the food of choice at funerals and wakes

around the country. (And again: What kind of cheese? at is a morbid

marketing opportunity.) And yet, when we go “�shing in the data,” our

minds �ll in the story because our datasets are related and so often make

sense. is is why it is so important to remember that correlation is only

the exploratory stage: we can report correlations, and then we move on to

more complex analyses.

Figure 12.1: Spurious Correlation: Per Capita Cheese Consumption and Strangulation by Bedsheets

ere are several examples of correlations that are reported in our

research and in this book, because we know the importance and value of

understanding how things in our environment interrelate. In all cases, we

reported Pearson correlations,2 which is the correlation type most often

used in business contexts today.

INFERENTIAL PREDICTIVE ANALYSIS

e third level of analysis, inferential, is one of the most common types

conducted in business and technology research today. It is also called

inferential predictive, and it helps us understand impacts of HR policies,

organizational behavior and motivation, and how technology impacts

outcomes like user satisfaction, team efficiency, and organizational

performance. Inferential design is used when purely experimental design is

not possible and �eld experiments are preferred—for example, in business,

when data collection happens in complex organizations, not in sterile lab

environments, and companies won’t sacri�ce pro�ts to �t into control

groups de�ned by the research team.

To avoid problems with “�shing for data” and �nding spurious

correlations, hypotheses are theory driven. is type of analysis is the �rst

step in the scienti�c method. Many of us are familiar with the scienti�c

method: state a hypothesis and then test it. In this level of analysis, the

hypothesis must be based on a well-developed and well-supported theory.

Whenever we talk about impacting or driving results in this book, our

research design utilized this third type of analysis. While some suggest that

using a theory-based design opens us up to con�rmation bias, this is how

science is done. Well, wait—almost. Science isn’t done by simply con�rming

what the research team is looking for. Science is done by stating

hypotheses, designing research to test those hypotheses, collecting data,

and then testing the stated hypotheses. e more evidence we �nd to

support a hypothesis, the more con�dence we have for it. is process also

helps to avoid the dangers that come from �shing for data—�nding the

spurious correlations that might randomly exist but have no real reason or

explanation beyond chance.

Examples of hypotheses tested with inferential analysis in our project

include continuous delivery and architecture practices driving software

delivery performance, software delivery positively affecting organizational

performance, and organizational culture having a positive impact on both

software delivery and organizational performance. In these cases, the

statistical methods used were either multiple linear regression or partial

least squares regression. ese methods are described in more detail in

Appendix C.

PREDICTIVE, CAUSAL, AND MECHANISTIC ANALYSIS

e �nal levels of analysis were not included in our research, because we did

not have the data necessary for this kind of work. We will brie�y

summarize them here for the sake of completeness and to appease your

curiosity.

Predictive analysis is used to predict, or forecast, future events

based on previous events. Common examples include cost or

utilities predictions in business. Prediction is very hard, particularly

as you try to look farther away into the future. is analysis

generally requires historical data.

Causal analysis is considered the gold standard, but is more difficult

than predictive analysis and is the most difficult analysis to conduct

for most business and technology situations. is type of analysis

generally requires randomized studies. A common type of casual

analysis done in business is A/B testing in prototyping or websites,

when randomized data can be collected and analyzed.

Mechanistic analysis requires the most effort of all methods and is

rarely seen in business. In this analysis, practitioners calculate the

exact changes to make to variables to cause exact behaviors that will

be observed under certain conditions. is is seen most often in the

physical sciences or in engineering, and is not suitable for complex

systems.

CLASSIFICATION ANALYSIS

Another type of analysis is classi�cation, or clustering, analysis. Depending

on the context, research design, and the analysis methods used,

classi�cation may be considered an exploratory, predictive, or even causal

analysis. We use classi�cation in this book when we talk about our high-,

medium-, and low-performance software delivery teams. is may be

familiar to you in other contexts when you hear about customer pro�les or

market basket analysis. At a high level, the process works like this:

classi�cation variables are entered into the clustering algorithm and

signi�cant groups are identi�ed.

In our research, we applied this statistical method using the tempo and

stability variables to help us understand and identify if there were

differences in how teams were developing and delivering software, and

what those differences looked like. Here is what we did: we put our four

technology performance variables— deployment frequency, lead time for

changes, mean time to repair, and change fail rate—into the clustering

algorithm, and looked to see what groups emerged. We see distinct,

statistically signi�cant differences, where high performers do signi�cantly

better on all four measures, low performers perform signi�cantly worse on

all four measures, and medium performers are signi�cantly better than low

performers but signi�cantly worse than high performers. For more detail,

see Chapter 2.

What Is Clustering?

For those armchair (or professional) statisticians who are interested, we

used hierarchical clustering. We chose this over k-means clustering for a

few reasons. First, we didn’t have any theoretical or other ideas about how

many groups to expect prior to the analysis. Second, hierarchical

clustering allowed us to investigate parent-child relationships in the

emerging clusters, giving us greater interpretability. Finally, we didn’t have

a huge dataset, so computational power and speed wasn’t a concern.

THE RESEARCH IN THIS BOOK

e research presented in this book covers a four-year time period, and was

conducted by the authors. Because it is primary research, it is uniquely

suited to address the research questions we had in mind—speci�cally, what

capabilities drive software delivery performance and organizational

performance? is project was based on quantitative survey data, allowing

us to do statistical analyses to test our hypotheses and uncover insights

into the factors that drive software delivery performance.

In the next chapters, we discuss the steps we took to ensure the data we

collected from our surveys was good and reliable. en, we look into why

surveys may be a preferred source of data for measurement—both in a

research project like ours and in your own systems.

1 http://www.tylervigen.com/spurious-correlations.
2 Pearson correlations measure the strength of a linear relationship between two variables, called

Pearson’s r. It is often referred to as just correlation and takes a value between -1 and 1. If two

http://www.tylervigen.com/spurious-correlations

variables have a perfect linear correlation, that is they move together exactly, r = 1. If they move in

exactly opposite directions, r = -1. If they are not correlated at all, r = 0.

T

CHAPTER 13

INTRODUCTION TO

PSYCHOMETRICS

he two most common questions we get about our research are why we

use surveys in our research (a question we will address in detail in the next

chapter) and if we are sure we can trust data collected with surveys (as

opposed to data that is systemgenerated). is is often fueled by doubts

about the quality of our underlying data—and therefore, the

trustworthiness of our results.

Skepticism about good data is valid, so let’s start here: How much can

you trust data that comes from a survey? Much of this concern comes

from the types of surveys that many of us are exposed to: push polls (also

known as propaganda surveys), quick surveys, and surveys written by

those without proper research training.

Push polls are those with a clear and obvious agenda—their questions

are difficult to answer honestly unless you already agree with the

“researcher’s” point of view. Examples are often seen in politics. For

example, President Trump released his Mainstream Media Accountability

Survey in February 2017, and the public quickly reacted with concern. Just

a few highlights from the survey underscore concerns with the questions

and their ability to gather data in a clear, unbiased way:

1. “Do you believe that the mainstream media has reported unfairly

on our movement?” is was the �rst question in the survey and is

subtle, but it sets the tone for the rest of the survey. By using the

term “our movement,” it invites the survey respondent into an us

vs. them stance. “Mainstream media” is also a negatively charged

term in this political cycle.

2. “Were you aware that a poll was released revealing that a majority

of Americans actually supported President Trump’s temporary

restriction executive order?” is question is a clear example of

push polling, where the question tries to give the survey

respondent information rather than ask for their opinion or their

perceptions about what is happening. e question also uses a

psychological tactic, suggesting that “a majority of Americans”

support the temporary restraining order, appealing to the reader’s

desire to belong to the group.

3. “Do you agree with President Trump’s media strategy to cut

through the media’s noise and deliver our message straight to the

people?” is question includes strong, polarizing language,

characterizing all media as “noise”—a negative connotation in this

political climate.

We can see in this example why people could be so skeptical of surveys.

If this is your only exposure to them, of course they can’t be trusted! No

data from any of these questions can reliably tell what a person’s

perceptions or opinions are.

Even without an obvious example like push polling, bad surveys are

found all over. Most often, they are the result of well-intentioned but

untrained survey writers, hoping to gain some insight into their

customers’ or employees’ opinions. Common weaknesses are:

Leading questions. Survey questions should let the respondent

answer without biasing them in a direction. For example, “How

would you describe Napoleon’s height?” is better than “Was

Napoleon short?”

Loaded questions. Questions should not force respondents into

an answer that isn’t true for them. For example, “Where did you

take your certi�cation exam?” doesn’t allow for the possibility that

they didn’t take a certi�cation exam.

Multiple questions in one. Questions should only ask one thing.

For example, “Are you noti�ed of failures by your customers and

the NOC?” doesn’t tell you which part of the question your

respondent was answering for. Customers? the NOC? Both? Or if

no, neither?

Unclear language. Survey questions should use language that

your respondents are familiar with, and should clarify and provide

examples when necessary.

A potential weakness of many survey questions used in business is

that only a single question is used to collect data. Sometimes called “quick

surveys,” they are used quite often in marketing and business research.

ese can be useful if they are based on well-written and carefully

understood questions. However, it is important that only narrow

conclusions are drawn from these types of surveys. An example of a good

quick survey is the Net Promoter Score (NPS). It has been carefully

developed and studied, is well-understood, and its use and applicability are

well-documented. Although better statistical measures of user and

employee satisfaction exist, for example ones that use more questions

(e.g., East et al. 2008), a single measure is often easier to get from your

audience. Additionally, a bene�t of NPS is that it has become an industry

standard and is therefore easy to compare across teams and companies.

TRUSTING DATA WITH LATENT CONSTRUCTS

With all of these things to watch out for, how can we trust the data

reported in survey measures? How can we be sure that someone lying on

their survey won’t skew the results? Our research uses latent constructs

and statistical analyses to report good data— or at least provide a

reasonable assurance that data is telling us what we think it’s telling us.

A latent construct is a way of measuring something that can’t be

measured directly. We can ask for the temperature of a room or the

response time of a website—these things we can measure directly.

A good example of something that can’t be measured directly is

organizational culture. We can’t take a team’s or an organization’s

organizational culture “temperature”—we need to measure culture by

measuring its component parts (called manifest variables), and we

measure these component parts through survey questions. at is, when

you describe organizational culture of a team to someone, you probably

include a handful of characteristics. ose characteristics are the

component parts of organizational culture. We would measure each (as

manifest variables), and together they would represent a team’s

organizational culture (the latent construct). And using survey questions

to capture this data is appropriate, since culture is the lived experiences of

those working on a team.

When working with latent constructs—or anything we want to

measure in research—it is important to start with a clear de�nition and

understanding of what it is we want to measure. In this case, we need to

decide what we mean by “organizational culture.” As we discuss in Chapter

3, the organizational culture that interested us was one that optimized

trust and information �ow. We referenced the typology proposed by Dr.

Ron Westrum (2004), shown in Table 13.1.

Table 13.1 Westrum’s Typology of Organizational Culture

Pathological (Power-Oriented) Bureaucratic (Rule-Oriented) Generative (Performance-Oriented)

Low cooperation Modest cooperation High cooperation

Messengers “shot” Messengers neglected Messengers trained

Responsibilities shirked Narrow responsibilities Risks are shared

Bridging discouraged Bridging tolerated Bridging encouraged

Failure leads to scapegoating Failure leads to justice Failure leads to enquiry

Novelty crushed Novelty leads to problems Novelty implemented

Once we have the construct identi�ed, we write the survey questions.

Clearly, the concept of organizational culture proposed by Dr. Westrum

can’t be captured in just a single question; organizational culture is a

multifaceted idea. Asking someone “How is your organizational culture?”

runs the risk of the question being understood differently by different

people. By using latent constructs, we can ask one question for each aspect

of the underlying idea. If we de�ne the construct and write the items well,

it works, conceptually, like a Venn diagram, with each survey question

capturing a related aspect of the underlying concept.

After collecting the data, we can use statistical methods to verify that

the measures do, in fact, re�ect the core underlying concept. Once this is

done, we can combine these measures to come up with a single number. In

this example, the combination of the survey questions for each aspect of

organizational culture becomes our measure for the concept. By averaging

our scores on each item, we get an “organizational culture temperature” of

sorts.

e bene�t of latent constructs is that by using several measures

(called manifest variables—the pieces of the latent variable that can be

measured) to capture the underlying concept, you help shield yourself

against bad measures and bad actors. How? is works in several ways,

which are applicable to using system data to measure your system

performance as well:

1. Latent constructs help us think carefully about what we want to

measure and how we de�ne our constructs.

2. ey give us several views into the behavior and performance of

the system we are observing, helping us eliminate rogue data.

3. ey make it more difficult for a single bad data source (whether

through misunderstanding or a bad actor) to skew our results.

LATENT CONSTRUCTS HELP US THINK CAREFULLY ABOUT WHAT

WE’RE MEASURING

e �rst way that latent constructs help us avoid bad data is by helping us

think carefully about what we want to measure and how we are de�ning

our constructs. Taking time to think through this process can help us

avoid bad measurements. Take a step back and think about what it is you

are trying to measure and how you will measure, or proxy, it. Let’s revisit

our example of measuring culture.

We often hear that culture is important in technology

transformations, so we want to measure it. Should we simply ask our

employees and peers, “Is your culture good?” or “Do you like your team’s

culture?” And if they answered yes (or no), what would that even mean?

What, exactly, would that tell us?

In the �rst question, what do we mean by culture, and how did the

respondent interpret it? Which culture are we talking about: Your team’s

culture or your organization’s culture? If we really are talking about a

workplace culture, what aspects of this work culture are we referring to?

Or are we really more interested in your national identity and culture?

Assuming everyone understood the culture half of the question, what is

good? Does good mean trusting? Fun? Or something else entirely? Is it

even possible for a culture to be entirely good or entirely bad?

e second question is a bit better because we do specify that we’re

asking about culture at the team level. However, we still don’t give the

reader any idea of what we mean by “culture,” so we can get data re�ecting

very different ideas of what team culture is. Another concern here is that

we ask if the person likes their team culture. What does it mean to like a

culture?

is may seem like an extreme example, but we see people make such

mistakes all the time (although not you, dear reader). By taking a step back

to think carefully about what you want to measure and by really de�ning

what we mean by culture, we can get better data. When we hear that

culture is important in technology transformations, we refer to a culture

that has high trust, fosters information �ow, builds bridges across teams,

encourages novelty, and shares risks. With this de�nition of team and

organizational culture in mind, we can see why the typology presented by

Dr. Westrum was such a good �t for our research.

LATENT CONSTRUCTS GIVE US SEVERAL VIEWS INTO OUR DATA

e second way latent constructs help us avoid bad data is by giving us

several views into the behavior and performance of the system we are

observing. is lets us identify any rogue measures that would otherwise

go undetected if they were the only measure we had to capture the

behavior of the system.

Let’s revisit the case of measuring organizational culture. To begin

measuring this construct, we �rst proposed several aspects of

organizational culture based on Dr. Westrum’s de�nition. From these

aspects, we wrote several items.1 We will talk about writing good survey

items and checking them for quality in more detail later in the chapter.

Once we collect the data, we can run several statistical tests to make

sure that those items do, in fact, all measure the same underlying concept

—the latent construct. ese tests check for:

Discriminant validity: tests to make sure that items that are not

supposed to be related are actually unrelated (e.g., make sure that

items that we believe are not capturing organizational culture are

not, in fact, related to organizational culture).

Convergent validity: tests to make sure that items that are

supposed to be related are actually related (e.g., if items are

supposed to measure organizational culture, then they do measure

organizational culture).

In addition to validity tests, reliability tests are conducted for our

measures. is provides assurance that the items are read and interpreted

similarly by those who take the survey. is is also referred to as internal

consistency.

Taken together, validity and reliability statistical tests con�rm our

measures. ey come before any analysis.

In the case of Westrum organizational culture, we have seven items

that capture a team’s organizational culture:

On my team . . .

Information is actively sought.

Messengers are not punished when they deliver news of failures or

other bad news.

Responsibilities are shared.

Cross-functional collaboration is encouraged and rewarded.

Failure causes inquiry.

New ideas are welcomed.

Failures are treated primarily as opportunities to improve the

system.

Using a scale from “1 = Strongly disagree” to “7 = Strongly agree,”

teams can quickly and easily measure their organizational culture.

ese items have been tested and found to be statistically valid and

reliable. at is, they measure the things they are intended to measure,

and people generally read and interpret them consistently. You’ll also

notice that we asked these items for a team and not for an organization.

We made this decision when creating the survey items—as a departure

from Westrum’s original frame-work—because organizations can be very

large and can have pockets of different organizational cultures. In

addition, people can answer more accurately for their team than for their

organization. is helps us collect better measures.

LATENT CONSTRUCTS HELP SAFEGUARD AGAINST ROGUE DATA

is deserves a slight clari�cation. Latent constructs that are periodically

retested with statistics and exhibit good psychometric properties help us

safeguard against rogue data.

What? Let us explain.

In the previous section, we talked about validity and reliability—

statistical tests we can do to make sure the survey items that measure a

latent construct belong together. When our constructs pass all of these

statistical tests, we say they “exhibit good psychometric properties.” It’s a

good idea to reassess these periodically to make sure nothing has changed,

especially if you suspect a change in the system or environment.

In the organizational culture example, all of the items are good

measures of the construct. Here is another example of a construct where

tests highlighted opportunities to improve our measure. In this case, we

were interested in examining failure noti�cation. e items were:

We are primarily noti�ed of failures by reports from customers.

We are primarily noti�ed of failures by the NOC.

We get failure alerts from logging and monitoring systems.

We monitor system health based on threshold warnings (ex. CPU

exceeds 90%).

We monitor system health based on rate-of-change warnings (ex.

CPU usage has increased by 25% over the last 10 minutes).

In preliminary survey design, we pilot-tested the construct with about

20 technical professionals and the items loaded together (that is, they

measured the same underlying construct). However, when we completed

our �nal, larger data collection, we did tests to con�rm the construct. In

these �nal tests, we found that these items actually measured two

different things. at is, when we ran our statistical tests, they did not

con�rm a single construct, but instead revealed two constructs. e �rst

two items measure one construct, which appears to capture “noti�cations

that come from outside of automated processes”:

We are primarily noti�ed of failures by reports from customers.

We are primarily noti�ed of failures by the NOC.

e second set of items capture another construct—“noti�cations that

come from systems” or “proactive failure noti�cation”:

We get failure alerts from logging and monitoring systems.

We monitor system health based on threshold warnings (ex. CPU

exceeds 90%).

We monitor system health based on rate-of-change warnings (ex.

CPU usage has increased by 25% over the last 10 minutes).

If we had only asked our survey respondents if they monitor for

failures with a single survey question, we would not be aware of the

importance of capturing where these noti�cations come from.

Furthermore, if one of these noti�cation sources alters its behavior, our

statistical tests will catch it and alert us. e same concept can apply to

system data. We can use multiple measures from our systems to capture

system behavior, and these measures can pass our validity checks.

However, we should continue to do periodic checks on these measures

because they can change.

Our research found that this second construct, proactive failure

noti�cation, is a technical capability that is predictive of software delivery

performance.

HOW LATENT CONSTRUCTS CAN BE USED FOR SYSTEM DATA

Some of these ideas about latent constructs extend to system data as well:

ey help us avoid bad data by using several measures to look for similar

patterns of behavior, and they help us think through what it is we are

really trying to proxy. For example, let’s say we want to measure system

performance. We can simply collect response time of some aspect of the

system. To look for similar patterns in the data, we can collect several

pieces of data from our system that can help us understand its response

time. To think about what we are truly trying to measure—performance—

we can consider various aspects of performance, and how else it might be

re�ected in system metrics. We might realize that we are interested in a

conceptual measure of system performance which is difficult to measure

directly and is better captured through several related measures.

ere is one important note to make here: all measures are proxies.

at is, they represent an idea to us, even if we don’t acknowledge it

consciously. is is just as true of system data as it is of survey data. For

example, we may use response time as a proxy for performance of our

system.

If only one of the data points is used as the barometer and that one

data point is bad—or goes bad—we won’t know it. For example, a change

to source code that collects metrics can affect one measure; if only that

single measure is collected, the likelihood of us catching the change is low.

However, if we collect several metrics, this change in behavior has a better

chance of being detected. Latent constructs give us one mechanism to

protect ourselves against bad measures or bad agents. is is true in both

surveys and system data.

1 ese are commonly referred to as survey questions. However, they aren’t actually questions;

instead, they are statements. We will refer to them as survey items in this book.

N

CHAPTER 14

WHY USE A SURVEY

ow that we know our survey data can be trusted—that is, we have a

reasonable assurance that data from our well-designed and well-tested

psychometric survey constructs is telling us what we think it’s telling us—

why would we use a survey? And why should anyone else use a survey?

Teams wanting to understand the performance of their software delivery

process often begin by instrumenting their delivery process and toolchain

to obtain data (we call data gathered in this way “system data” throughout

this book). Indeed, several tools on the market now offer analysis on items

such as lead time. Why would someone want to collect data from surveys

and not just from your toolchain?

ere are several reasons to use survey data. We’ll brie�y present some

of these in this chapter.

1. Surveys allow you to collect and analyze data quickly.

2. Measuring the full stack with system data is difficult.

3. Measuring completely with system data is difficult.

4. You can trust survey data.

5. Some things can only be measured through surveys.

SURVEYS ALLOW YOU TO COLLECT AND

ANALYZE DATA QUICKLY

Often, the strongest reason to use surveys is speed and ease of data

collection. is is particularly true for new or one-time data collection

efforts, or for data collection that spans or crosses organizational

boundaries. e research that appears in this book was collected four

different times.

Each time, we gathered data over a four-to six-week period, from

around the world, and from thousands of survey respondents representing

thousands of organizations. Imagine the difficulty (in reality, the

impossibility) of getting system data from that many teams in that same

time period. Just the legal clearances would be impossible, let alone the

data speci�cations and transfer.

But let’s assume we were able to collect system data from a few

thousand respondents from around the world in a four-week window. e

next step is data cleaning and analysis. Data analysis for the State of

DevOps Reports is generally 3-4 weeks. Many of you have probably worked

with system data; even more of you have probably had the distinct

pleasure (more likely pain) of combining and collating Excel spreadsheets.

Imagine getting rough system data (or maybe capital planning

spreadsheets) from several thousand teams from around the world.

Imagine the challenge to clean, organize, and then analyze this data, and

be prepared to deliver results for reporting in three weeks.

In addition to the basic challenge of cleaning the data and running the

analyses lies a signi�cant challenge that can call into question all of your

work, and is probably the biggest constraint: the data itself. More

speci�cally, the underlying meaning of the data itself.

You’ve probably seen it in your own organizations: Different teams can

refer to very different (or even slightly different) measures by the same

name. Two examples are “lead time” (which we de�ne as the time from

code commit to code in a deployable state) and “cycle time” (which some

de�ne as the time from code starting to be worked on by development to

code in a deployable state). However, these two terms are often used

interchangeably and are quite often confused, though they measure

different things.

So what happens if one team calls it cycle time and the other team calls

it lead time—but they both measure the same thing? Or what if they both

call it lead time but are measuring two different things? And then we have

collected the data and are trying to run the analysis . . . but we do not

know for certain which variables are which? is poses signi�cant

measurement and analysis problems.

Carefully worded and crafted surveys that have been vetted help solve

this problem. All respondents are now working from the same items, the

same words, and the same de�nitions. It doesn’t matter what they call it at

their organization—it matters what they have been asked in the survey. It

does matter what they are asked, and so the quality and clarity of the

survey items become that much more important. But once the work of

survey writing is done, the work of cleaning and preparing the data for

analysis is faster and more straightforward.

In rigorous research, additional analyses (e.g., common method

variance checks) are run to ensure that the survey itself hasn’t introduced

bias into the results, and responses are checked for bias between early and

late responders (see Appendix C).

MEASURING THE FULL STACK WITH SYSTEM

DATA IS DIFFICULT

Even if your system is reporting out good and useful data (an assumption

that we know from experience is quite often wrong and generally needs to

be ascertained by trial and error), that data is rarely exhaustive. at is,

can you really be sure it’s measuring 100% of the system’s behavior you’re

interested in?

Let’s illustrate this with an example. One of the authors spent a

portion of her career as a performance engineer at IBM, working on

enterprise disk storage systems. Her team’s role was to diagnose and

optimize the performance of these machines, including disk read, write,

cache, and RAID rebuild operations over various workload conditions.

After working through several initiatives, “the box” was performing well,

and the team had the metrics from all levels of the system to prove it.

Occasionally, the team would still hear back from customers that the box

was slow. e team always investigated—but the �rst report or two was

dismissed by the team because they had con�rmation that the

performance of the box was good: all of the system logs showed it!

However, as the team started getting more reports of slow

performance, more investigation was necessary. Sure, customers and the

�eld could have incentive to lie, for example for discounts based on broken

SLAs. But the customer and �eld reports had a pattern—they all showed

similar slowness. While this data-from-people didn’t have the same degree

of precision as the system logs (e.g., the minute-level precision in the

reported response times vs. the millisecond precision from log �les), this

gave the team enough data to know where to look. It suggested patterns

and showed a signal to follow in their work.

So what was it? It turned out that the box itself was performing

exceptionally well. e team had instrumented every level of the stack and

were capturing everything there was to capture . . . in the box. What the

team hadn’t captured was the interface. e way that customers were

interacting with the box was introducing signi�cant performance

degradations. e team quickly spun up a small group to address and

manage this new area, and soon the full system was operating at peak

performance.

Without asking people about the performance of the system, the team

would not have understood what was going on. Taking time to do periodic

assessments that include the perceptions of the technologists that make

and deliver your technology can uncover key insights into the bottlenecks

and constraints in your system. By surveying everyone on your team, you

can help avoid problems associated with having a few overly positive or

overly negative responses.1

MEASURING COMPLETELY WITH SYSTEM DATA

IS DIFFICULT

A related reason for using surveys is the inability to capture everything

that is happening through system data—because your systems only know

about what is happening inside the system boundaries. Conversely, people

can see everything happening in and around the system and report about

it. Let’s illustrate with an example.

Our research has found that the use of version control is a key

capability in software delivery performance. If we want to know the extent

to which a team is using version control for all production artifacts, we can

ask the team. ey can tell us because they have the visibility to all of the

work. However, if we want to measure this through the system, we have

signi�cant limitations. e system can only tell us what it sees—how

many �les or repositories are being checked in to version control. But this

raw number isn’t meaningful without context.

Ideally, we would like to know the percentage of �les or repos that are

in version control—but the system can’t tell us that: it would require

counting �les checked in as well as �les not checked in, and the system

does not know how many �les are not in version control. A system only

has visibility to things in it—in this case, the use of version control

systems is something that can’t be accurately measured from log �les and

instrumentation.

People won’t have perfect knowledge or visibility into systems either—

but if you ignore the perceptions and experience of the professionals

working on your systems entirely, you lose an important view into your

systems.

YOU CAN TRUST SURVEY DATA

We are often asked how we can trust any data that comes from surveys—

and, by extension, the �ndings that come from surveys. is may be

illustrated by a thought exercise that we use sometimes when addressing

groups of technologists and asking about their work. Ask yourself (or

someone you know who works in software development and delivery)

these questions:

1. Do you trust survey data? Without fail, this �rst question gets

very little support; many in our audience sadly assume the worst

in people and expect them to lie in surveys, or they expect survey

writers and designers to try to “game” the questions to get the

results they want—a topic we covered earlier.

2. Do you trust your system or log data? On this second

question, there is often more support and nodding heads. We are

comfortable with the data that comes from our systems because

we feel con�dent that it hasn’t been tampered with. So, we move

on to our third question.

3. Have you ever seen bad data come from your system? In our

experience, almost everyone has seen bad data in system �les.

While many assume the system data hasn’t been tampered with,

humans make systems (and therefore the data that comes from

systems) and humans make mistakes. Or, if we do assume that bad

actors can exist in our systems, it takes only one bad actor to

introduce code that will make the system give us erroneous data.

Bad Actors and System Data

e cult classic Office Space is built around this premise: A bad actor

introduces changes to financial software that deposits very small

amounts of money (referred to as a “rounding error”) to a personal

account. is rounding error is then not reported on financial reports.

is is an excellent example of bad system data.

If we are so familiar with bad data in our systems, why are we so

trusting of that data and yet so skeptical of survey data? Perhaps it is

because as engineers and technicians, we understand how our systems

work. We believe we will be able to spot the errors in the data that come

from these systems, and when we do, we will know how to �x it.

In contrast, working with survey data seems foreign, especially for

those who have not been trained in survey writing and psychometric

methods. But a review of the concepts presented in Part II of the book

should demonstrate that there are steps that can be taken to make our

survey data more reliable. ese include the use of carefully identi�ed

measures, latent constructs, and statistical methods to con�rm the

validity and reliability of measures.

Compare our two cases: system data and survey data. In the case of

system data, one or a few people can change the data reported in log �les.

is can be a highly motivated bad actor with root (or high system) access,

or it can be a developer who made a mistake and whose error isn’t caught

by a review or test. eir impact on the data quality is signi�cant, because

you probably only have one or a few data points that the business pays

attention to. In this case, your raw data is bad, and you might not catch it

for months or years, if at all.

In the case of survey data, a few highly motivated bad actors can lie on

survey questions, and their responses may skew the results of the overall

group. eir impact on the data depends on the size of the group surveyed.

In the research conducted for this book, we have over 23,000 respondents

whose responses are pooled together. It would take several hundred people

“lying” in a coordinated, organized way to make a noticeable difference—

that is, they would need to lie about every item in the latent construct to

the same degree in the same direction. In this case, the use of a survey

actually protects us against bad actors. ere are additional steps taken to

ensure good data is collected; for example, all responses are anonymous,

which helps people who take the survey feel safe to respond and share

honest feedback.

is is why we can trust the data in our survey—or at least have a

reasonable assurance that the data is telling us what we think it is telling

us: we use latent constructs and write our survey measures carefully and

thoughtfully, avoiding the use of any propaganda items; we perform

several statistical tests to con�rm that our measures meet psychometric

standards for validity and reliability; and we have a large dataset that pulls

respondents from around the world, which serves as a safeguard against

errors or bad actors.

SOME THINGS CAN ONLY BE MEASURED

THROUGH SURVEYS

ere are some things that can only be measured using surveys. When we

want to ask about perceptions, feelings, and opinions, using surveys is

often the only way to do this. We will again point to our previous example

of organizational culture.

Often, people will want to defer to objective data to proxy for

something like organizational culture. Objective data is not in�uenced by

feelings or emotions; in contrast, subjective data captures one’s

perceptions or feelings about a situation. In the case of organizational

culture, teams often look to objective measures because they want a faster

way to collect the data (for example, from HR systems), and there is still a

worry about people lying about their feelings. e challenge with using

variables that exist in HR systems to proxy for “culture” is that these

variables are rarely a direct mapping. For example, a commonly used

metric for a “good” organizational culture is retention—or in reverse, the

metric for a “bad” organizational culture is turnover.

ere are several problems with this proxy because there are many

factors that in�uence whether or not someone stays with a team or an

organization. For example:

If an employee receives an offer from another �rm for a signi�cant

pay increase and leaves, their turnover may have nothing to do

with the culture.

If an employee’s spouse or partner receives a job offer that requires

relocation and your employee decides to follow them, their

turnover probably has nothing to do with culture.

If an employee decides to pursue a different career or return to

school, this may have nothing to do with the culture and more to

do with their personal journey. In fact, one of the authors knows

of a case where an employee worked at a very supportive,

encouraging company and on a great team. It was that great team

environment that encouraged him to follow his dreams and pursue

a change in career so he could continue being challenged. In this

case, the strong culture resulted in turnover, not the opposite.

ese measures can be gamed. If an employee’s manager �nds out

they are actively looking for a job, the manager may lay the person

off to make sure the employee is not counted in any turnover

numbers. And in the reverse, if managers are rewarded for

retaining team members, they may block transfers off of their

teams, retaining people even when their team culture is bad.

Turnover can be a useful measure if we think carefully about what

we’re measuring.2 But in the examples above, we see that employee

turnover and retention don’t tell us much about our team or

organizational culture—or if they do, it’s not what we may think. If we

want to understand how people feel about taking risks, sharing

information, and communicating across boundaries, we have to ask them.

Yes, you can use other system proxies to see some of these things

happening; for example, you can observe network traffic to see which team

members communicate with each other more often, and you can observe

trends over time to see if team members are communicating more or less

often. You can even run semantic analysis to see if the words in their

emails or chats are generally positive or negative. But if you want to know

how they feel about the work environment and how supportive it is to

their work and their goals—if you want to know why they’re behaving in

the way you observe—you have to ask them. And the best way to do that

in a systematic, reliable way that can be compared over time is through

surveys.

And it is worth asking. Research has shown that organizational culture

is predictive of technology and organizational performance, is predictive

of performance outcomes, and that team dynamics and psychological

safety are the most important aspects in understanding team performance

(Google 2015).

1 is, of course, assumes that you collect the data with an eye toward improvement-without telling

everyone they must answer positively or else. at would be the equivalent of the joke: “Beatings

will continue until morale improves.” You would get the data you want-good responses-but it

would be meaningless. One way to help encourage honest responses is to ensure anonymous data

collection.
2 For an interesting example of using retention as a way to determine the effectiveness of the

interview process, see Kahneman 2011.

T

CHAPTER 15

THE DATA FOR THE PROJECT

his project started with a desire to understand how to make

technology great and how technology makes organizations better.

Speci�cally, we wanted to investigate the new ways, methods, and

paradigms that organizations were using to develop and deliver software,

with a focus on Agile and Lean processes that extended downstream from

development and prioritized a culture of trust and information �ow, with

small cross-functional teams creating software. At the beginning of the

project in 2014, this development and delivery methodology was widely

known as “DevOps,” and so this was the term we used.

Our research design—a cross-sectional data collection1 for four years

—recruited professionals and organizations familiar with the word

DevOps (or at least willing to read an email or social media post with the

word DevOps), which targeted our data collection accordingly. Any good

research design de�nes a target population, and this was ours. We chose

this strategy for two primary reasons:

1. It allowed us to focus our data collection. In this research, the

users were those who were in the business of software

development and delivery, whether their parent organization’s

industry was technology or was driven by technology, such as

retail, banking, telecommunications, healthcare, or several other

industries.

2. It allowed us to focus on users who were relatively familiar

with DevOps concepts. Our research targeted users already

familiar with terminology used by technology professionals who

use more modern software development and delivery practices,

whether or not they identi�ed as DevOps practitioners. is was

important, because time and space were limited, and too much

time spent on background de�nitions and a long explanation of

concepts, such as continuous integration and con�guration

management, could risk survey respondents opting out of the

study. If a survey reader has to spend 15 minutes learning about a

concept in order to answer questions about it, they will get

frustrated and annoyed and won’t complete the survey.

is targeted research design was a strength for our research. No

research design is able to answer all questions, and all design decisions

involve trade-offs. We did not collect data from professionals and

organizations who were not familiar with things like con�guration

management, infrastructure-as-code, and continuous integration. By not

collecting data on this group, we miss a cohort that are likely performing

even worse than our low performers. is means our comparisons are

limited and we don’t discover the truly compelling and drastic

transformations that are possible. However, we gain explanatory power by

limiting the population to those that fall into a tighter group de�nition.

at increase in explanatory power comes at the expense of capturing and

analyzing the behaviors of those that do not use modern technology

practices to make and maintain software.

is data selection and research design did require some caution. By

only surveying those familiar with DevOps, we had to be careful in our

wording. at is, some who responded to our survey might want to paint

their team or organization in a favorable light, or they might have their

own de�nition of key terms. For example, everyone knows (or claims to

know) what continuous integration (CI) is, and many organizations claim

CI as a core competency. erefore, we never asked any respondents in our

surveys if they practiced continuous integration. (At least, we didn’t ask in

any questions about CI that would be used for any prediction analysis.)

Instead, we would ask about practices that are a core aspect of CI, e.g. if

automated tests are kicked off when code is checked in. is helped us

avoid bias that could creep in by targeting users that were familiar with

DevOps.

However, based on prior research, our own experiences, and the

experiences of those who have led technology transformations in large

enterprises, we believe that many of our �ndings are broadly applicable to

teams and organizations undergoing transformations. For example, the

use of version control and automated testing is highly likely to yield

positive results, whether a team is using DevOps practices, Agile

methodologies, or hoping to improve their lockstep waterfall development

methods. Similarly, having an organizational culture that values

transparency, trust, and innovation is likely to have positive impacts in

technology organizations regardless of software development paradigm—

and in any industry vertical, since that framework is predictive of

performance outcomes in different contexts, including healthcare and

aviation.

Once we de�ned our target population, we decided on a sampling

method: How would we invite people to take the survey? ere are two

broad categories of sampling methods: probability sampling and

nonprobability sampling.2 We were not able to use probability sampling

methods because this would require that every member of the population

is known and has an equal chance of participating in the study. is isn’t

possible because an exhaustive list of DevOps professionals in the world

doesn’t exist. We explain this in more detail below.

To collect the data for our research, we sent out emails and used social

media. Emails were sent to our own mailing lists, which consisted of

technologists and professionals who worked in DevOps (e.g., were in our

database because they had participated in prior years’ studies, were in

Puppet’s marketing databases because of their work with con�guration

management, were in Gene Kim’s database because of their interest in his

books and work in the industry, or were in Jez Humble’s database because

of their interest in his books and work in the industry). Emails were also

sent to mailing lists for professional groups. Special care was also taken to

send invitations to groups that included underrepresented groups and

minorities in technology. In addition to direct invitations by email, we

leveraged social media, with authors and survey sponsors tweeting links to

the survey and posting links to take the survey on LinkedIn. By inviting

survey participation from several sources, we increased our chances of

exposure to more DevOps professionals while addressing limitations of

snowball sampling, discussed below.

To expand our reach into the technologists and organizations

developing and delivering software, we also invited referrals. is aspect of

growing our initial sample is called referral sampling or snowball sampling

because the sample grows by picking up additional respondents as it

spreads, just like a snowball grows as you roll it through the snow.

Snowball sampling was an appropriate data collection method for this

study for several reasons:

Identifying the population of those who make software

using DevOps methodologies is difficult or impossible.

Unlike professional organizations like accounting or civil

engineering, which in the US have national certi�cations such as

CPA (Certi�ed Public Accountants) or PE (Practice of Engineering),

there is no central accrediting board that could give us a list of

professionals to reference. Beyond this, we could not scour

organization charts (even if they were publicly available) for job

titles as not everyone has “DevOps” or other important keywords

in their job title. In addition, many technologists, especially at the

beginning of the research project, had nontraditional job titles.

Even if organization charts were public, many job titles are too

generic to be useful for recruitment in the study (such as “software

engineer,” which can include developers working in teams using

waterfall or DevOps methods). Snowball sampling is a method well

suited for studying speci�c groups whose populations cannot be

easily identi�ed.

e population is typically and traditionally averse to being

studied. ere is a strong (and unfortunate) history of

organizational studies of technical workers leading to “Lean

transformations” which really just mean a signi�cant workforce

reduction. Snowball sampling is a method that is ideal for

populations that are often averse to being studied; by referring

others to the study, they can vouch for the questions (reassuring

the new participant that the questions are not propaganda) or

even for the reputation of the researchers.

ere are some limitations inherent in snowball sampling. e �rst

limitation is the potential that the initial users sampled (in our case,

emailed) are not representative of the communities they belong to. We

compensated for this by having an initial set of invitations (or informants)

that was as large and as diverse as possible. We did this by combining

several mailing lists, including our own survey mailing list, which had a

diverse set of respondents covering a large variation from company size

and countries. We also reached out to underrepresented groups and

minorities in technology through their own mailing lists and

organizations.

Another limitation of snowball sampling is that the data collected is

strongly in�uenced by the initial invitations. is is a concern if only a

small group of people are targeted and then asked for referrals, and the

sample grows from there. We addressed this limitation by inviting a very

large and diverse group of people to participate in the study, as described

above.

Finally, there may be a concern that �ndings will not be representative

of what is actually happening in the industry, that we may have blind spots

that we do not see in our data. We address this in a few ways. First, we do

not simply rely on the research results each year to inform our

conclusions; we actively engage with the industry and the community to

make sure we know what is happening, and triangulate our results with

emerging trends. at means we actively seek feedback on our survey,

through the community at conferences, and through colleagues and the

industry; we then compare notes to see what trends are emerging, never

relying on only one data source. If any discrepancies or mismatches occur,

we revisit our hypotheses and iterate. Second, we have external subject

matter experts in the industry review our hypotheses each year to ensure

we are current. ird, we explore the existing literature to look for

patterns in other �elds that may provide insights into our study. Finally,

we ask for input and research ideas from the community each year and use

these ideas when we design the research.

1 A cross-sectional design means the data was collected at a single point in time. However, it

precluded us from longitudinal analysis because our responses are not linked year over year. By

repeating the study over four years, we were able to observe patterns across the industry. While

we would like to collect a longitudinal data set-that is, one where we sample the same individuals

year over year-this could reduce response rates due to privacy concerns. (And what happens when

those people change teams or jobs?) We are currently pursuing research in this area. Cross-

sectional research design does have its bene�ts: data collection at a single point in time reduces

variability in the research design.
2 Probability sampling is any method of statistical sampling that uses random selection; by

extension, nonprobability sampling is any method that does not use random selection. Random

selection ensures that all individuals in a population have an equal chance of being selected in the

sample. erefore, probability sampling is generally preferred. However, probability sampling

methods are not always possible because of environmental or contextual factors.

We’ve presented our findings on which capabilities are

important in producing better software delivery and

organizational outcomes. However, taking this information and

applying it to change your organization is a complex and

daunting task. That’s why we’re delighted that Steve Bell and

Karen Whitley Bell agreed to write a chapter on leadership and

organizational transformation, sharing their experience and

insights to guide readers in their own journey.

Steve and Karen are pioneers of Lean IT, applying principles

and practices through a method-agnostic approach, drawing on

a variety of practices—DevOps, Agile, Scrum, kanban, Lean

startup, Kata, Obeya, strategy deployment, and others—as

appropriate to the culture and situation, to coach and support

leaders to develop high-performance practices and

organizational learning capabilities.

In Part III, they draw on their experiences at ING

Netherlands, a global bank with over 34.4 million customers

worldwide and with 52,000 employees, including more than

9,000 engineers, to show the why and how of leadership,

management, and team practices that enable culture change.

This, in turn, enables sustainable high performance in a complex

and dynamic environment.

Steve and Karen extend our view beyond the

interrelationships of team, management, and leadership

practices, beyond the skillful adoption of DevOps, and beyond

the breaking down of silos—all necessary, but not su�cient.

Here we see the evolution of holistic, end-to-end

organizational transformation, fully engaged and fully aligned to

enterprise purpose.

“L

CHAPTER 16

HIGH-PERFORMANCE

LEADERSHIP AND

MANAGEMENT

By Steve Bell and Karen Whitley Bell

eadership really does have a powerful impact on results. . . . A good

leader affects a team’s ability to deliver code, architect good systems, and

apply Lean principles to how the team manages its work and develops

products. All of these,” the research shows, “have a measurable impact on

an organization’s pro�tability, productivity, and market share. ese also

have an impact on customer satisfaction, efficiency, and the ability to

achieve organizational goals.”1 Yet, Nicole, Jez, and Gene also observe that

“the role of leadership on technology transformation has been one of the

more overlooked topics in DevOps.”

Why is that? Why have technology practitioners continuously sought to

improve the approach to software development and deployment as well as

the stability and security of infrastructure and platforms, yet, in large part,

have overlooked (or are unclear about) the way to lead, manage, and sustain

these endeavors? is holds for large legacy enterprises as well as digital

natives. Let’s consider this question not in the context of the past—why we

haven’t—but instead for the present and future: why we must improve the

way we lead and manage IT2 and, indeed, reimagine the way everyone

across the enterprise views and engages with technology.

We are in the midst of a complete transformation in the way value is

created, delivered, and consumed. Our ability to rapidly and effectively

envision, develop, and deliver technology-related value to enhance the

customer experience is becoming a key competitive differentiator. But peak

technical performance is only one part of competitive advantage—

necessary but not sufficient. We may become great at rapidly developing

and delivering reliable, secure, technology-enabled experiences, but how do

we know which experiences our customers value? How do we prioritize

what we create so that each team’s efforts advance the larger enterprise

strategy? How do we learn from our customers, from our actions, and from

each other? And as we learn, how do we share that learning across the

enterprise and leverage that learning to continuously adapt and innovate?

e other necessary component to sustaining competitive advantage is

a lightweight, high-performance management framework that connects

enterprise strategy with action, streamlines the �ow of ideas to value,

facilitates rapid feedback and learning, and capitalizes on and connects the

creative capabilities of every individual throughout the enterprise to create

optimal customer experiences. What does such a framework look like—not

in theory but in practice? And how do we go about improving and

transforming our own leadership, management, and team practices and

behaviors to become the enterprise we aspire to be?

A HIGH-PERFORMING MANAGEMENT

FRAMEWORK IN PRACTICE

roughout this book, Nicole, Jez, and Gene discuss several Lean

management practices that have been found to correlate with high

organizational performance—speci�cally, “pro�tability, market share, and

productivity . . . [in addition to measures that capture] broader

organizational goals—that is, goals that go beyond simple pro�t and

revenue measures.”3 Each of these practices is, in some way, synergistic and

interdependent with the others. To illustrate how these leadership,

management, and team practices work together, and to show the

foundational thinking that enables them, we share the experiences of ING

Netherlands, a global �nancial institution that pioneered digital banking

and is recognized for its customer-centric technology leadership. Today, IT

is leading ING’s digital transformation effort.

“You have to understand why, not just copy the behaviors,”4 says Jannes

Smit, IT Manager of Internet Banking and Omnichannel at ING

Netherlands, who, seven years ago, decided to experiment with ways to

develop organizational learning among his teams. ere are many ways we

could describe this management practice in action. Perhaps the best way is

to take you on a virtual visit—albeit from the pages of a book. (ING is

happy to share the story of their learning, but they’re not willing to show

you what’s on the walls!) We’ll share with you the sights and sounds and

experiences of a day at ING, showing you how practices, rhythms, and

routines connect to create a learning organization and deliver high

performance and value.

What you see today bears little resemblance to what we �rst observed

as we periodically visited to facilitate what they called “boot camps” to

rethink how Jannes and his managers led and managed teams. Like many

enterprise IT organizations, they were located offsite from the main

campus and were viewed by many as a function rather than as a vital

contributor in realizing enterprise strategy. Today, we enter at the main

corporate headquarters, where Jannes’ teams are now located one �oor

below the C-suite. e space is open and light. After security, we pass

through a large, open social area—coffee bars and snack kiosks overlooking

gardens—designed to create intimate spaces to gather, visit, and share

ideas. We then enter the Tribe’s suite. Immediately to our left is a large

room with glass walls, creating visibility to the space within. is is the

Obeya room where the Tribe lead’s work, priorities, and action items are

visualized for the teams and anyone else who may schedule a meeting in

this space or visit between meetings to update or review status. Here

Jannes meets on a regular cadence with his direct reports, where they can

quickly see and understand the status of each of his strategic objectives.

Four distinct zones are visualized: strategic improvement, performance

monitoring, portfolio roadmap, and leadership actions, each with current

information about targets, gaps, progress, and problems. Color coding is

used—red and green—to make problems immediately visible. Each IT

objective ties directly, in measurable ways, to enterprise strategy (see

Figure 16.1).

Figure 16.1: Leadership Obeya (360-Degree Panorama)

Two years ago, ING underwent a signi�cant shift to a

multidimensional, matrixed structure organized along lines of business,

enabling the continuous �ow of customer value (what Lean practitioners

call value streams). Each line of business is organized as a tribe delivering a

portfolio of related products and services (for example, the Mortgage

Services Tribe). Each tribe is comprised of multiple self-steering teams,

called squads, each responsible for a distinct customer mission (for

example, the Mortgage Application Squad). Each squad is guided by a

product owner, led (in case of IT) by an IT-area lead, and sized according to

Bezos’ Two Pizza Rule—no team can be so large that it would require more

than two pizzas to feed them. Most squads are cross-functional, consisting

of engineers and marketers, collaborating as a single team with a shared

understanding of customer value. At ING, this team composition is referred

to as BizDevOps. Recently, they identi�ed a need for a new bridging

structure which they plan to call a product area lead, to align multiple,

closely related squads. is new role wasn’t planned—it emerged through

experience and learning. ere are also chapters, comprised of members of

the same discipline (for example, the Data Analytics Chapter), who are

matrixed across squads and bring specialized knowledge to promote

learning and advancement among squad members. And �nally, there are

centers of expertise, bringing together individuals with particular

capabilities (for example, communications or enterprise architects—see

Figure 16.2).

We move on from Jannes’ Obeya, accompanied by Jannes’ internal

continuous improvement coaches: David Bogaerts, Jael Schuyer, Paul

Wolhoff, Liedewij van der Scheer, and Ingeborg Ten Berge. Together, they

form a small but effective Lean Leadership Expertise Squad and coach the

leaders, chapter leads, product owners, and IT-area leads who, in turn,

coach their chapter or squad members, creating a leveraged effect to change

behavior and culture at scale.

Figure 16.2: ING’s New Agile Organizational Model Has No Fixed Structure—It Constantly Evolves. (Source ING)

Just ahead is a squad workspace—an open area with windows and walls

that are covered in visuals (their own Obeya) that enable the squad to

monitor performance in real time, and see obstacles, status of

improvements, and other information of value to the squad. Across the

middle of the space �ows a row of adjustable-height tables, with adjustable-

height chairs, enabling squad members to sit or stand, facing each other

across their screens. e chairs are of different shapes and colors, making

the space visually interesting and ergonomically sound. Squad visuals share

some characteristics; the similarities in Obeya design enable colleagues

outside the squad to immediately understand, at a glance, certain aspects

of the work, promoting shared learning. Standard guidelines include

visualizing goals, present performance and gaps, new and escalated

problems, demand, WIP, and done work. Visualizing demand helps

prioritize and keep the WIP load small. e visuals also have some

differences, recognizing that the work of each squad is somewhat unique

and each squad is the best judge of what information—and what

visualization of that information—best serves them to excel at their work.

As we pass through, the squad is conducting its daily stand-up, where

rapid learning and feedback takes place. Standing in front of a visual board

displaying demand and WIP, each member brie�y reports what she/he is

working on (WIP), any obstacles, and what has been completed. As they

speak, the visual is updated. ese stand-ups usually last around 15

minutes; they have signi�cantly reduced the time people spend in meetings

compared to the meeting times before daily stand-ups became a way of

work.

During the stand-ups, problems are not solved, but there is a routine in

place to ensure they are rapidly resolved. If the problem requires

collaboration with another squad member, it is noted, and those members

will discuss it later in the day. If the problem requires IT-area lead support

to resolve, the problem is noted and escalated. e IT-area lead may resolve

it quickly, or take it to her/his stand-up to raise it with other IT-area leads

or tribe leads to resolve. Once resolved, that information is rapidly relayed

back through the channel. e problem remains visualized until it is

resolved. Similarly, if the problem is technical in nature, it will be shared

with the appropriate chapter or center of expertise. is pattern of vertical

and horizontal communication is a leadership standard work practice called

“catchball” (see Figure 16.3).

Figure 16.3: Stand-up and Catchball Rhythm

Using the same communication framework, other relevant learning is

also relayed among squads, chapters, centers of expertise, and tribes,

creating a natural vertical and horizontal �ow of learning across all

dimensions of the organization. is enables the squads to self-determine

how best to craft their work to support overall enterprise strategy and

enables effective prioritization. e tribe lead, in this case Jannes, also

learns from the squad and chapter members, including lessons learned in

their direct interaction with customers. is enables him to adapt his

strategic thinking and goals and share insights with his peers and

superiors.

is practice of rapid exchange of learning, enabling the frontline teams

to learn about strategic priorities and the leaders to learn about customer

experience from frontline team customer interaction, is a form of strategy

deployment (Lean practitioners use the term Hoshin Kanri). It creates, at

all levels, a continuous, rapid feedback cycle of learning, testing, validating,

and adjusting, also known as PDCA.

In addition to regular stand-ups with squads, product owners, IT-area

leads, and chapter leads, the tribe lead also regularly visits the squads to

ask questions—not the traditional questions like “Why isn’t this getting

done?” but, rather, “Help me better understand the problems you’re

encountering,” “Help me see what you’re learning,” and “What can I do to

better support you and the team?” is kind of coaching behavior does not

come easily to some leaders and managers. It takes real effort, with

coaching, mentoring, and modeling (mentoring is being piloted within the

Omnichannel Tribe, with plans for expansion) to change behavior from the

traditional command-and-control to leaders-as-coaches where everyone’s

job is to (1) do the work, (2) improve the work, and (3) develop the people.

e third objective—develop the people—is especially important in a

technology domain, where automation is disrupting many technology jobs.

For people to bring their best to the work that may, in fact, eliminate their

current job, they need complete faith that their leaders value them—not

just for their present work but for their ability to improve and innovate in

their work. e work itself will constantly change; the organization that

leads is the one with the people with consistent behavior to rapidly learn

and adapt.

Not far from that squad space in a glass-enclosed meeting space with

whiteboard-covered walls, a telepresence monitor, easel pads, and colorful,

comfy chairs, we visit with Jordi de Vos, a young engineer whose entire

career has been under Jannes’ new way-of-working. Jordi is a chapter lead

who also leads the effort toward one of the way-of-work strategic

improvement objectives (recall that there are strategic improvement,

performance monitoring, and portfolio roadmap strategic objectives). Jordi

shares with others what he’s learning about team security—the

psychological safety for individuals to openly discuss problems and

obstacles with no fear of harm or reprisal. He talks about this and other

research he’s discovering, how he’s experimenting to learn what will

resonate most among the squads, and what measurable changes are created

and sustained. A �xed percentage of each squad’s and chapter’s time is

allocated for improvement. Jordi says that the squads think of

improvement activities as just regular work.

We ask Jordi what it’s like to work within this culture. He re�ects for a

moment then shares a story. Jannes’ tribes had been challenged by senior

leadership to be twice as effective. “ere was a tough deadline and lots of

pressure. Our tribe lead, Jannes, went to the squads and said, ’If the quality

isn’t there, don’t release. I’ll cover your back.’ So, we felt we owned quality.

at helped us to do the right things.”

Too often, quality is overshadowed by the pressure for speed. A

courageous and supportive leader is crucial to help teams “slow down to

speed up,” providing them with the permission and safety to put quality

�rst (�t for use and purpose) which, in the long run, improves speed,

consistency, and capacity while reducing cost, delays, and rework. Best of

all, this improves customer satisfaction and trust.

After this visit, we walk past more squad workspaces and more glass-

enclosed meeting spaces, each with the same elements but different in their

colors, textures, and furnishings. Back in the Leadership Obeya, we meet

up with the coaching team for a healthy lunch and re�ect on the many

positive changes we’ve seen since our last visit. ey share re�ections on

their current challenges and some of the approaches they are

experimenting with to continue to spread and grow a generative culture,

focusing on “going deep before going wide.” Nevertheless, the pressure is

there to scale wide and fast. Right now, one of the coaching team members

is focusing on supporting culture change in just a few countries outside the

Netherlands. Given that ING operates in over 40 countries, the discipline

to allow time and attention for learning, rather than go for large scale

change, is remarkable.

Another challenge the coaches are experimenting with is dispersed

teams. With recent restructuring, some squads now have members from

more than one country, so the coaching team is experimenting with, and

measuring, ways to maintain the same high level of collaboration and

learning among cross-border squads (it’s very hard to virtually share two

pizzas).

Not surprisingly, several of the most senior leaders and several other

tribe lead peers want their own Obeya. e coaching team is hoping to

approach this slowly enough so that real learning can occur.

Transformational, generative leadership extends well beyond what is on the

Obeya walls and the rhythm and routine of how you talk about it. “As a

leader, you have to look at your own behaviors before you ask others to

change,” says Jannes. He will be the �rst to tell you that he is still learning.

And in that, we believe, lies the secret to his success.

After lunch we head to the C-suite where we see a few of the senior

leaders’ Obeyas beginning to take shape. We run into Danny Wijnand, a

chief design engineer who worked under Jannes until he was promoted last

year to lead his own tribe. Danny re�ects on the spread of this new way of

work, beyond Jannes’ tribes and out into the C-suite and across the rest of

ING. “You get impatient wanting to speed their learning but then you

realize you went through this yourself, and it took time. Storytelling is

important, but they have to have their own learning.”

Back again on the tribe �oor, we visit with Jan Rijkhoff, a chapter lead.

We wanted to learn about his chapter’s current approach to problem

solving. Over the years, they have experimented with different problem-

solving methods, including A3, Kata, Lean startup, and others, and �nally

settled on a blend of elements that they found helpful, creating their own

approach. In our walk today, we have seen evidence of multiple problem-

solving initiatives in �ight and visualized on the walls.

eir approach is to gather the right people who have experience and

insights into the problem to rigorously examine the current condition. is

rigor pays off, as the team gains insights that increase the probability of

identifying the root cause rather than just the symptoms. With this

learning, they form a hypothesis about an approach to improvement,

including how and what to measure to learn if the experiment produces the

desired outcomes. If the experiment is a success, they make it part of the

standard work, share the learning, and continue to monitor to ensure the

improvement is sustained. ey apply this problem-solving approach at all

levels of the organization. Sometimes a problem at a senior-leader level is

analyzed and broken down into smaller parts, cascading to the chapter or

squad level, for front-line analysis and controlled experimentation, with the

learning feeding back up. “is approach works,” Paul tells us when we meet

up again, “because it helps people to embrace change, letting people come

up with their own ideas, which they can then test out.”

Amidst this colorful, creative work environment, with a philosophy of

“make it your own,” the idea of standard work may seem to be antithetical,

even counterproductive. After all, this is knowledge work. Consider the

notion of process (the way something is done) and practice (doing

something that requires knowledge and judgment). For example, Scrum

rituals are process; the act of understanding customer needs and writing

the code is practice. So, when teams have a standard way of work, whether

that work is to release effective code or to conduct a team stand-up

meeting, following that standard saves a lot of time and energy. At ING,

standard work is established not by imitating a way of work that is

prescribed in a book or used successfully by another company. Instead, a

team within ING experiments with different approaches and agrees upon

the one best way to do the work. at rhythm and routine is spread to all

similar teams. As conditions change, the standard is reevaluated and

improved.

We catch up with Jannes as he concludes his day with a visit to the

Leadership Obeya—to add a few Post-It note updates and to see what

updates have been made by others. We ask about his thoughts on the

journey they’ve been on. “e beginning insight was that our teams were

not learning and not improving,” he shared. “We were not able to get them

to a level where they would be a continuously learning team. I saw that they

wrestled with problems and other teams had solutions, and we were not

able to bring them together to learn. When we were not able to learn as

management, we were not able to help the teams to learn. We had to learn

ourselves to become a learning team. We [his management team]

experienced our own learning, then we went to the teams to help them

learn to become a learning team.”

We then asked about his approach to culture change. “Before, I never

discussed culture,” he said. “It was a difficult topic and I did not know how

to change it in a sustainable way. But I learned that when you change the

way you work, you change the routines, you create a different culture.”

“Senior management is very happy with us,” he adds with a broad smile,

obviously proud of the people in his tribes. “We give them speed with

quality. Sometimes, we may take a little longer than some of the others to

reach green, but once we achieve it, we tend to stay green, when a lot of the

others go back to red.”

TRANSFORMING YOUR LEADERSHIP,

MANAGEMENT, AND TEAM PRACTICES

We are often asked by enterprise leaders: How do we change our culture?

We believe the better questions to ask are: How do we learn how to

learn? How do I learn? How can I make it safe for others to learn? How can

I learn from and with them? How do we, together, establish new behaviors

and new ways of thinking that build new habits, that cultivate our new

culture? And where do we start?

At ING Netherlands, they began with a leader who asked himself these

questions. He then brought on good coaches, tasked with challenging every

person (including himself) to question assumptions and try new behaviors.

He gathered his management team, saying, “Let’s try this together. Even if

it doesn’t work, we will learn something that will help us to be better. Will

you join me in this and see what we can learn?”

Each quarter his management team would come together for new

learning and, over the next months, put that learning into practice. What,

at �rst, felt uncomfortable for everyone became a little easier and, �nally,

became a habit—something they just did, just in time for the next learning

cycle. ey stretched and, just when they felt comfortable, stretched again.

All along, they would re�ect together and adjust when needed.

We recall in one boot camp session early on we challenged the

management team members to develop simple leader standard work

routines: visual management, regular stand-ups, and consistent coaching

for their team members—replacing the long meetings and �re-�ghting

behaviors they were accustomed to. To develop this new way of working,

�rst they needed to understand how they currently spent their time. e

skepticism and discomfort were obvious; nevertheless, for several weeks

each of them recorded and measured how they spent their time each day.

ey shared what they learned with each other, and together developed

new ways to work.

When we returned for the next boot camp three months later, Mark

Nijssen, one of the managers, welcomed us by saying, “I’ll never go back to

the old way of working again!” Not only was adoption of basic leader

standard work successful in helping them improve their effectiveness, they

also managed to achieve the goal of making 10% of their time available to

work on what they choose.

is willingness to experiment with new ways of thinking and working

has led ING to where they are today. But it’s important to recognize that

there is no checklist or playbook. You can’t “implement” culture change.

Implementation thinking (attempting to mimic another company’s speci�c

behavior and practices) is, by its very nature, counter to the essence of

generative culture.

At the end of this chapter is a table representing many of the practices

described in this virtual visit to ING. ose marked with an (*) are practices

that research shows to correlate with high performance. It’s our hope that

future research will explore the full range of practices listed here. is table

is not to be used as a checklist but rather as a distillation or general

guidelines for developing your own behaviors and practices (see Figure

16.4).

As you have seen in our virtual visit to ING, a high-performance culture

is far more than just the application of tools, the adoption of a set of

interrelated practices, copying the behaviors of other successful

organizations, or the implementation of a prescribed, expert-designed

framework. It is the development, through experimentation and learning

guided by evidence, of a new way of working together that is situationally

and culturally appropriate to each organization.

As you begin your own path to creating a learning organization, it’s

important to adopt and maintain the right mindset. Below are some

suggestions we offer, based on our own experiences in helping enterprises

evolve toward a high-performing, generative culture:

Figure 16.4: High-Performance Team, Management, and Leadership Behaviors and Practices (not a complete list,

for a larger, downloadable version visit https://bit.ly/high-perf-behaviors-practices)

Develop and maintain the right mindset. is is about learning and

how to create an environment for shared organizational learning-

not about just doing the practices, and certainly not about

employing tools.

Make it your own. is means three things:

Don’t look to copy other enterprises on their methods and

practices, or to implement an expert-designed model. Study and

learn from them, but then experiment and adapt to what works

for you and your culture.

Don’t contract it out to a large consulting �rm to expediently

transform your organization or to implement new

methodologies or practices for you. Your teams will feel that

these methodologies (Lean, Agile, whatever) are being done to

them. While your current processes may temporarily improve,

your teams will not develop the con�dence or capability to

sustain, continue to improve, or to adapt and develop new

processes and behaviors on their own.

Do develop your own coaches. Initially you may need to hire

outside coaching to establish a solid foundation, but you must

ultimately be the agent of your own change. Coaching depth is a

key lever for sustaining and scaling.

You, too, need to change your way of work. Whether you are a

senior leader, manager, or team member, lead by example. A

generative culture starts with demonstrating new behaviors, not

delegating them.

Practice discipline. It was not easy for Jannes’ management team to

record and re�ect on how they spent their time or try new things

–

–

–

https://bit.ly/high-perf-behaviors-practices

they weren’t initially comfortable with in front of the people who

reported to them. Change takes discipline and courage.

Practice patience. Your current way of work took decades to

entrench. It’s going to take time to change actions and thought

patterns until they become new habits and, eventually, your new

culture.

Practice practice. You just have to try it: learn, succeed, fail, learn,

adjust, repeat. Rhythm and routine, rhythm and routine, rhythm

and routine . . .

As you learn a new way of leading and working, you, and those you

bring along with you on this journey, will explore, stretch, make some

mistakes, get a lot right, learn, grow, and keep on learning. You’ll discover

better and faster ways to engage, learn, and adapt to changing conditions.

In doing so, you’ll improve quality and speed in everything you do. You’ll

grow your own leaders, innovate, and outperform your competition. You’ll

more rapidly and effectively improve value for customers and the

enterprise. As the research shows, you’ll “have a measurable impact on an

organization’s pro�tability, productivity, and market share. ese also have

an impact on customer satisfaction, efficiency, and the ability to achieve

organizational goals.”

We wish you all the best on your learning journey!

Steve and Karen

1 See Chapter 11, pp. 115-116.
2 Note from Nicole, Jez, and Gene. e term “IT” is used throughout this chapter to refer to the

software and technology process-much more than just a single function within the technology

group at a company, like IT support or the helpdesk.
3 See Chapter 2, p. 24.

4 is and all other direct quotes from ING staff are personal communications with the authors of

this chapter.

O

CONCLUSION

ver the past several years of surveying technology professionals and

writing the State of DevOps Reports with the team at Puppet, we have

discovered a lot about what makes high-performing teams and

organizations. is journey has included researching technology

transformations, publishing our results in peer review, and working with

our colleagues and peers who are assessing and transforming their own

organizations. roughout this journey, we have made many breakthrough

discoveries about the relationships between delivery performance,

technical practices, cultural norms, and organizational performance.

In all of our research, one thing has proved consistently true: since

nearly every company relies on software, delivery performance is critical to

any organization doing business today. And software delivery performance

is affected by many factors, including leadership, tools, automation, and a

culture of continuous learning and improvement.

is book is a compilation of the things we found along that journey.

In Part I, we presented what we found in our research. It starts with a

discussion of why software delivery performance matters and how it

drives organizational performance measures like pro�tability,

productivity, and market share, as well as noncommercial measures like

efficiency, effectiveness, customer satisfaction, and achieving mission

goals. In this way, the ability to deliver quality software at high tempo with

stability is a key value driver and differentiator for all organizations,

regardless of size or industry vertical.

In Part II, we summarized the science behind the research and shed

some light on the design decisions we made as well as the analysis

methods we used. is provides the basis for the results we discuss in the

bulk of the text.

We also identi�ed the key capabilities that contribute to software

delivery performance in statistically signi�cant and meaningful ways. We

hope that a discussion of what these practices are, with examples, will help

you improve your own performance.

In Part III, we close with a discussion of organizational change

management. To present this material, we reached out to colleagues Steve

Bell and Karen Whitley Bell. eir contributed chapter presents one view

of what following the capabilities and practices outlined in this book looks

like and what it can provide for innovative organizations. You can begin

your own technology transformation with everything we have learned in

our research— transformation that so many others have been able to

implement with great success in their own teams and organizations.

We hope this book has helped you identify areas where you can

improve your own technology and business processes, work culture, and

improvement cycles. Remember: you can’t buy or copy high performance.

You will need to develop your own capabilities as you pursue a path that

�ts your particular context and goals. is will take sustained effort,

investment, focus, and time. However, our research is unequivocal. e

results are worth it. We wish you all the best on your journey of

improvement and look forward to hearing your stories.

O

APPENDIX A

CAPABILITIES TO DRIVE

IMPROVEMENT

ur research has uncovered 24 key capabilities that drive

improvements in software delivery performance in a statistically signi�cant

way. Our book details these �ndings. is appendix provides you with a

handy list of these capabilities, each with a pointer to the chapter that

covers it in detail (see also Figure A.1).

We have classi�ed these capabilities into �ve categories:

Continuous delivery

Architecture

Product and process

Lean management and monitoring

Cultural

Within each category, the capabilities are presented in no particular

order.

CONTINUOUS DELIVERY CAPABILITIES

1. Use version control for all production artifacts. Version

control is the use of a version control system, such as GitHub or

Subversion, for all production artifacts, including application code,

application con�gurations, system con�gurations, and scripts for

automating build and con�guration of the environment. See

Chapter 4.

2. Automate your deployment process. Deployment automation is

the degree to which deployments are fully automated and do not

require manual intervention. See Chapter 4.

3. Implement continuous integration. Continuous integration

(CI) is the �rst step towards continuous delivery. is is a

development practice where code is regularly checked in, and each

check-in triggers a set of quick tests to discover serious regressions,

which developers �x immediately. e CI process creates canonical

builds and packages that are ultimately deployed and released. See

Chapter 4.

4. Use trunk-based development methods. Trunk-based

development has been shown to be a predictor of high performance

in software development and delivery. It is characterized by fewer

than three active branches in a code repository; branches and forks

having very short lifetimes (e.g., less than a day) before being

merged into master; and application teams rarely or never having

“code lock” periods when no one can check in code or do pull

requests due to merging con�icts, code freezes, or stabilization

phases. See Chapter 4.

5. Implement test automation. Test automation is a practice where

software tests are run automatically (not manually) continuously

throughout the development process. Effective test suites are

reliable—that is, tests �nd real failures and only pass releasable

code. Note that developers should be primarily responsible for

creation and maintenance of automated test suites. See Chapter 4.

6. Support test data management. Test data requires careful

maintenance, and test data management is becoming an

increasingly important part of automated testing. Effective

practices include having adequate data to run your test suite, the

ability to acquire necessary data on demand, the ability to

condition your test data in your pipeline, and the data not limiting

the amount of tests you can run. We do caution, however, that

teams should minimize, whenever possible, the amount of test data

needed to run automated tests. See Chapter 4.

7. Shift left on security. Integrating security into the design and

testing phases of the software development process is key to

driving IT performance. is includes conducting security reviews

of applications, including the infosec team in the design and demo

process for applications, using preapproved security libraries and

packages, and testing security features as a part of the automated

testing suite. See Chapter 4.

8. Implement continuous delivery (CD). CD is a development

practice where software is in a deployable state throughout its

lifecycle, and the team prioritizes keeping the software in a

deployable state over working on new features. Fast feedback on

the quality and deployability of the system is available to all team

members, and when they get reports that the system isn’t

deployable, �xes are made quickly. Finally, the system can be

deployed to production or end users at any time, on demand. See

Chapter 4.

ARCHITECTURE CAPABILITIES

9. Use a loosely coupled architecture. is affects the extent to

which a team can test and deploy their applications on demand,

without requiring orchestration with other services. Having a

loosely coupled architecture allows your teams to work

independently, without relying on other teams for support and

services, which in turn enables them to work quickly and deliver

value to the organization. See Chapter 5.

10. Architect for empowered teams. Our research shows that teams

that can choose which tools to use do better at continuous delivery

and, in turn, drive better software development and delivery

performance. No one knows better than practitioners what they

need to be effective. See Chapter 5. (e product management

counterpart to this is found in Chapter 8.)

PRODUCT AND PROCESS CAPABILITIES

11. Gather and implement customer feedback. Our research has

found that whether organizations actively and regularly seek

customer feedback and incorporate this feedback into the design of

their products is important to software delivery performance. See

Chapter 8.

12. Make the �ow of work visible through the value stream.

Teams should have a good understanding of and visibility into the

�ow of work from the business all the way through to customers,

including the status of products and features. Our research has

found this has a positive impact on IT performance. See Chapter 8.

13. Work in small batches. Teams should slice work into small pieces

that can be completed in a week or less. e key is to have work

decomposed into small features that allow for rapid development,

instead of developing complex features on branches and releasing

them infrequently. is idea can be applied at the feature and the

product level. (An MVP is a prototype of a product with just

enough features to enable validated learning about the product and

its business model.) Working in small batches enables short lead

times and faster feedback loops. See Chapter 8.

14. Foster and enable team experimentation. Team

experimentation is the ability of developers to try out new ideas

and create and update speci�cations during the development

process, without requiring approval from outside of the team,

which allows them to innovate quickly and create value. is is

particularly impactful when combined with working in small

batches, incorporating customer feedback, and making the �ow of

work visible. See Chapter 8. (e technical counterpart to this is

found in Chapter 4.)

LEAN MANAGEMENT AND MONITORING

CAPABILITIES

15. Have a lightweight change approval processes. Our research

shows that a lightweight change approval process based on peer

review (pair programming or intrateam code review) produces

superior IT performance than using external change approval

boards (CABs). See Chapter 7.

16. Monitor across application and infrastructure to inform

business decisions. Use data from application and infrastructure

monitoring tools to take action and make business decisions. is

goes beyond paging people when things go wrong. See Chapter 7.

17. Check system health proactively. Monitor system health, using

threshold and rate-of-change warnings, to enable teams to

preemptively detect and mitigate problems. See Chapter 13.

18. Improve processes and manage work with work-in-process

(WIP) limits. e use of work-in-process limits to manage the

�ow of work is well known in the Lean community. When used

effectively, this drives process improvement, increases throughput,

and makes constraints visible in the system. See Chapter 7.

19. Visualize work to monitor quality and communicate

throughout the team. Visual displays, such as dashboards or

internal websites, used to monitor quality and work in process have

been shown to contribute to software delivery performance. See

Chapter 7.

CULTURAL CAPABILITIES

20. Support a generative culture (as outlined by Westrum). is

measure of organizational culture is based on a typology developed

by Ron Westrum, a sociologist who studied safety-critical complex

systems in the domains of aviation and healthcare. Our research

has found that this measure of culture is predictive of IT

performance, organizational performance, and decreasing burnout.

Hallmarks of this measure include good information �ow, high

cooperation and trust, bridging between teams, and conscious

inquiry. See Chapter 3.

21. Encourage and support learning. Is learning, in your culture,

considered essential for continued progress? Is learning thought of

as a cost or an investment? is is a measure of an organization’s

learning culture. See Chapter 10.

22. Support and facilitate collaboration among teams. is

re�ects how well teams, which have traditionally been siloed,

interact in development, operations, and information security. See

Chapters 3 and 5.

23. Provide resources and tools that make work meaningful. is

particular measure of job satisfaction is about doing work that is

challenging and meaningful, and being empowered to exercise your

skills and judgment. It is also about being given the tools and

resources needed to do your job well. See Chapter 10.

24. Support or embody transformational leadership.

Transformational leadership supports and ampli�es the technical

and process work that is so essential in DevOps. It is comprised of

�ve factors: vision, intellectual stimulation, inspirational

communication, supportive leadership, and personal recognition.

See Chapter 11.

Figure A.1: Overall Research Program (for a larger, downloadable version visit https://bit.ly/high-perf-behaviors-

practices)

https://bit.ly/high-perf-behaviors-practices

W

APPENDIX B

THE STATS

ant to know what we’ve found from a statistical standpoint? Here is

one place that lists it all, organized by category.

As a reminder:

Correlation looks at how closely two variables move together (or

don’t) but it doesn’t tell us if one variable’s movement predicts or causes

the movement in another variable. Two variables moving together can

always be due to a third variable or, sometimes, just chance.

Prediction talks about the impact of one construct on another.

Speci�cally, we used inferential prediction, one of the most common types

of analysis conducted in business and technology research today. It helps us

understand the impact of HR policies, organizational behavior, and

motivation, and helps us measure how technology affects such outcomes as

user satisfaction, team efficiency, and organizational performance.

Inferential design is used when purely experimental design is not possible

and �eld experiments are preferred—for example, in business, where data

collection happens in complex organizations, not in sterile lab

environments, and companies won’t sacri�ce pro�ts to �t into control

groups de�ned by the research team. Analysis methods used to test

prediction include simple linear regression and partial least squares

regression, described in Appendix C.

ORGANIZATIONAL PERFORMANCE

High performers are twice as likely to exceed organizational

performance goals as low performers: pro�tability, productivity,

market share, number of customers.

High performers are twice as likely to exceed noncommercial

performance goals as low performers: quantity of products/

services, operating efficiency, customer satisfaction, quality of

products/services, achieving organizational/mission goals.

In a follow-up survey to the initial 2014 data collection effort, we

gathered stock ticker data and performed additional analysis on

responses from just over 1,000 respondents across 355 companies

who volunteered the organization they worked for. For those who

worked for publicly traded companies, we found the following (this

analysis was not replicated in later years because our dataset was

not large enough):

High performers had 50% higher market capitalization growth

over three years compared to low performers.

SOFTWARE DELIVERY PERFORMANCE

e four measures of software delivery performance (deploy

frequency, lead time, mean time to restore, change fail percentage)

are good classi�ers for the software delivery performance pro�le.

e groups we identi�ed—high, medium, and low performers—are

all signi�cantly different across all four measures each year.

Our analysis of high, medium, and low performers provides

evidence that there are no trade-offs between improving

–

performance and achieving higher levels of tempo and stability:

they move in tandem.

Software delivery performance predicts organizational performance

and noncommercial performance.

e software delivery performance construct is a combination of

three metrics: lead time, release frequency, and MTTR. Change fail

rate is not included in the construct, though it is highly correlated

with the construct.

Deploy frequency is highly correlated with continuous delivery and

the comprehensive use of version control.

Lead time is highly correlated with version control and automated

testing.

MTTR is highly correlated with version control and monitoring.

Software delivery performance is correlated with organizational

investment in DevOps.

Software delivery performance is negatively correlated with

deployment pain. e more painful code deployments are, the

poorer the software delivery performance and culture.

QUALITY

Unplanned work and rework:

High performers reported spending 49% of their time on new

work and 21% on unplanned work or rework.

Low performers spend 38% of their time on new work and 27%

on unplanned work or rework.

ere is evidence of the J-curve in our rework data. Medium

performers spend more time on unplanned rework than low

–

–

–

performers, with 32% of their time spent on unplanned work or

rework.

Manual work:

High performers report the lowest amount of manual work

across all practices (con�guration management, testing,

deployments, change approval process) at statistically

signi�cant levels.

ere is evidence of the J-curve again. Medium performers do

more manual work than low performers when it comes to

deployment and change approval processes, and these

differences are statistically signi�cant.

See Table B.1 for manual work percentages in high, medium, and

low performers.

Table B.1 Manual Work Percentages

Manual Work High Performers Medium Performers Low Performers

Configuration management 28% 47%* 46%*

Testing 35% 51%* 49%*

Deployments 26% 47% 43%

Change approval process 48% 67% 59%

* Di�erences are not statistically significant between medium and low performers for configuration

management and testing.

BURNOUT AND DEPLOYMENT PAIN

Deployment pain is negatively correlated with software delivery

performance and Westrum organizational culture.

e �ve factors most highly correlated with burnout are Westrum

organizational culture (negative), leaders (negative), organizational

–

–

–

investment (negative), organizational performance (negative), and

deployment pain (positive).

TECHNICAL CAPABILITIES

(Architecture capabilities are in their own section, below.)

Trunk-based development:

High performers have the shortest integration times and branch

lifetimes, with branch life and integration typically lasting hours

or a day.

Low performers have the longest integration times and branch

lifetimes, with branch life and integration typically lasting days

or weeks.

Technical practices predict continuous delivery, Westrum

organizational culture, identity, job satisfaction, software delivery

performance, less burnout, less deployment pain, and less time

spent on rework.

High performers spend 50% less time remediating security issues

than low performers.

ARCHITECTURE CAPABILITIES

ere was no correlation between a particular type of system (e.g.,

system of engagement or system of record) and software delivery

performance.

–

–

Low performers were more likely to say that the software they were

building—or the set of services they had to interact with—was

“custom software developed by another company (e.g., an

outsourcing partner).”

Low performers were more likely to be working on mainframe

systems.

Having to integrate against mainframe systems was not a

statistically signi�cant indicator of performance.

Medium and high performers have no signi�cant correlation

between system type and software delivery performance.

A loosely coupled, well-encapsulated architecture drives IT

performance. In the 2017 dataset, this was the biggest contributor

to continuous delivery.

Among those who deploy at least once per day, as the number of

developers on the team increases we found:

Low performers deploy with decreasing frequency.

Medium performers deploy at a constant frequency.

High performers deploy at a signi�cantly increasing frequency.

High-performing teams were more likely to respond positively to

the following statements:

We can do most of our testing without requiring an integrated

environment.

We can and do deploy/release our applications independently of

other applications/services they depend on.

It is custom software that uses a microservices architecture.

We found no signi�cant differences according to which type of

architecture teams were building or integrating against.

–

–

–

–

–

–

LEAN MANAGEMENT CAPABILITIES

Lean management capabilities predict Westrum organizational

culture, job satisfaction, software delivery performance, and less

burnout.

Change approvals:

Change advisory boards are negatively correlated with software

delivery performance.

Approval only for high-risk changes was not correlated with

software delivery performance.

Teams that reported no approval process or used peer review

achieved higher software delivery performance.

A lightweight change approval process predicts software delivery

performance.

LEAN PRODUCT MANAGEMENT CAPABILITIES

e ability to take an experimental approach to product

development is highly correlated with the technical practices that

contribute to continuous delivery.

Lean product development capabilities predict Westrum

organizational culture, software delivery performance,

organizational performance, and less burnout.

ORGANIZATIONAL CULTURE CAPABILITIES

–

–

–

–

ese measures are strongly correlated to culture:

Organizational investment in DevOps

e experience and effectiveness of team leaders

Continuous delivery capabilities

e ability of development, operations, and infosec teams to

achieve win-win outcomes

Organizational performance

Deployment pain

Lean management practices

Westrum organizational culture predicts software delivery

performance, organizational performance, and job satisfaction.

Westrum organizational culture is negatively correlated with

deployment pain. e more painful code deployments are, the

poorer the culture.

IDENTITY, EMPLOYEE NET PROMOTER SCORE

(ENPS), AND JOB SATISFACTION

Identity predicts organizational performance.

High performers have better employee loyalty, as measured by

employee Net Promoter Score (eNPS). Employees in high-

performing organizations were 2.2 times more likely to recommend

their organization as a great place to work.

eNPS was signi�cantly correlated with:

e extent to which the organization collects customer feedback

and uses it to inform the design of products and features

e ability of teams to visualize and understand the �ow of

products or features through development all the way to the

–

–

–

–

–

–

–

–

–

customer

e extent to which employees identify with their organization’s

values and goals, and the effort they are willing to put in to

make the organization successful

Employees in high-performing teams are 2.2 times more likely to

recommend their organization as a great place to work.

Employees in high-performing teams are 1.8 times more likely to

recommend their team as a great place to work.

Job satisfaction predicts organizational performance.

LEADERSHIP

We observed signi�cant differences in leadership characteristics

among high-, medium-, and low-performing teams.

High-performing teams reported having leaders with the

strongest behaviors across all dimensions: vision, inspirational

communication, intellectual stimulation, supportive leadership,

and personal recognition.

Low-performing teams reported the lowest levels of all �ve

leadership characteristics.

ese differences were all at statistically signi�cant levels.

Characteristics of transformational leadership are highly correlated

with software delivery performance.

Transformational leadership is highly correlated with employee Net

Promoter Score (eNPS).

Teams with the top 10% of reported transformational leadership

characteristics were equally or even less likely to be high

–

–

–

–

performers, compared to the entire population of teams

represented in survey results.

Leadership is predictive of Lean product development capabilities

(working in small batches, team experimentation, gathering and

implementing customer feedback) and technical practices (test

automation, deployment automation, trunk-based development,

shift left on security, loosely coupled architecture, empowered

teams, continuous integration).

DIVERSITY

Of the total respondents, 5% self-identi�ed as women in 2015, 6%

in 2016, and 6.5% in 2017.

33% of our respondents report working on teams with no women.

56% of our respondents report working on teams that are less than

10% female.

81% of our respondents report working on teams that are less than

25% female.

Gender

91% Male

6% Female

3% Non-binary or other

Underrepresented

77% responded no, I do not identify as underrepresented.

12% responded yes, I identify as underrepresented.

11% responded that they preferred not to respond or NA.

–

–

–

–

–

–

OTHER

Investment in DevOps was highly correlated to software delivery

performance.

Percentage of people reporting working in DevOps teams has

grown over the last four years:

16% in 2014

19% in 2015

22% in 2016

27% in 2017

DevOps is happening across all operating systems. We �rst started

asking about this in 2015.

78% of respondents are widely deployed on 1-4 different

operating systems, the most popular being: Enterprise Linux,

Windows 2012, Windows 2008, Debian/Ubuntu Linux.

Figure B.1 shows the Firmographics from the 2017 data. We note

that high, medium, and low performers see representation from all

groups. at is, there are large enterprises in the high-, medium-,

and low-performing groups. We also see startups in high-, medium-,

and low-performing groups. Highly regulated industries (including

�nancial, healthcare, telecommunications, etc.) are also found in the

high-, medium-, and low-performing groups. What matters is not

what industry you’re in or how big you are; even large, highly

regulated organizations are able to develop and deliver software

with high performance, and then leverage these capabilities to

deliver value to their customers and their organization.

–

–

–

–

–

Figure B.1: Firmographics: Organization Size, Industry, Number of Servers in 2017

T

APPENDIX C

STATISTICAL METHODS USED IN

OUR RESEARCH

his appendix is a brief summary of the statistical methods used in

our research. It is meant to serve as a reference, not a detailed statistical

text. We have included pointers to the relevant academic references where

appropriate. e appendix roughly follows our path through research

design and analysis.

SURVEY PREPARATION

Once we have decided on the constructs and hypotheses we want to test

each year, we begin the research process by designing the survey

instrument.1

When possible, previously validated items are used. Examples include

organizational performance (Widener 2007) and noncommercial

performance (Cavalluzzo and Ittner 2004). When we create our own

measures, the survey instrument is developed following commonly

accepted procedures adapted from Dillman (1978).

DATA COLLECTION

Armed with our research design and survey questions, we set out to collect

data.

We collected data using snowball sampling, a nonprobabilistic

technique. Details on why this is an appropriate technique, how we

collected our sample, and strategies we used to counteract limitations of

the technique are given in Chapter 15.

TESTS FOR BIAS

Once we have our data, we start by testing for bias.

Chi-square tests. A test for differences. is is used to check for

signi�cant differences in variables that can only take on categorical

values (for example, gender).

T-tests. A test for differences. is is used to check for signi�cant

differences in variables that can take on scale values (for example,

Likert values). We used this to check for differences between early

and late responders.

Common method bias (CMB) or common method variance

(CMV). is involves conducting two tests:

Harman’s single-factor test (Podsakoff and Dalton 1987).

is checks to see if a single factor features signi�cant loading

for all items.

e marker variable test (Lindell and Whitney 2001). is

checks to see if all originally signi�cant correlations remain

–

–

signi�cant after adjusting for the second-lowest positive

correlation among the constructs.

We did not see bias between early and late responders. Common-

method bias does not seem to be a problem with our samples.

TESTING FOR RELATIONSHIPS

Consistent with best practices and accepted research, we conducted our

analysis in two stages (Gefen and Straub 2005). In the �rst step, we

conduct analyses on the measures to validate and form our latent

constructs (see Chapter 13). is allows us to determine which constructs

can be included in the second stage of our research.

TESTS OF THE MEASUREMENT MODEL

Principal components analysis (PCA). A test to help con�rm

convergent validity. is method is used to help explain the

variance-covariance structure of a set of variables.

Principal components analysis was conducted with varimax

rotation, with separate analyses for independent and

dependent variables (Straub et al. 2004).

ere are two types of PCA that can be done: con�rmatory

factor analysis (CFA) and exploratory factor analysis (EFA). In

almost all cases, we performed EFA. We chose this method

because it is a stricter test used to uncover the underlying

structure of the variables without imposing or suggesting a

structure a priori. (One notable exception was when we used

–

–

CFA to con�rm the validity for transformational leadership;

this was selected because the items are well-established in the

literature.) Items should load on their respective constructs

higher than 0.60 and should not cross-load.

Average variance extracted (AVE). A test to help con�rm both

convergent and discriminant validity. AVE is a measure of the

amount of variance that is captured by a construct in relation to

the amount of variance due to measurement error.

AVE must be greater than 0.50 to indicate convergent validity.

e square root of the AVE must be greater than any cross-

diagonal correlations of the constructs (when you place the

square root of the AVE on the diagonal of a correlation table) to

indicate divergent validity.

Correlation. is test helps con�rm divergent validity when

correlations between constructs are below 0.85 (Brown 2006).

Pearson correlations were used (see below for details).

Reliability

Cronbach’s alpha: A measure of internal consistency. e

acceptable cutoff for CR is 0.70 (Nunnally 1978); all constructs

met either this cutoff or CR (listed next). Note that Cronbach’s

alpha is known to be biased against small scales (i.e., constructs

with a low number of items), so both Cronbach’s alpha and

composite reliability were run to con�rm reliability.

Composite reliability (CR): A measure of internal

consistency and convergent validity. e acceptable cutoff for

CR is 0.70 (Chin et al. 2003); all constructs either met this

cutoff or Cronbach’s alpha (listed above).

All of the above tests must pass for a construct to be considered

suitable for use in further analysis. We say that a construct “exhibits good

–

–

–

–

psychometric properties” if this is the case, and proceed. All constructs

used in our research passed these tests.

TESTS FOR RELATIONSHIPS (CORRELATION AND PREDICTION)

AND CLASSIFICATION

In the second step, we take the measures that have passed the �rst step of

measurement validation and test our hypotheses. ese are the statistical

tests that are used in this phase of the research. As outlined in Chapter 12,

in this research design we test for inferential prediction, which means all

tested hypotheses are supported by additional theories and literature. If

no supporting theories exist to suggest that a predictive relationship

exists, we only report correlations.

Correlation. Signi�es a mutual relationship or connection

between two or more constructs. We use Pearson correlation in

this research, which is the correlation most often used in business

contexts today. Pearson correlation measures the strength of a

linear relationship between two variables, called Pearson’s r. It is

often referred to as just correlation and takes a value between -1

and 1. If two variables have a perfect linear correlation, i.e., move

together exactly, r = 1. If they move in exactly opposite directions,

r = -1. If they are not correlated at all, r = 0.

Regression. is is used to test predictive relationships. ere are

several kinds of regression. We used two types of linear regression

in this research, as described below.

Partial least squares regression (PLS). is was used to test

predictive relationships in years 2015 through 2017. PLS is a

correlation-based regression method that was selected for our

analysis for a few reasons (Chin 2010):

–

is method optimizes for prediction of the outcome

variable. As we wanted our results to be bene�cial to the

practitioners in the industry, this was important to us.

PLS does not require assumptions of multivariate normality.

Said another way, this method doesn’t require that our

data be normally distributed.

PLS is a great choice for exploratory research—and that’s

exactly what our research program is!

Linear regression. is was used to test predictive

relationships in our 2014 research.

TESTS FOR CLASSIFICATION

ese tests could be done at any time, because they don’t rely on

constructs.

Cluster analysis. is was used to develop a data-driven

classi�cation of software delivery performance, giving us high,

medium, and low performers. In cluster analysis, each

measurement is put on a separate dimension, and the clustering

algorithm attempts to minimize the distance between all cluster

members and maximize the distance among clusters. Cluster

analysis was conducted using �ve methods: Ward’s (1963),

between-groups linkage, within-groups linkage, centroid, and

median. e results for cluster solutions were compared in terms

of: (a) change in fusion coefficients, (b) number of individuals in

each cluster (solutions including clusters with few individuals were

excluded), and (c) univariate F-statistics (Ulrich and McKelvey

◦

◦

◦

–

1990). Based on these criteria, the solution using Ward’s method

performed best and was selected. We used the hierarchical cluster

analysis method because:

It has strong explanatory power (letting us understand parent-

child relationships in the clusters).

We did not have any industry or theoretical reasons to have a

predetermined number of clusters. at is, we wanted the data

to determine the number of clusters we should have.

Our dataset was not too big. (Hierarchical clustering is not

suitable for extremely large datasets.)

Analysis of variance (ANOVA). To interpret the clusters, post

hoc comparisons of the means of the software delivery

performance outcomes (deploy frequency, lead time, MTTR, and

change fail rate) were conducted using Tukey’s test. Tukey’s was

selected because it does not require normality; Duncan’s multiple

range test was also run to test for signi�cant differences and in all

cases the results were the same (Hair et al. 2006). Pairwise

comparisons were done across clusters using each software delivery

performance variable, and signi�cant differences sorted the

clusters into groups wherein that variable’s mean value does not

signi�cantly differ across clusters within a group, but differs at a

statistically signi�cant level (p < 0.10 in our research) across

clusters in different groups. In all years except 2016 (see Chapter 2

callout for the Surprise), high performers saw the best

performance on all variables, low performers saw the worst

performance on all variables, and medium performers saw the

middle performance on all variables—all at statistically signi�cant

levels.

–

–

–

1 We decide on our research model each year based on a review of the literature, a review of our

previous research �ndings, and a healthy debate.

T

ACKNOWLEDGMENTS

his book emerged from the partnership between DORA and Puppet

on the State of DevOps Reports. us, we’d like to start by thanking the

Puppet team, and in particular Alanna Brown and Nigel Kersten who were

the principal contributors from the Puppet side. We’d also like to thank

Aliza Earnshaw for her meticulous work editing the State of DevOps

Reports over several years. e report would not be the same without her

careful eye.

e authors would also like to thank several people who helped develop

the hypotheses we test in the report. From 2016, we thank Steven Bell and

Karen Whitley Bell for their promptings to investigate Lean product

management, and for their time spent on research and discussions with

the team on the theories of value stream and visibility of customer

feedback. From 2017, we thank Neal Ford, Martin Fowler, and Mik

Kersten for the items measuring architecture, and Amy Jo Kim and Mary

Poppendieck for team experimentation.

Several experts kindly donated their time to help review early drafts of

this book. We’d like to offer deep gratitude to Ryn Daniels, Jennifer Davis,

Martin Fowler, Gary Gruver, Scott Hain, Dmitry Kirsanov, Courtney

Kissler, Bridget Kromhout, Karen Martin, Dan North, and Tom

Poppendieck.

We’d like to thank Anna Noak, Todd Sattersten, and the whole IT

Revolution team for all their hard work on this project. Finally, Dmitry

Kirsanov and Alina Kirsanova took care of copyediting, proofreading,

indexing, and composing the book with distinctive thoroughness and care.

ank you.

NICOLE

First and foremost, many thanks to my coauthors and collaborators,

without whom this work wouldn’t be possible. Y’all didn’t kick me off the

project when I �rst showed up and told you it was wrong—politely, I hope.

Jez, I’ve learned patience, empathy, and a renewed love for tech I thought

had waned. Gene, your boundless enthusiasm and drive for “just one more

analysis!” keeps our work strong and exciting. e data for this project

comes from the State of DevOps Reports, which were conducted with

Puppet Inc. From the Puppet team, Nigel Kersten and Alanna Brown:

thank you for your collaboration and helping us to craft a narrative that

resonates with our audience. And of course Aliza Earnshaw: your skill goes

far beyond copyediting and made my work in�nitely better. I loved that we

could hash it out until we reached agreement; when you told me I was

“meticulously rigorous,” it was the best compliment ever.

A very special thank you goes to my dad for instilling in me a sense of

curiosity, a need for excellence, and an inability to take sh*t from people

who don’t think I can do something. It has all come in handy over the

years, particularly as a woman in tech. Sorry you missed the party, Dad.

Many thanks to my mom for always being my #1 cheerleader and

supporter; whatever my crazy plans, she always trusts me. I love you both.

As always, my biggest thanks and deepest gratitude go to Xavier

Velasquez. My best friend and �rst sounding board, you’ve been there for

the entire journey—when it was inspired from an odd usability study in

the midst of a storm, to a hard pivot in my PhD program, then inviting

myself into the State of DevOps Reports, and now �nally this book. Your

support, encouragement, and wisdom—in life and in tech—have been

invaluable.

Suzie! How did I ever get so lucky? I had an advisor who took a gamble

on a PhD student who promised you that studying tech professionals,

their tools, and their environment—and how it all impacted their work—

would be important and relevant. (ose at top PhD programs will

understand that this is, indeed, a gamble, with real risks involved.) Ten

years later, my research has grown and evolved and we call it DevOps.

Many thanks to you, Suzanne Weisband, for trusting my instincts and

guiding my research those early years. You’ve been the best advisor,

cheerleader, and now friend.

To my post-doc advisors, mentors, and frequent peer-review coauthors

Alexandra Durcikova and Rajiv Sabherwal: you also took risks conducting

research with me in a new context, and I have learned so much from our

collaborations. My methods are stronger, my arguments more reasoned,

and my ability to see a problem space is more developed. ank you.

Many thanks to the DevOps community, who welcomed and accepted a

crazy researcher and have participated in the studies and shared your

stories. My work is better because of you, and more importantly, I am

better because of you. Much love.

And �nally, thanks to Diet Coke for getting me through long stints of

writing and editing.

JEZ

Many thanks to my wife and BFF Rani for supporting me working on this

book even after I promised I wouldn’t write another one. You’re the best! I

love you. anks to my daughters for bringing so much fun and joy into

the proceedings, and to my mum and dad for supporting my adventures

with computers as a kid.

Nicole took an industry survey, Puppet’s State of DevOps Report, and

turned it into a scienti�c tool. Our industry has always struggled with

applying science to the development and operation of software products

and services. e social systems that support software delivery are too

irreducibly complex to make randomized, controlled experiments

practical. In retrospect, the solution was clear: use behavioral science to

study these systems. Nicole’s careful, thorough pioneering of this

approach has produced incredible results, and it’s hard to overstate the

impact of her work. It’s been an honor to be her partner in this research,

and I’ve learned an enormous amount. ank you.

e reason I’m involved with this project at all is Gene, who invited me

to be part of the State of DevOps team back in 2012. Gene, your passion

for this project—and, on a personal level, for challenging my hypotheses

and analysis (yes, I’m talking about trunk-based development)—has made

this both substantially more rigorous and highly rewarding.

I also want to thank the Puppet team who’ve contributed so much to

this work and without whom it wouldn’t exist, particularly Alanna Brown,

Nigel Kersten, and Aliza Earnshaw. ank you.

GENE

I am grateful to Margueritte, my loving wife of twelve years, as well as my

sons, Reid, Parker, and Grant—I know that I could not do the work I love

without their support and tolerance of deadlines, late nights, and round-

the-clock texting. And of course, my parents, Ben and Gail Kim, for

helping me become a nerd early in life.

is research with Jez and Nicole has been some of the most satisfying

and illuminating I’ve ever had the privilege of working on—no one could

ask for a better team of collaborators. I genuinely believe this work

signi�cantly advances our profession, by helping us better de�ne how we

improve technology work, through rigorous theory building and testing.

And of course, thank you to Alanna Brown and Nigel Kersten at Puppet

for the amazing 5+ year collaboration on State of DevOps project, from

which so much of this book is based upon.

BIBLIOGRAPHY

ACMQueue. “Resilience Engineering: Learning to Embrace Failure.” ACMQueue 10, no. 9 (2012).

http://queue.acm.org/detail.cfm?id=2371297.

Alloway, Tracy Packiam, and Ross G. Alloway. “Working Memory across the Lifespan: A Cross-

Sectional Approach.” Journal of Cognitive Psychology 25, no. 1 (2013): 84-93.

Almeida, iago. https://www.devopsdays.org/events/2016-london/program/thiagoalmeida/.

Azzarello, Domenico, Frederic Debruyne, and Ludovica Mottura. “e Chemistry of Enthusiasm.”

Bain.com. May 4, 2012. http://www.bain.com/publications/articles/the-chemistry-of-

enthusiasm.aspx.

Bansal, Pratima. “From Issues to Actions: e Importance of Individual Concerns and

Organizational Values in Responding to Natural Environmental Issues.” Organization Science 14, no.

5 (2003): 510-527.

Beck, Kent, et al. “Manifesto for Agile Software.” AgileManifesto.org. 2001.

http://agilemanifesto.org/.

Behr, Kevin, Gene Kim, and George Spafford. e Visible Ops Handbook: Starting ITIL in 4 Practical

Steps. Eugene, OR: Information Technology Process Institute, 2004.

Bessen, James E. Automation and Jobs: When Technology Boosts Employment. Boston University

School of Law, Law and Economics Paper, no. 17-09 (2017).

Blank, Steve. e Four Steps to the Epiphany: Successful Strategies for Products at Win. BookBaby,

2013.

Bobak, M., Z. Skodova, and M. Marmot. “Beer and Obesity: A Cross-Sectional Study.” European

Journal of Clinical Nutrition 57, no. 10 (2003): 1250-1253.

Brown, Timothy A. Con�rmatory Factor Analysis for Applied Research. New York: Guilford Press,

2006.

Burton-Jones, Andrew, and Detmar Straub. “Reconceptualizing System Usage: An Approach and

Empirical Test.” Information Systems Research 17, no. 3 (2006): 228-246.

Carr, Nicholas G. “IT Doesn’t Matter.” Educause Review 38 (2003): 24-38.

Cavalluzzo, K. S., and C. D. Ittner. “Implementing Performance Measurement Innovations:

Evidence from Government.” Accounting, Organizations and Society 29, no. 3 (2004): 243-267.

Chandola, T., E. Brunner, and M. Marmot. “Chronic Stress at Work and the Metabolic Syndrome:

Prospective Study.” BMJ 332, no. 7540 (2006): 521-525.

http://queue.acm.org/detail.cfm?id=2371297
https://www.devopsdays.org/events/2016-london/program/thiagoalmeida/
http://bain.com/
http://www.bain.com/publications/articles/the-chemistry-of-enthusiasm.aspx
http://agilemanifesto.org/
http://agilemanifesto.org/

Chin, Wynne W. “How to Write Up and Report PLS Analyses.” In: V. Esposito Vinzi, W. W. Chin, J.

Henseler, and H. Wang (eds.), Handbook of Partial Least Squares. Berlin: Springer (2010): 655-690.

Chin, Wynne W., Barbara L. Marcolin, and Peter R. Newsted. “A Partial Least Squares Latent

Variable Modeling Approach for Measuring Interaction Effects: Results from a Monte Carlo

Simulation Study and an Electronic-Mail Emotion/ Adoption Study.” Information Systems Research

14, no. 2 (2003): 189-217.

Conway, Melvin E. “How Do Committees Invent?” Datamation 14, no. 5 (1968): 28-31.

Corman, Joshua, David Rice, and Jeff Williams. “e Rugged Manifesto.” Rugged-Software.org.

September 4, 2012. https://www.ruggedsoftware.org/.

Covert, Bryce. “Companies with Female CEOs Beat the Stock Market.” inkProgress.org. July 8,

2014. https://thinkprogress.org/companies-with-female-ceos-beat-the-stock-market-

2d1da9b3790a.

Covert, Bryce. “Returns for Women Hedge Fund Managers Beat Everyone Else’s.”

inkProgress.org. January 15, 2014. https://thinkprogress.org/returns-for-women-hedge-fund-

managers-beat-everyone-elses-a4da2d7c4032.

Deloitte. Waiter, Is at Inclusion in My Soup?: A New Recipe to Improve Business Performance. Sydney,

Australia: Deloitte, 2013.

Diaz, Von, and Jamilah King. “How Tech Stays White.” Colorlines.com. October 22, 2013.

http://www.colorlines.com/articles/how-tech-stays-white.

Dillman, D. A. Mail and Telephone Surveys. New York: John Wiley & Sons, 1978.

Deming, W. Edwards. Out of the Crisis. Cambridge, MA: MIT Press, 2000.

East, Robert, Kathy Hammond, and Wendy Lomax. “Measuring the Impact of Positive and Negative

Word of Mouth on Brand Purchase Probability.” International Journal of Research in Marketing 25,

no. 3 (2008): 215-224.

Elliot, Stephen. DevOps and the Cost of Downtime: Fortune 1000 Best Practice Metrics Quanti�ed.

Framingham, MA: International Data Corporation, 2014.

Foote, Brian, and Joseph Yoder. “Big Ball of Mud.” Pattern Languages of Program Design 4 (1997):

654-692.

Forsgren, Nicole, Alexandra Durcikova, Paul F. Clay, and Xuequn Wang. “e Integrated User

Satisfaction Model: Assessing Information Quality and System Quality as Second-Order Constructs

in System Administration.” Communications of the Association for Information Systems 38 (2016):

803-839.

Forsgren, Nicole, and Jez Humble. “DevOps: Pro�les in ITSM Performance and Contributing

Factors.” At the Proceedings of the Western Decision Sciences Institute (WDSI) 2016, Las Vegas, 2016.

Gartner. Gartner Predicts. 2016.

http://www.gartner.com/binaries/content/assets/events/keywords/infrastructure-operations-

management/iome5/gartner-predicts-for-it-infrastructure-and-operations.pdf.

Gefen, D., and D. Straub. “A Practical Guide to Factorial Validity Using PLS- Graph: Tutorial and

Annotated Example.” Communications of the Association for Information Systems 16, art. 5 (2005): 91-

http://rugged-software.org/
https://www.ruggedsoftware.org/
http://thinkprogress.org/
https://thinkprogress.org/companies-with-female-ceos-beat-the-stock-market-2d1da9b3790a
http://thinkprogress.org/
https://thinkprogress.org/returns-for-women-hedge-fund-managers-beat-everyone-elses-a4da2d7c4032
http://colorlines.com/
http://www.colorlines.com/articles/how-tech-stays-white
http://www.gartner.com/binaries/content/assets/events/keywords/infrastructure-operations-management/iome5/gartner-predicts-for-it-infrastructure-and-operations.pdf

109.

Goh, J., J. Pfeffer, S. A. Zenios, and S. Rajpal. “Workplace Stressors & Health Outcomes: Health

Policy for the Workplace.” Behavioral Science & Policy 1, no. 1 (2015): 43-52.

Google. “e Five Keys to a Successful Google Team.” ReWork blog. November 17, 2015.

https://rework.withgoogle.com/blog/�ve-keys-to-a-successful-google-team/.

Hair, J. F., W. C. Black, B. J. Babin, R. E. Anderson, and R. L. Tatham. Multivariate Data Analysis, 2nd

ed. Upper Saddle River, NJ: Pearson Prentice Hall, 2006.

Humble, Jez. “Cloud Infrastructure in the Federal Government: Modern Practices for Effective Risk

Management.” Nava Public Bene�t Corporation, 2017. https://devops-research.com/assets/federal-

cloud-infrastructure.pdf.

Humble, Jez, and David Farley. Continuous Delivery: Reliable Software Releases through Build, Test,

and Deployment Automation. Upper Saddle River, NJ: Addison- Wesley, 2010.

Humble, Jez, Joanne Molesky, and Barry O’Reilly. Lean Enterprise: How High Performance

Organizations Innovate at Scale. Sebastopol, CA: O’Reilly Media, 2014.

Hunt, Vivian, Dennis Layton, and Sara Prince. “Why Diversity Matters.” McKinsey.com. January

2015. https://www.mckinsey.com/business-functions/organization/our-insights/why-diversity-

matters.

Johnson, Jeffrey V., and Ellen M. Hall. “Job Strain, Work Place Social Support, and Cardiovascular

Disease: A Cross-Sectional Study of a Random Sample of the Swedish Working Population.”

American Journal of Public Health 78, no. 10 (1988): 1336-1342.

Kahneman, D. inking, Fast and Slow. New York: Macmillan, 2011.

Kankanhalli, Atreyi, Bernard C. Y. Tan, and Kwok-Kee Wei. “Contributing Knowledge to Electronic

Knowledge Repositories: An Empirical Investigation.” MIS Quarterly (2005): 113-143.

Kim, Gene, Patrick Debois, John Willis, and Jez Humble. e DevOps Handbook: How to Create

World-Class Agility, Reliability, and Security in Technology Organizations. Portland, OR: IT Revolution,

2016.

King, John, and Roger Magoulas. 2016 Data Science Salary Survey: Tools, Trends, What Pays (and

What Doesn’t) for Data Professionals. Sebastopol, CA: O’Reilly Media, 2016.

Klavens, Elinor, Robert Stroud, Eveline Oehrlich, Glenn O’Donnell, Amanda LeClair, Aaron Kinch,

and Diane Kinch. A Dangerous Disconnect: Executives Overestimate DevOps Maturity. Cambridge, MA:

Forrester, 2017.

Leek, Jeffrey. “Six Types of Analyses Every Data Scientist Should Know.” Data Scientist Insights.

January 29, 2013. https://datascientistinsights.com/2013/01/29/six-types-of-analyses-every-data-

scientist-should-know/.

Leiter, Michael P., and Christina Maslach. “Early Predictors of Job Burnout and Engagement.”

Journal of Applied Psychology 93, no. 3 (2008): 498-512.

Leslie, Sarah-Jane, Andrei Cimpian, Meredith Meyer, and Edward Freeland. “Expectations of

Brilliance Underlie Gender Distributions across Academic Disciplines.” Science 347, no. 6219

(2015): 262-265.

https://rework.withgoogle.com/blog/five-keys-to-a-successful-google-team/
https://devops-research.com/assets/federal-cloud-infrastructure.pdf
http://mckinsey.com/
https://www.mckinsey.com/business-functions/organization/our-insights/why-diversity-matters
https://datascientistinsights.com/2013/01/29/six-types-of-analyses-every-data-scientist-should-know/

Lindell, M. K., and D. J. Whitney. “Accounting for Common Method Variance in Cross-Sectional

Research Designs.” Journal of Applied Psychology 86, no. 1 (2001): 114-121.

Maslach, Christina. “‘Understanidng Burnout,’ Prof Christina Maslach (U.C. Berkely).” YouTube

video. 1:12:29. Posted by riving in Science, December 11, 2014.

https://www.youtube.com/watch?v=4kLPyV8lBbs.

McAfee, A., and E. Brynjolfsson. “Investing in the IT at Makes a Competitive Difference.” Harvard

Business Review 86, no. 7/8 (2008): 98.

McGregor, Jena. “More Women at the Top, Higher Returns.” Washington Post. September 24, 2014.

https://www.washingtonpost.com/news/on-leadership/wp/2014/09/24/more-women-at-the-top-

higher-returns/?utm_term=.23c966c5241d.

Mundy, Liza. “Why Is Silicon Valley so Awful to Women?” e Atlantic. April 2017.

https://www.theatlantic.com/magazine/archive/2017/04/why-is-silicon-valley-so-awful-to-

women/517788/.

Nunnally, J. C. Psychometric eory. New York: McGraw-Hill, 1978.

Panetta, Kasey. “Gartner CEO Survey.” Gartner.com. April 27, 2017.

https://www.gartner.com/smarterwithgartner/2017-ceo-survey-infographic/.

Perrow, Charles. Normal Accidents: Living with High-Risk Technologies. Princeton, NJ: Princeton

University Press, 2011.

Pettigrew, A. M. “On Studying Organizational Cultures.” Administrative Science Quarterly 24, no. 4

(1979): 570-581.

Podsakoff, P. M., and D. R. Dalton. “Research Methodology in Organizational Studies.” Journal of

Management 13, no. 2 (1987): 419-441.

Quora. “Why Women Leave the Tech Industry at a 45% Higher Rate an Men.” Forbes. February

28, 2017. https://www.forbes.com/sites/quora/2017/02/28/why-women-leave-the-tech-industry-

at-a-45-higher-rate-than-men/#5cb8c80e4216.

Rafferty, Alannah E., and Mark A. Griffin. “Dimensions of Transformational Leadership:

Conceptual and Empirical Extensions.” e Leadership Quarterly 15, no. 3 (2004): 329-354.

Reichheld, Frederick F. “e One Number You Need to Grow.” Harvard Business Review 81, no. 12

(2003): 46-55.

Reinertsen, Donald G. Principles of Product Development Flow. Redondo Beach: Celeritas Publishing,

2009.

Ries, Eric. e Lean Startup: How Today’s Entrepreneurs Use Continuous Innovation to Create Radically

Successful Businesses. New York: Crown Business, 2011.

Rock, David, and Heidi Grant. “Why Diverse Teams Are Smarter.” Harvard Business Review.

November 4, 2016. https://hbr.org/2016/11/why-diverse-teams-are-smarter.

SAGE. “SAGE Annual Salary Survey for 2007.” USENIX. August 13, 2008.

https://www.usenix.org/system/�les/lisa/surveys/sal2007_0.pdf.

https://www.youtube.com/watch?v=4kLPyV8lBbs
https://www.washingtonpost.com/news/on-leadership/wp/2014/09/24/more-women-at-the-top-higher-returns/?utm_term=.23c966c5241d
https://www.theatlantic.com/magazine/archive/2017/04/why-is-silicon-valley-so-awful-to-women/517788/
http://gartner.com/
https://www.gartner.com/smarterwithgartner/2017-ceo-survey-infographic/
https://www.forbes.com/sites/quora/2017/02/28/why-women-leave-the-tech-industry-at-a-45-higher-rate-than-men/#5cb8c80e4216
https://hbr.org/2016/11/why-diverse-teams-are-smarter
https://www.usenix.org/system/files/lisa/surveys/sal2007_0.pdf

SAGE. “SAGE Annual Salary Survey for 2011.” USENIX. 2012.

https://www.usenix.org/system/�les/lisa/surveys/lisa_2011_salary_survey.pdf.

Schwartz, Mark. e Art of Business Value. Portland, OR: IT Revolution Press, 2016.

Schein, E. H. Organizational Culture and Leadership. San Francisco: Jossey-Bass, 1985.

Shook, John. “How to Change a Culture: Lessons from NUMMI.” MIT Sloan Management Review 51,

no. 2 (2010): 63.

Smith, J. G., and J. B. Lindsay. Beyond Inclusion: Worklife Interconnectedness, Energy, and Resilience in

Organizations. New York: Palgrave, 2014.

Snyder, Kieran. “Why Women Leave Tech: It’s the Culture, Not Because 'Math Is Hard.’” Fortune.

October 2, 2014. http://fortune.com/2014/10/02/women-leave-tech-culture/.

Stone, A. Gregory, Robert F. Russell, and Kathleen Patterson. “Transformational versus Servant

Leadership: A Difference in Leader Focus.” Leadership & Organization Development Journal 25, no. 4

(2004): 349-361.

Straub, D., M.-C. Boudreau, and D. Gefen. “Validation Guidelines for IS Positivist Research.”

Communications of the AIS 13 (2004): 380-427.

Stroud, Rob, and Elinor Klavens with Eveline Oehrlich, Aaron Kinch, and Diane Lynch. DevOps Heat

Map 2017. Cambridge, MA: Forrester, 2017.

https://www.forrester.com/report/DevOps+Heat+Map+2017/-/E-RES137782.

is American Life, episode 561. “NUMMI 2015.” Aired July 17, 2015.

https://www.thisamericanlife.org/radio-archives/episode/561/nummi-2015.

Ulrich, D., and B. McKelvey. “General Organizational Classi�cation: An Empirical Test Using the

United States and Japanese Electronic Industry.” Organization Science 1, no. 1 (1990): 99-118.

Ward, J. H. “Hierarchical Grouping to Optimize an Objective Function.” Journal of the American

Statistical Association 58 (1963): 236-244.

Wardley, Simon. “An Introduction to Wardley (Value Chain) Mapping.” Bits or Pieces? blog. February

2, 2015. http://blog.gardeviance.org/2015/02/an-introduction-to-wardley-value-chain.html.

Weinberg, Gerald M. Quality Software Management. Volume 1: Systems inking. New York: Dorset

House Publishing, 1992.

Westrum, Ron. “A Typology of Organisational Cultures.” Quality and Safety in Health Care 13, no.

suppl 2 (2004): ii22-ii27.

Westrum, Ron. “e Study of Information Flow: A Personal Journey.” Safety Science 67 (2014): 58-

63.

Wickett, James. “Attacking Pipelines—Security Meets Continuous Delivery.” Slideshare.net, June

11, 2014. http://www.slideshare.net/wickett/attacking-pipelinessecurity-meets-continuous-

delivery.

Widener, Sally K. “An Empirical Analysis of the Levers of Control Framework.” Accounting,

Organizations and Society 32, no. 7 (2007): 757-788.

https://www.usenix.org/system/files/lisa/surveys/lisa_2011_salary_survey.pdf
http://fortune.com/2014/10/02/women-leave-tech-culture/
https://www.forrester.com/report/DevOps+Heat+Map+2017/-/E-RES137782
https://www.thisamericanlife.org/radio-archives/episode/561/nummi-2015
http://blog.gardeviance.org/2015/02/an-introduction-to-wardley-value-chain.html
http://www.slideshare.net/wickett/attacking-pipelinessecurity-meets-continuous-delivery

Woolley, Anita, and T. Malone. “Defend Your Research: What Makes a Team Smarter? More

Women.” Harvard Business Review (June 2011).

Yegge, Steve. “Stevey’s Google Platform Rant.” GitHub gist. 2011.

https://gist.github.com/jezhumble/a8b3cbb4ea20139582fa8ffc9d791fb2.

https://gist.github.com/jezhumble/a8b3cbb4ea20139582fa8ffc9d791fb2

INDEX

A
A/B testing, 25, 85, 140

A3 problem solving, 191

acceptance tests, 44, 54

accidents, in complex systems, 30, 39

Agile development

innovations and, 86-87

measuring productivity in, 12-13

reports on current state of, 135

Agile Manifesto, 41, 49, 75

Allspaw, John, xxiv

Almeida, iago, 90

Amazon, 5

moving to SOA, 66

Web Services, 71, 93

analysis of variance (ANOVA), 229

Anita Borg Institute, 114

anonymity, in surveys, 165

anxiety, 89

applications. See software architecture, 59-68

correlated with delivery performance, 60-61, 216

deployability and testability of, 61-62

loosely coupled, 48, 62-65, 91, 204, 216

making large-scale changes to, 62

microservices, 217

service-oriented, 63

Asberg, Marie, 95

automated testing. See test automation

automation, given to computers, 109

average variance extracted (AVE), 226

B
bad data, 163-165

basic assumptions, 29-30

Bessen, James, 4

Bezos, Jeff, 183

bias, 171, 224-225

Blank, Steven, 83

Bogaerts, David, 184

branches

lifetimes of, 44-45, 215

short-lived, 56

Brynjolfsson, Erik, 4

bureaucracy, 35

bureaucratic culture, 31-32, 35, 43

burnout, 94-100

correlated with:

deployment pain, 97, 215

pathological culture, 97

measuring, 96

negatively correlated with:

delivery performance, 64

effective leadership, 98, 215

investments in DevOps, 98

Lean management, 77, 84, 87, 217

organizational performance, 215

trunk-based development, 215

Westrum organizational culture, 215

reducing, 46, 95, 97-100, 107

risk factors for, 95

C
capabilities (DevOps), 6-8, 215, 219

driving delivery performance, 9, 201-209

measuring, 5-6

Capital One, 5, 72

car manufacturing, 75

causal analysis, 140

causation, 136-138

census reports, 134-135

change advisory (approval) board (CAB), 78-81

affecting delivery performance, 217

change approval process, 78-81, 205

only for high-risk changes, 79, 217

change fail rate, 14, 17, 37

with continuous delivery, 48, 50

in performance analysis, 23, 141

Chi-square tests, 224

classi�cation analysis, 228

clinical depression, 94

cluster analysis, 18, 140-141, 228

coaching, 188, 197

Cockcroft, Adrian, 107

collaboration, 36, 43, 45, 64

encouraging, 124

commercial off-the-shelf software (COTS), 60

common method bias/variance (CMB/CMV), 159, 224

communication

improving, 71

inspirational, 117

composite reliability (CR), 226

conferences, 123

con�guration drift, 93

con�guration management, 44

con�rmatory factor analysis (CFA), 225

constructs, 33, 37

impacting each other, 211, 227

continuous delivery (CD), 41-57

capabilities of, 201-203

correlated with:

delivery performance, 48, 98

deployment frequency, 213

empowered teams, 48

identity, 48

Lean product management, 85, 217

loosely coupled architecture, 48, 62, 216

organizational culture, 47, 105-106, 218

trunk-based development, 215

impacts of, 39, 45-52, 56

implementing, 43-45

measuring, 47

practices of, 42-43, 52-56

reducing burnout, 107

continuous deployment, 16

continuous improvement, xxii-xxiii, 6-8, 20, 43

continuous integration, 41, 44-45, 171, 202

correlated with leadership, 220

reducing deployment pain, 91

convergent validity, 34, 150, 225-226

Conway, Melvin, 63

Corman, Josh, 72

correlation, 136-138, 211, 226-227

Cronbach’s alpha, 226

cross-functional teams, 123-124, 183

cross-sectional research design, xxi, 169, 171

culture, 29-40

changing, 39-40

high-performance, 195

high-trusting, 116

improving, 47-48, 123-127

measuring, 27, 32-35

modeling, 29-32

poor, 90, 92

typology of, 29-32, 147

customer feedback

gathered quickly, 15-16, 25, 42, 86

incorporating, 43, 84-87, 204

customer satisfaction, 24, 116

D
dashboards, 77, 206

data, 169-175

bad, 163-165

collecting and analyzing, 158-159, 169-172

system, 157-158, 160-162

trusting, 162-165

debugging someone else’s code, 66

decision-making, 36

focusing on, 109

delivery lead time. See lead time

delivery performance

analyzing, 18-23

correlated with:

change approval process, 78-81, 217

continuous delivery, 48, 98

deployment frequency, 216

investment in DevOps, 122, 213, 221

job satisfaction, 106, 108

Lean management, 77, 84, 87, 98, 217

organizational performance, 98

tempo/stability, 213

transformational leadership, 119-120, 219

trunk-based development, 215

version control, 162

Westrum organizational culture, 218

of high vs. low performers, 212

impacts of, 24-26, 70

improving, xxii-xxiii, 26-27, 46, 122

key capabilities of, 9, 201-209

measuring, 11-17, 37

negatively correlated with:

deployment pain, 213, 215

integrated environment, 216

not correlated with:

approvals for high-risk changes, 217

type of system, 60-61, 216

poor, 90, 92

predicting, 27, 31, 36-37

Deming, W. Edwards, 27, 42

departments

goals of, 43

moving between, 124

protecting, 31

deployment frequency, 14, 16, 37, 79

correlated with:

continuous delivery, 213

delivery performance, 216

version control, 213

in performance analysis, 141

deployment pain, 89-94

correlated with burnout, 97, 215

measuring, 91

negatively correlated with:

delivery performance, 64, 213, 215

organizational culture, 218

trunk-based development, 215

Westrum organizational culture, 215, 218

reducing, 46, 91, 93, 122

deployment pipeline, 45, 79-80

deployments

automated, 45, 80, 92, 109, 202

complex, 92-93

continuous. See continuous deployment

done independently, 62, 216

during normal business hours, 62, 92

descriptive analysis, 134-136

detractors, 103

DevOps movement, xxiv-xxv, 4, 169-172

achieving high outcomes of, 120

in all operating systems, 221

capabilities of, 5

correlated with:

delivery performance, 213, 221

job satisfaction, 109

organizational culture, 218

investment in, 98, 122-123, 213, 215, 218

reports on current state of, 135

value of, 9-10

women and minorities in, 110-113

DevOpsDays, 123

DevSecOps, 72

digital banking, 181

disability, 94

disaster recovery testing exercises (DiRT), 125

discipline, 197

discriminant validity, 34, 150, 226

diversity, 110-114, 220

Duncan’s multiple range test, 229

E
economic cycles, 24

efficiency

of high vs. low performers, 24, 212

impacting, 116

improving, 16

employee Net Promoter Score (eNPS), 102

correlated with:

customer feedback, 103, 218

employee identity, 219

leadership characteristics, 120

organizational performance, 218

work�ow visibility, 219

employees

delegating authority to, 122

engagement of, 101-114

focusing on decision-making, 109

improving work, 98

loyalty of, 102-104, 218

sharing their knowledge, 126

empowered teams

choosing their own tools, 66-67, 126, 204, 207

leaders of, 220

enterprises

culture of, 35

performance of, 221

experimentation, 86-87, 107, 116, 205

correlated with leadership, 220

exploratory factor analysis (EFA), 136-138, 140, 225

Extreme Programming (XP), 41

F
Facebook, xxv, 5

failure demand, 52

failures

in complex systems, 39

punishing for, 126

restoring a service after, 17

fairness

absence of, 96

guaranteeing, 35

family issues, 94

fear, 30, 89

Federal Information Security Management Act (FISMA), 71

feedback

correlated with:

eNPS, 103, 218

leadership, 220

from:

customers, 15-16, 25, 42-43, 84-87, 204

infosec personnel, 56

production monitoring tools, 77

team members, 186

gathered quickly, 15-16, 25, 42, 85-86, 188

honest, and anonymity, 165

incorporating, 43, 84-87, 204

feelings, measuring, 165

�gures, in this book, 25

Forrester reports, 5, 135

Fremont, California, car

manufacturing plant, 39

G
game days. See disaster recovery testing exercises

Geek Feminism, 114

gender, 110-111, 113, 220

generative culture, 31-32, 35-36, 48, 206

correlated with:

employee identity, 107

Lean management, 77, 87

demonstrating new behaviors, 197

GitHub, 201

approving changes in, 80

Flow, 55

goals

accomplishing, 31

aligning, 106, 122

noncommercial, 24, 116, 212

for system-level outcomes, 43

Google, 5

Cloud Platform, 93

disaster recovery testing exercises at, 125

high-performing teams in, 37-39

20% time policy, 98, 125

green�eld systems, xxii, 8, 10, 60-61

H
Hammond, Paul, xxiv

harassment, 113

Harman’s single-factor test, 224

Heroku, 93

hierarchical clustering, 141

high performers, 9-10, 18-24

correlated with:

change approval process, 79

continuous improvement, 6, 43

deployment frequency, 65, 216

performance, 212

leadership in, 119-120, 219

not correlated with industry characteristics, 221-222

recommending their organization, 103, 219

time spent on:

integration, 215

manual work, 214

new vs. unplanned work/rework, 52, 213

security issues, 72, 215

working independently, 61-64

Honda, 75

Hoshin Kanri, 188

human errors, 39

hypotheses, 138-139

revisiting, 175

testing, 227

I
IBM

performance testing at, 160-161

THINK Friday program, 98

IDC reports, 135

identity, 101

correlated with:

continuous delivery, 48

culture, 107

eNPS, 104, 219

organizational performance, 105, 107-108, 218

trunk-based development, 215

improvement activities, 188

inclusion, 110

individual values, 96, 99

industry characteristics, 221-222

inferential predictive analysis, 138-139, 211, 227

informal learning, 125

information �ow, 31, 36

information security (infosec), 69-73

built into daily work, 67, 72

at the end of software delivery lifecycle, 69

integrated into delivery process, 56, 203

shifting left on, 45, 70-72

in US Federal Government, 71

using preapproved tools for, 67, 70

ING Netherlands, 181-194

innovations, 86-87, 205

supporting, 116, 126

integrated environment, 62

delivery performance and, 216

integration time, 215

intellectual stimulation, 117

internal consistency, 226

internal websites, 206

Intuit, 72

inverse Conway Maneuver, 63

investment in DevOps, 98, 122-123, 213, 215, 218

J
job satisfaction, 36, 101, 207

correlated with:

ability to choose tools, 126

delivery performance, 106

Lean management, 217

organizational performance, 108-109

proactive monitoring, 127

trunk-based development, 215

Westrum organizational culture, 218

job stress, 94

job turnover, 94

K
kanban, 77

Kata, 191

Krishnan, Kripa, 125

L
lack of control, 96

latent constructs, 146-155, 225

lead time, 13-17, 37

correlated with:

change approval process, 79

test automation and version control, 213

measuring, 14

in performance analysis, 141

reducing, 116

leadership

coaching, 188

correlated with:

continuous integration, 220

delivery performance, 119, 219

empowered teams, 220

eNPS, 120

experimentation, 220

feedback, 220

loosely coupled architecture, 220

organizational culture, 120, 218

shift left on security, 220

test automation, 220

trunk-based development, 220

working in small batches, 220

high-performance, 179-198

measuring, 118-119

motivating, 115

reducing burnout, 215

servant, 118

supporting continuous

improvement, xxii-xxiii

transformational, 115-121, 207

Lean management, 76-81

correlated with:

delivery performance, 98, 217

job satisfaction, 217

organizational culture, 217-218

organizational performance, 181

impacts of, 39, 115-116

reducing burnout, 98, 100, 107, 217

value streams in, 183

Lean manufacturing, 39, 75

Lean product management, 84-86

correlated with:

continuous delivery, 85, 217

generative culture, 87

performance, 84, 217

Westrum organizational culture, 217

reducing burnout, 84, 217

working in small batches in, 16, 84-88

Lean startup, 191

learning, 108, 187, 193, 207

creating environment for, 195

legacy code, xxii, 10, 23

Lietz, Shannon, 72

Likert-type scale, xxvi, 32-35, 133, 151

linear regression, 228

lines of code, optimal amount of, 12

LinkedIn, xxv

loosely coupled architecture, 62-65, 204

correlated with:

continuous delivery, 48, 62, 216

leadership, 220

reducing deployment pain, 91

low performers, 18-24

correlated with:

change approval process, 79

deployment frequency, 65, 216

mainframe systems, 60, 216

performance, 212

software outsourcing, 60, 216

leadership in, 119-120, 219

not correlated with industry characteristics, 221-222

recommending their organization, 103, 219

time spent on:

integration, 215

manual work, 214

new vs. unplanned work/rework, 52, 213

security issues, 72, 215

trading speed for stability, 10

loyalty, 102-104

correlated with organizational performance, 104, 218

M
mainframe systems, 8, 60, 216

Mainstream Media Accountability Survey, 143

managers

addressing employees’ burnout, 95-98

affecting organizational culture, 105-106, 122-123

leading by example, 197

supporting their teams, 123-127

manifest variables, 146

manual work, 214

marker variable test, 224

market share, 24, 181

of high vs. low performers, 212

Maslach, Christina, 95

maturity models, 6-7

McAfee, Andrew, 4

mean time to restore (MTTR), 14, 17, 37

correlated with:

change approval process, 79

monitoring and version control, 213

in performance analysis, 141

mechanistic analysis, 140

medium performers, 18, 23

correlated with:

delivery performance, 212

deployment frequency, 65, 216

leadership in, 219

not correlated with industry characteristics, 221-222

time spent on:

manual work, 214

new vs. unplanned work/rework, 214

menial tasks, 109

microaggressions, 113

microservices architecture, 217

Microsoft

Azure service, 93

continuous delivery at, 90

minimum viable product (MVP), 84

minorities, 112, 220

mission, 30-31

monitoring tools, 76, 206

correlated with MTTR, 213

feedback from, 77

proactive, 109, 127

motivation

increasing, 16

role of leaders in, 115

N
Net Promoter Score (NPS), 145

explained, 104

measuring, 102-104

Net�ix, 5

new work, 23, 51, 213

during normal business hours, 98

Nijssen, Mark, 194

noncommercial performance

of high vs. low performers, 212

measuring, 24

predicting, 213

O
Obeya room, 182, 184, 190

Office Space, 163

operating systems, 221

opinions, measuring, 165

organizational culture changing, 39-40

correlated with:

continuous delivery, 47, 105-106, 218

information �ow, 31, 36

investment in DevOps, 218

leadership characteristics, 120, 218

Lean management, 218

Lean product management, 84

organizational performance, 218

retention/turnover, 167

improving, 48, 122

levels of, 29-30

measuring, 32-35, 146-152, 166

modeling, 29-32

negatively correlated with:

burnout, 97

deployment pain, 218

poor, 90, 92

typology of, 29-32

organizational performance

correlated with:

delivery performance, 98

diversity, 113

employee identity, 105, 107-108, 218

employee loyalty, 104, 218

eNPS, 218

job satisfaction, 108-109

Lean management, 77, 181

Lean product management, 84, 217

organizational culture, 218

proactive monitoring, 127

transformational leadership, 120, 122

of high vs. low performers, 212

key capabilities of, 9

measuring, 24-26

negatively correlated with burnout, 215

poor, 90, 92

predicting, 36-37, 87, 212-213

organizational values, 96, 99

organizations

change approval process in, 78-81

goals of, 24, 43, 106, 116, 122, 212

importance of software for, 4

inclusive, 110

overestimating their progress, 5

recommended by peers, 102-103, 219

remaining competitive, 3-4

outcomes, 7-8

outsourcing, 60, 216

overhead, reducing, 16

OWASP Top 10, 69

O’Reilly Data Science Salary Survey, 135

P
pair programming, 79, 205

Pal, Topo, 72

partial least squares regression (PLS), 211, 228

passives, 102

pathological culture, 30, 32

dealing with failures in, 39

leading to burnout, 97

patience, 197

Payment Card Industry Data Security Standard (PCI DSS), 79

Pearson correlations, 138, 226-227

peer review, 79, 205

correlated with delivery performance, 79, 217

perceptions, measuring, 165

performance

analyzing, 141

inspiring, 117

making metrics visible, 122

measuring, 11-27, 154

vs. stability, 17, 20

testing, 160-161

using to make business decisions, 76

performance-oriented culture. See generative culture

Pivotal Cloud Foundry, 71, 93

plan-do-check-act cycle (PDCA), 188

Poppendieck, Mary and Tom, 75

population, in data analysis, 134-135, 172-174

post hoc comparisons, 229

power-oriented culture. See pathological culture

predictive analysis, 140, 211, 227-228

PRINCE2, 75

principal components analysis (PCA), 225

proactive monitoring, 109, 127

problem solving, 191

product development, 83-88

production environment, manual changes to, 93

productivity, 24, 181

displaying metrics of, 76-77

of high vs. low performers, 212

increasing, 64, 116

measuring, 12, 64

pro�tability, 24, 181

Project Include, 114

Project Management Institute, 75

promoters, 102

Puppet Inc., xxiv, 172, 199

push polls, 143-144

Q

qualitative research, 132-133

quality

acknowledging achievements in, 117

building in, 10, 42

correlated with organizational performance, 24

displaying metrics of, 76-77

focusing on, 43

measuring, 50-52

monitoring, 206

quantitative research, 132-133

quantity of goods, 24

of high vs. low performers, 212

quarantine suites, 54

quick surveys, 145

R
randomized studies, 140

reciprocal model, 87, 106-107

Red Hat OpenShift, 93

referrals, 172

regression testing, 228

release frequency. See deployment frequency

releases, 16

reliability, 34, 151-152, 226

repetitive work, 43

research

cross-sectional, xxi, 169, 171

primary vs. secondary, 131-132

qualitative vs. quantitative, 132-133

in this book, xxii-xxiii, 141

restore time. See mean time to restore

retention, 166-167

return on investment (ROI), 24

rewards, insufficient, 96

rework

decreasing with trunk-based development, 215

of high vs. low performers, 50-51, 213-214

Ries, Eric, 83

right mindset, 195

Rijkhoff, Jan, 191

risk

reducing, 16

taking, 126

Risk Management Framework (RMF), 71

risk management theater, 81

rituals, 30

Rugged DevOps, 72

rule-oriented culture. See bureaucratic culture

S
sample, in data analysis, 135

Scheer, Liedewij van der, 184

Schuyer, Jael, 184

Schwartz, Mark, 35

Scrum rituals, 191

security

built into daily work, 67, 72

shifting left on, 45, 70-72, 91, 203, 220

time spent on remediating of, 215

Seddon, John, 52

segregation of duties, 79

Shook, John, 39

short-lived branches, 44, 56, 215

sick time, 94

simple linear regression, 211

single factors, 224

small batches, 16, 25, 42, 84-88, 205, 220

Smit, Jannes, 181, 187, 192-193

snowball sampling, xxv, 172-174, 224

social norms, 30

software

changes in, 79-80

delivery of. See delivery performance

importance of, for organizations, 4-5

mainframe, 60, 216

outsourcing, 26, 60, 216

perceived quality of, 50

strategic, 26

Spurious Correlations, 137

stability

change approval process and, 79

focusing on, 43

increasing, 64

of high vs. low performers, 10

vs. performance, 17, 20, 213

in performance analysis, 141

trends for, over years, 22

stand-ups, 186-188

startups

culture of, 35

performance of, 221

State of DevOps Report, xxiv, 158, 199

statistical data analysis, 133-135

storyboards, 77

Subversion, 201

suicide, 94

surveys, 33, 143-145

anonymity in, 165

checked for bias, 159

with obvious agenda, 143-144

preparation of, 223

reasons to use, xxv, 157-167

trusting data reported in, 146-155, 162-165

weakness of questions in, 145

system data, 157-158, 160-162

system health monitoring, 152-153, 206

systems of engagement, 8, 60-61

systems of record, 8, 60-61

T
Target, 5

target population, 172

team experimentation, 86-87, 107, 116, 205

teams

choosing their own tools, 48, 66-67, 109, 126, 204, 207

code review in, 79, 205

collaborating, 13, 34, 36, 64, 207

cross-functional, 63, 123-124, 183

demotivating, 107

diversity in, 110-113, 220

having authority to make changes, 62, 78-81, 84

having time for new projects, 98, 106, 123

high-performing, 37-39

leaders of, 98, 115, 220

productivity of, 12-13, 64-65

recommended by peers, 103, 219

size of, 64-65

supporting, 123-127

transforming from within, 197

technical debt, 23, 123

Technology Transformation Service, 5, 26

technology, importance of, 4-5

tempo, 17

increasing, 64

of high vs. low performers, 10

vs. performance, 213

in performance analysis, 141

trends for, over years, 21

Ten Berge, Ingeborg, 184

test automation, 44-45, 53-55, 91, 109, 202

correlated with:

lead time, 213

leadership, 220

test data management, 45, 55, 203

reducing deployment pain, 91

test-driven development (TDD), 41, 54

tests

continuous in-process, 52

integrated environment for, 62

in version control, 44

3M, side projects in, 125

time to restore service. See mean time to restore

tools

chosen by teams, 48, 66-67, 109, 126, 204, 207

preapproved by infosec team, 67, 70

Toyota, 16, 75

training budget, 123, 125

transformational leadership, 115-121, 207

trends, in delivery performance, 20-22

Trump, Donald, 143

trunk-based development, 44-45, 55-56, 202, 215

correlated with leadership, 220

reducing deployment pain, 91

trust, 35-36

between teams, 124

t-tests, 224

Tukey’s test, 229

turnover, 166-167

Twitter, xxiv-xxv

Two Pizza Rule, 183

U
underrepresented minorities, 112, 220

unequal pay, 113

unit tests, 44

unplanned work

capacity to absorb, 13

of high vs. low performers, 23, 50-51, 213-214

US Digital Service, 5, 26

US Federal Government, 5, 26, 35

infosec in, 71

utilization, 13

V
validity, 34, 150-152, 225-226

value streams, 84-86, 183

values, 30

aligning, 99, 106-107, 118

con�icts of, 96

correlated with eNPS, 104

Vanguard Method, 52

velocity, 12-13

vendor reports, 135

version control, 44-45, 201

approving changes in, 80

automated tests in, 44

correlated with:

delivery performance, 162

deployment frequency, lead time, MTTR, 213

keeping application con�guration in, 53

measuring capability of, 46

reducing deployment pain, 91

Vigen, Tyler, 137

virtuous cycle. See reciprocal model

visibility, 84

into code deployments, 91

vision, 117

visual displays, 76-77, 182, 184, 186, 206

Vos, Jordi de, 188

W
Wardley mapping method, 26

Wardley, Simon, 26

Weinberg, Jerry, 50

Westrum organizational culture, 29-32

correlated with:

job satisfaction, 218

Lean management, 217

performance, 218

trunk-based development, 215

measuring, 147, 151

negatively correlated with:

burnout, 215

deployment pain, 215, 218

outcomes of, 36-37

Westrum, Ron, 30, 43, 206

Wickett, James, 69, 72

Wijnand, Danny, 190

Wolhoff, Paul, 184

women, 110-111, 113, 220

work

improving, 98

making more sustainable, 49

meaningful, 207

organizing, 77

in small batches, 16, 25, 42, 84, 88, 205, 220

correlated with leadership, 220

work in progress (WIP), 206

limiting, 76-77, 184

work overload, 96

work/life balance, 90

work�ow

correlated with eNPS, 104, 219

making visible, 76-77, 84, 204

workplace environment, 96

Y
Yegge, Steve, 66

ABOUT THE AUTHORS

Dr. Nicole Forsgren is CEO and Chief Scientist at DevOps Research and

Assessment. She is best known as the lead investigator on the largest

DevOps studies to date. She has been a professor and performance

engineer and her work has been published in several peer-reviewed

journals.

Jez Humble is coauthor of e DevOps Handbook, Lean Enterprise, and the

Jolt Award-winning Continuous Delivery. He is currently researching how

to build high-performing teams at his startup, DevOps Research and

Assessment, LLC, and teaching at UC Berkeley.

Gene Kim is a multiple award-winning CTO, researcher, and author of e

Phoenix Project, e DevOps Handbook, and e Visible Ops Handbook. He is

founder of IT Revolution and is the founder and host of the DevOps

Enterprise Summit conferences.

	Cover Page
	Praise for Accelerate
	Half Title
	Full Title
	Copyright
	Contents
	Figures
	Foreword by Martin Fowler
	Foreword by Courtney Kissler
	Quick Reference: Capabilities to Drive Improvement
	Preface
	Part One: What We Found
	Chapter 1 - Accelerate
	Chapter 2 - Measuring Performance
	Chapter 3 - Measuring and Changing Culture
	Chapter 4 - Technical Practices
	Chapter 5 - Architecture
	Chapter 6 - Integrating Infosec into the Delivery Lifecycle
	Chapter 7 - Management Practices for Software
	Chapter 8 - Product Development
	Chapter 9 - Making Work Sustainable
	Chapter 10 - Employee Satisfaction, Identity, and Engagement
	Chapter 11 - Leaders and Managers

	Part Two: The Research
	Chapter 12 - The Science Behind This Book
	Chapter 13 - Introduction to Psychometrics
	Chapter 14 - Why Use a Survey
	Chapter 15 - The Data for the Project

	Part Three: Transformation
	Chapter 16 - High-Performance Leadership and Management

	Conclusion
	Appendix A: Capabilities to Drive Improvement
	Appendix B: The Stats
	Appendix C: Statistical Methods Used in Our Research
	Acknowledgments
	Bibliography
	Index
	About the Authors

