


More Advance Praise for The Master Algorithm

“This is an incredibly important and useful book. Machine learning is
already critical to your life and work, and will only become more so.
Finally, Pedro Domingos has written about it in a clear and understandable
fashion.”

—THOMAS H. DAVENPORT, distinguished professor, Babson College,
and author of Competing on Analytics and Big Data at Work

“Machine learning, known in commercial use as predictive analytics, is
changing the world. This riveting, far-reaching, and inspiring book
introduces the deep scientific concepts to even non-technical readers, and
yet also satisfies experts with a fresh, profound perspective that reveals the
most promising research directions. It’s a rare gem indeed.”

—ERIC SIEGEL, founder, Predictive Analytics World, and author of
Predictive Analytics

“Machine learning is a fascinating world never before glimpsed by
outsiders. Pedro Domingos initiates you to the mysterious languages spoken
by its five tribes, and invites you to join in his plan to unite them, creating
the most powerful technology our civilization has ever seen.”

—SEBASTIAN SEUNG, professor, Princeton, and author of
Connectome

“[An] enthusiastic but not dumbed-down introduction to machine learning .
. . lucid and consistently informative. . . . With wit, vision, and scholarship,
Domingos describes how these scientists are creating programs that allow a
computer to teach itself. Readers . . . will discover fascinating insights.”

—Kirkus Reviews
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TO THE MEMORY OF MY SISTER RITA, WHO LOST HER BATTLE
WITH CANCER WHILE I WAS WRITING THIS BOOK



The grand aim of science is to cover the greatest number of
experimental facts by logical deduction from the smallest number
of hypotheses or axioms.

—Albert Einstein

Civilization advances by extending the number of important
operations we can perform without thinking about them.

—Alfred North Whitehead
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Prologue

You may not know it, but machine learning is all around you. When you
type a query into a search engine, it’s how the engine figures out which
results to show you (and which ads, as well). When you read your e-mail,
you don’t see most of the spam, because machine learning filtered it out. Go
to Amazon.com to buy a book or Netflix to watch a video, and a machine-
learning system helpfully recommends some you might like. Facebook uses
machine learning to decide which updates to show you, and Twitter does
the same for tweets. Whenever you use a computer, chances are machine
learning is involved somewhere.

Traditionally, the only way to get a computer to do something—from
adding two numbers to flying an airplane—was to write down an algorithm
explaining how, in painstaking detail. But machine-learning algorithms,
also known as learners, are different: they figure it out on their own, by
making inferences from data. And the more data they have, the better they
get. Now we don’t have to program computers; they program themselves.

It’s not just in cyberspace, either: your whole day, from the moment you
wake up to the moment you fall asleep, is suffused with machine learning.

Your clock radio goes off at 7:00 a.m. It’s playing a song you haven’t
heard before, but you really like it. Courtesy of Pandora, it’s been learning
your tastes in music, like your own personal radio jock. Perhaps the song
itself was produced with the help of machine learning. You eat breakfast
and read the morning paper. It came off the printing press a few hours
earlier, the printing process carefully adjusted to avoid streaking using a

http://amazon.com/


learning algorithm. The temperature in your house is just right, and your
electricity bill noticeably down, since you installed a Nest learning
thermostat.

As you drive to work, your car continually adjusts fuel injection and
exhaust recirculation to get the best gas mileage. You use Inrix, a traffic
prediction system, to shorten your rush-hour commute, not to mention
lowering your stress level. At work, machine learning helps you combat
information overload. You use a data cube to summarize masses of data,
look at it from every angle, and drill down on the most important bits. You
have a decision to make: Will layout A or B bring more business to your
website? A web-learning system tries both out and reports back. You need
to check out a potential supplier’s website, but it’s in a foreign language. No
problem: Google automatically translates it for you. Your e-mail
conveniently sorts itself into folders, leaving only the most important
messages in the inbox. Your word processor checks your grammar and
spelling. You find a flight for an upcoming trip, but hold off on buying the
ticket because Bing Travel predicts its price will go down soon. Without
realizing it, you accomplish a lot more, hour by hour, than you would
without the help of machine learning.

During a break you check on your mutual funds. Most of them use
learning algorithms to help pick stocks, and one of them is completely run
by a learning system. At lunchtime you walk down the street, smart phone
in hand, looking for a place to eat. Yelp’s learning system helps you find it.
Your cell phone is chock-full of learning algorithms. They’re hard at work
correcting your typos, understanding your spoken commands, reducing
transmission errors, recognizing bar codes, and much else. Your phone can
even anticipate what you’re going to do next and advise you accordingly.
For example, as you’re finishing lunch, it discreetly alerts you that your
afternoon meeting with an out-of-town visitor will have to start late because
her flight has been delayed.

Night has fallen by the time you get off work. Machine learning helps
keep you safe as you walk to your car, monitoring the video feed from the
surveillance camera in the parking lot and alerting off-site security staff if it
detects suspicious activity. On your way home, you stop at the supermarket,
where you walk down aisles that were laid out with the help of learning
algorithms: which goods to stock, which end-of-aisle displays to set up,



whether to put the salsa in the sauce section or next to the tortilla chips. You
pay with a credit card. A learning algorithm decided to send you the offer
for that card and approved your application. Another one continually looks
for suspicious transactions and alerts you if it thinks your card number was
stolen. A third one tries to estimate how happy you are with this card. If
you’re a good customer but seem dissatisfied, you get a sweetened offer
before you switch to another one.

You get home and walk to the mailbox. You have a letter from a friend,
routed to you by a learning algorithm that can read handwritten addresses.
There’s also the usual junk, selected for you by other learning algorithms
(oh, well). You stop for a moment to take in the cool night air. Crime in
your city is noticeably down since the police started using statistical
learning to predict where crimes are most likely to occur and concentrating
beat officers there. You eat dinner with your family. The mayor is in the
news. You voted for him because he personally called you on election day,
after a learning algorithm pinpointed you as a key undecided voter. After
dinner, you watch the ball game. Both teams selected their players with the
help of statistical learning. Or perhaps you play games on your Xbox with
your kids, and Kinect’s learning algorithm figures out where you are and
what you’re doing. Before going to sleep, you take your medicine, which
was designed and tested with the help of yet more learning algorithms. Your
doctor, too, may have used machine learning to help diagnose you, from
interpreting X-rays to figuring out an unusual set of symptoms.

Machine learning plays a part in every stage of your life. If you studied
online for the SAT college admission exam, a learning algorithm graded
your practice essays. And if you applied to business school and took the
GMAT exam recently, one of your essay graders was a learning system.
Perhaps when you applied for your job, a learning algorithm picked your
résumé from the virtual pile and told your prospective employer: here’s a
strong candidate; take a look. Your latest raise may have come courtesy of
another learning algorithm. If you’re looking to buy a house, Zillow.com
will estimate what each one you’re considering is worth. When you’ve
settled on one, you apply for a home loan, and a learning algorithm studies
your application and recommends accepting it (or not). Perhaps most
important, if you’ve used an online dating service, machine learning may
even have helped you find the love of your life.

http://zillow.com/


Society is changing, one learning algorithm at a time. Machine learning
is remaking science, technology, business, politics, and war. Satellites,
DNA sequencers, and particle accelerators probe nature in ever-finer detail,
and learning algorithms turn the torrents of data into new scientific
knowledge. Companies know their customers like never before. The
candidate with the best voter models wins, like Obama against Romney.
Unmanned vehicles pilot themselves across land, sea, and air. No one
programmed your tastes into the Amazon recommendation system; a
learning algorithm figured them out on its own, by generalizing from your
past purchases. Google’s self-driving car taught itself how to stay on the
road; no engineer wrote an algorithm instructing it, step-by-step, how to get
from A to B. No one knows how to program a car to drive, and no one
needs to, because a car equipped with a learning algorithm picks it up by
observing what the driver does.

Machine learning is something new under the sun: a technology that
builds itself. Ever since our remote ancestors started sharpening stones into
tools, humans have been designing artifacts, whether they’re hand built or
mass produced. But learning algorithms are artifacts that design other
artifacts. “Computers are useless,” said Picasso. “They can only give you
answers.” Computers aren’t supposed to be creative; they’re supposed to do
what you tell them to. If what you tell them to do is be creative, you get
machine learning. A learning algorithm is like a master craftsman: every
one of its productions is different and exquisitely tailored to the customer’s
needs. But instead of turning stone into masonry or gold into jewelry,
learners turn data into algorithms. And the more data they have, the more
intricate the algorithms can be.

Homo sapiens is the species that adapts the world to itself instead of
adapting itself to the world. Machine learning is the newest chapter in this
million-year saga: with it, the world senses what you want and changes
accordingly, without you having to lift a finger. Like a magic forest, your
surroundings—virtual today, physical tomorrow—rearrange themselves as
you move through them. The path you picked out between the trees and
bushes grows into a road. Signs pointing the way spring up in the places
where you got lost.

These seemingly magical technologies work because, at its core,
machine learning is about prediction: predicting what we want, the results



of our actions, how to achieve our goals, how the world will change. Once
upon a time we relied on shamans and soothsayers for this, but they were
much too fallible. Science’s predictions are more trustworthy, but they are
limited to what we can systematically observe and tractably model. Big data
and machine learning greatly expand that scope. Some everyday things can
be predicted by the unaided mind, from catching a ball to carrying on a
conversation. Some things, try as we might, are just unpredictable. For the
vast middle ground between the two, there’s machine learning.

Paradoxically, even as they open new windows on nature and human
behavior, learning algorithms themselves have remained shrouded in
mystery. Hardly a day goes by without a story in the media involving
machine learning, whether it’s Apple’s launch of the Siri personal assistant,
IBM’s Watson beating the human Jeopardy! champion, Target finding out a
teenager is pregnant before her parents do, or the NSA looking for dots to
connect. But in each case the learning algorithm driving the story is a black
box. Even books on big data skirt around what really happens when the
computer swallows all those terabytes and magically comes up with new
insights. At best, we’re left with the impression that learning algorithms just
find correlations between pairs of events, such as googling “flu medicine”
and having the flu. But finding correlations is to machine learning no more
than bricks are to houses, and people don’t live in bricks.

When a new technology is as pervasive and game changing as machine
learning, it’s not wise to let it remain a black box. Opacity opens the door to
error and misuse. Amazon’s algorithm, more than any one person,
determines what books are read in the world today. The NSA’s algorithms
decide whether you’re a potential terrorist. Climate models decide what’s a
safe level of carbon dioxide in the atmosphere. Stock-picking models drive
the economy more than most of us do. You can’t control what you don’t
understand, and that’s why you need to understand machine learning—as a
citizen, a professional, and a human being engaged in the pursuit of
happiness.

This book’s first goal is to let you in on the secrets of machine learning.
Only engineers and mechanics need to know how a car’s engine works, but
every driver needs to know that turning the steering wheel changes the car’s
direction and stepping on the brake brings it to a stop. Few people today
know what the corresponding elements of a learner even are, let alone how



to use them. The psychologist Don Norman coined the term conceptual
model to refer to the rough knowledge of a technology we need to have in
order to use it effectively. This book provides you with a conceptual model
of machine learning.

Not all learning algorithms work the same, and the differences have
consequences. Take Amazon’s and Netflix’s recommenders, for example. If
each were guiding you through a physical bookstore, trying to determine
what’s “right for you,” Amazon would be more likely to walk you over to
shelves you’ve frequented previously; Netflix would take you to unfamiliar
and seemingly odd sections of the store but lead you to stuff you’d end up
loving. In this book we’ll see the different kinds of algorithms that
companies like Amazon and Netflix use. Netflix’s algorithm has a deeper
(even if still quite limited) understanding of your tastes than Amazon’s, but
ironically that doesn’t mean Amazon would be better off using it. Netflix’s
business model depends on driving demand into the long tail of obscure
movies and TV shows, which cost it little, and away from the blockbusters,
which your subscription isn’t enough to pay for. Amazon has no such
problem; although it’s well placed to take advantage of the long tail, it’s
equally happy to sell you more expensive popular items, which also
simplify its logistics. And we, as customers, are more willing to take a
chance on an odd item if we have a subscription than if we have to pay for
it separately.

Hundreds of new learning algorithms are invented every year, but
they’re all based on the same few basic ideas. These are what this book is
about, and they’re all you really need to know to understand how machine
learning is changing the world. Far from esoteric, and quite aside even from
their use in computers, they are answers to questions that matter to all of us:
How do we learn? Is there a better way? What can we predict? Can we trust
what we’ve learned? Rival schools of thought within machine learning have
very different answers to these questions. The main ones are five in number,
and we’ll devote a chapter to each. Symbolists view learning as the inverse
of deduction and take ideas from philosophy, psychology, and logic.
Connectionists reverse engineer the brain and are inspired by neuroscience
and physics. Evolutionaries simulate evolution on the computer and draw
on genetics and evolutionary biology. Bayesians believe learning is a form
of probabilistic inference and have their roots in statistics. Analogizers learn



by extrapolating from similarity judgments and are influenced by
psychology and mathematical optimization. Driven by the goal of building
learning machines, we’ll tour a good chunk of the intellectual history of the
last hundred years and see it in a new light.

Each of the five tribes of machine learning has its own master
algorithm, a general-purpose learner that you can in principle use to
discover knowledge from data in any domain. The symbolists’ master
algorithm is inverse deduction, the connectionists’ is backpropagation, the
evolutionaries’ is genetic programming, the Bayesians’ is Bayesian
inference, and the analogizers’ is the support vector machine. In practice,
however, each of these algorithms is good for some things but not others.
What we really want is a single algorithm combining the key features of all
of them: the ultimate master algorithm. For some this is an unattainable
dream, but for many of us in machine learning, it’s what puts a twinkle in
our eye and keeps us working late into the night.

If it exists, the Master Algorithm can derive all knowledge in the world
—past, present, and future—from data. Inventing it would be one of the
greatest advances in the history of science. It would speed up the progress
of knowledge across the board, and change the world in ways that we can
barely begin to imagine. The Master Algorithm is to machine learning what
the Standard Model is to particle physics or the Central Dogma to
molecular biology: a unified theory that makes sense of everything we
know to date, and lays the foundation for decades or centuries of future
progress. The Master Algorithm is our gateway to solving some of the
hardest problems we face, from building domestic robots to curing cancer.

Take cancer. Curing it is hard because cancer is not one disease, but
many. Tumors can be triggered by a dizzying array of causes, and they
mutate as they metastasize. The surest way to kill a tumor is to sequence its
genome, figure out which drugs will work against it—without harming you,
given your genome and medical history—and perhaps even design a new
drug specifically for your case. No doctor can master all the knowledge
required for this. Sounds like a perfect job for machine learning: in effect,
it’s a more complicated and challenging version of the searches that
Amazon and Netflix do every day, except it’s looking for the right treatment
for you instead of the right book or movie. Unfortunately, while today’s
learning algorithms can diagnose many diseases with superhuman accuracy,



curing cancer is well beyond their ken. If we succeed in our quest for the
Master Algorithm, it will no longer be.

The second goal of this book is thus to enable you to invent the Master
Algorithm. You’d think this would require heavy-duty mathematics and
severe theoretical work. On the contrary, what it requires is stepping back
from the mathematical arcana to see the overarching pattern of learning
phenomena; and for this the layman, approaching the forest from a distance,
is in some ways better placed than the specialist, already deeply immersed
in the study of particular trees. Once we have the conceptual solution, we
can fill in the mathematical details; but that is not for this book, and not the
most important part. Thus, as we visit each tribe, our goal is to gather its
piece of the puzzle and understand where it fits, mindful that none of the
blind men can see the whole elephant. In particular, we’ll see what each
tribe can contribute to curing cancer, and also what it’s missing. Then, step-
by-step, we’ll assemble all the pieces into the solution—or rather, a solution
that is not yet the Master Algorithm, but is the closest anyone has come,
and hopefully makes a good launch pad for your imagination. And we’ll
preview the use of this algorithm as a weapon in the fight against cancer. As
you read the book, feel free to skim or skip any parts you find troublesome;
it’s the big picture that matters, and you’ll probably get more out of those
parts if you revisit them after the puzzle is assembled.

I’ve been a machine-learning researcher for more than twenty years. My
interest in it was sparked by a book with an odd title I saw in a bookstore
when I was a senior in college: Artificial Intelligence. It had only a short
chapter on machine learning, but on reading it, I immediately became
convinced that learning was the key to solving AI and that the state of the
art was so primitive that maybe I could contribute something. Shelving
plans for an MBA, I entered the PhD program at the University of
California, Irvine. Machine learning was then a small, obscure field, and
UCI had one of the few sizable research groups anywhere. Some of my
classmates dropped out because they didn’t see much of a future in it, but I
persisted. To me nothing could have more impact than teaching computers
to learn: if we could do that, we would get a leg up on every other problem.
By the time I graduated five years later, the data-mining explosion was
under way, and so was my path to this book. My doctoral dissertation
unified symbolic and analogical learning. I’ve spent much of the last ten



years unifying symbolism and Bayesianism, and more recently those two
with connectionism. It’s time to go the next step and attempt a synthesis of
all five paradigms.

I had a number of different but overlapping audiences in mind when writing
this book.

If you’re curious what all the hubbub surrounding big data and machine
learning is about and suspect that there’s something deeper going on than
what you see in the papers, you’re right! This book is your guide to the
revolution.

If your main interest is in the business uses of machine learning, this
book can help you in at least six ways: to become a savvier consumer of
analytics; to make the most of your data scientists; to avoid the pitfalls that
kill so many data-mining projects; to discover what you can automate
without the expense of hand-coded software; to reduce the rigidity of your
information systems; and to anticipate some of the new technology that’s
coming your way. I’ve seen too much time and money wasted trying to
solve a problem with the wrong learning algorithm, or misinterpreting what
the algorithm said. It doesn’t take much to avoid these fiascoes. In fact, all
it takes is to read this book.

If you’re a citizen or policy maker concerned with the social and
political issues raised by big data and machine learning, this book will give
you a primer on the technology—what it is, where it’s taking us, what it
does and doesn’t make possible—without boring you with all the ins and
outs. From privacy to the future of work and the ethics of roboticized
warfare, we’ll see where the real issues are and how to think about them.

If you’re a scientist or engineer, machine learning is a powerful armory
that you don’t want to be without. The old, tried-and-true statistical tools
don’t get you far in the age of big (or even medium) data. You need
machine learning’s nonlinear chops to accurately model most phenomena,
and it brings with it a new scientific worldview. The expression paradigm
shift is used too casually these days, but I believe it’s not an exaggeration to
say that that’s what this book describes.

If you’re a machine-learning expert, you’re already familiar with much
of what the book covers, but you’ll also find in it many fresh ideas,
historical nuggets, and useful examples and analogies. Most of all, I hope



the book will provide a new perspective on machine learning and maybe
even start you thinking in new directions. Low-hanging fruit is all around
us, and it behooves us to pick it, but we also shouldn’t lose sight of the
bigger rewards that lie just beyond. (Apropos of which, I hope you’ll
forgive my poetic license in using the term master algorithm to refer to a
general-purpose learner.)

If you’re a student of any age—a high schooler wondering what to
major in, a college undergraduate deciding whether to go into research, or a
seasoned professional considering a career change—my hope is that this
book will spark in you an interest in this fascinating field. The world has a
dire shortage of machine-learning experts, and if you decide to join us, you
can look forward to not only exciting times and material rewards but also a
unique opportunity to serve society. And if you’re already studying machine
learning, I hope the book will help you get the lay of the land; if in your
travels you chance upon the Master Algorithm, that alone makes it worth
writing.

Last but not least, if you have an appetite for wonder, machine learning
is an intellectual feast, and you’re invited—RSVP!



CHAPTER ONE

The Machine-Learning Revolution

We live in the age of algorithms. Only a generation or two ago, mentioning
the word algorithm would have drawn a blank from most people. Today,
algorithms are in every nook and cranny of civilization. They are woven
into the fabric of everyday life. They’re not just in your cell phone or your
laptop but in your car, your house, your appliances, and your toys. Your
bank is a gigantic tangle of algorithms, with humans turning the knobs here
and there. Algorithms schedule flights and then fly the airplanes.
Algorithms run factories, trade and route goods, cash the proceeds, and
keep records. If every algorithm suddenly stopped working, it would be the
end of the world as we know it.

An algorithm is a sequence of instructions telling a computer what to
do. Computers are made of billions of tiny switches called transistors, and
algorithms turn those switches on and off billions of times per second. The
simplest algorithm is: flip a switch. The state of one transistor is one bit of
information: one if the transistor is on, and zero if it’s off. One bit
somewhere in your bank’s computers says whether your account is
overdrawn or not. Another bit somewhere in the Social Security
Administration’s computers says whether you’re alive or dead. The second
simplest algorithm is: combine two bits. Claude Shannon, better known as
the father of information theory, was the first to realize that what transistors
are doing, as they switch on and off in response to other transistors, is



reasoning. (That was his master’s thesis at MIT—the most important
master’s thesis of all time.) If transistor A turns on only when transistors B
and C are both on, it’s doing a tiny piece of logical reasoning. If A turns on
when either B or C is on, that’s another tiny logical operation. And if A
turns on whenever B is off, and vice versa, that’s a third operation. Believe
it or not, every algorithm, no matter how complex, can be reduced to just
these three operations: AND, OR, and NOT. Simple algorithms can be
represented by diagrams, using different symbols for the AND, OR, and
NOT operations. For example, if a fever can be caused by influenza or
malaria, and you should take Tylenol for a fever and a headache, this can be
expressed as follows:

By combining many such operations, we can carry out very elaborate
chains of logical reasoning. People often think computers are all about
numbers, but they’re not. Computers are all about logic. Numbers and
arithmetic are made of logic, and so is everything else in a computer. Want
to add two numbers? There’s a combination of transistors that does that.
Want to beat the human Jeopardy! champion? There’s a combination of
transistors for that too (much bigger, naturally).

It would be prohibitively expensive, though, if we had to build a new
computer for every different thing we want to do. Rather, a modern
computer is a vast assembly of transistors that can do many different things,
depending on which transistors are activated. Michelangelo said that all he
did was see the statue inside the block of marble and carve away the excess
stone until the statue was revealed. Likewise, an algorithm carves away the
excess transistors in the computer until the intended function is revealed,
whether it’s an airliner’s autopilot or a new Pixar movie.

An algorithm is not just any set of instructions: they have to be precise
and unambiguous enough to be executed by a computer. For example, a
cooking recipe is not an algorithm because it doesn’t exactly specify what
order to do things in or exactly what each step is. Exactly how much sugar



is a spoonful? As everyone who’s ever tried a new recipe knows, following
it may result in something delicious or a mess. In contrast, an algorithm
always produces the same result. Even if a recipe specifies precisely half an
ounce of sugar, we’re still not out of the woods because the computer
doesn’t know what sugar is, or an ounce. If we wanted to program a kitchen
robot to make a cake, we would have to tell it how to recognize sugar from
video, how to pick up a spoon, and so on. (We’re still working on that.) The
computer has to know how to execute the algorithm all the way down to
turning specific transistors on and off. So a cooking recipe is very far from
an algorithm.

On the other hand, the following is an algorithm for playing tic-tac-toe:

If you or your opponent has two in a row, play on the remaining
square.

Otherwise, if there’s a move that creates two lines of two in a row,
play that.

Otherwise, if the center square is free, play there.
Otherwise, if your opponent has played in a corner, play in the

opposite corner.
Otherwise, if there’s an empty corner, play there.
Otherwise, play on any empty square.

This algorithm has the nice property that it never loses! Of course, it’s
still missing many details, like how the board is represented in the
computer’s memory and how this representation is changed by a move. For
example, we could have two bits for each square, with the value 00 if the
square is empty, which changes to 01 if it has a naught and 10 if it has a
cross. But it’s precise and unambiguous enough that any competent
programmer could fill in the blanks. It also helps that we don’t really have
to specify an algorithm ourselves all the way down to individual transistors;
we can use preexisting algorithms as building blocks, and there’s a huge
number of them to choose from.

Algorithms are an exacting standard. It’s often said that you don’t really
understand something until you can express it as an algorithm. (As Richard
Feynman said, “What I cannot create, I do not understand.”) Equations, the
bread and butter of physicists and engineers, are really just a special kind of



algorithm. For example, Newton’s second law, arguably the most important
equation of all time, tells you to compute the net force on an object by
multiplying its mass by its acceleration. It also tells you implicitly that the
acceleration is the force divided by the mass, but making that explicit is
itself an algorithmic step. In any area of science, if a theory cannot be
expressed as an algorithm, it’s not entirely rigorous. (Not to mention you
can’t use a computer to solve it, which really limits what you can do with
it.) Scientists make theories, and engineers make devices. Computer
scientists make algorithms, which are both theories and devices.

Designing an algorithm is not easy. Pitfalls abound, and nothing can be
taken for granted. Some of your intuitions will turn out to have been wrong,
and you’ll have to find another way. On top of designing the algorithm, you
have to write it down in a language computers can understand, like Java or
Python (at which point it’s called a program). Then you have to debug it:
find every error and fix it until the computer runs your program without
screwing up. But once you have a program that does what you want, you
can really go to town. Computers will do your bidding millions of times, at
ultrahigh speed, without complaint. Everyone in the world can use your
creation. The cost can be zero, if you so choose, or enough to make you a
billionaire, if the problem you solved is important enough. A programmer
—someone who creates algorithms and codes them up—is a minor god,
creating universes at will. You could even say that the God of Genesis
himself is a programmer: language, not manipulation, is his tool of creation.
Words become worlds. Today, sitting on the couch with your laptop, you
too can be a god. Imagine a universe and make it real. The laws of physics
are optional.

Over time, computer scientists build on each other’s work and invent
algorithms for new things. Algorithms combine with other algorithms to use
the results of other algorithms, in turn producing results for still more
algorithms. Every second, billions of transistors in billions of computers
switch billions of times. Algorithms form a new kind of ecosystem—ever
growing, comparable in richness only to life itself.

Inevitably, however, there is a serpent in this Eden. It’s called the
complexity monster. Like the Hydra, the complexity monster has many
heads. One of them is space complexity: the number of bits of information
an algorithm needs to store in the computer’s memory. If the algorithm



needs more memory than the computer can provide, it’s useless and must be
discarded. Then there’s the evil sister, time complexity: how long the
algorithm takes to run, that is, how many steps of using and reusing the
transistors it has to go through before it produces the desired results. If it’s
longer than we can wait, the algorithm is again useless. But the scariest face
of the complexity monster is human complexity. When algorithms become
too intricate for our poor human brains to understand, when the interactions
between different parts of the algorithm are too many and too involved,
errors creep in, we can’t find them and fix them, and the algorithm doesn’t
do what we want. Even if we somehow make it work, it winds up being
needlessly complicated for the people using it and doesn’t play well with
other algorithms, storing up trouble for later.

Every computer scientist does battle with the complexity monster every
day. When computer scientists lose the battle, complexity seeps into our
lives. You’ve probably noticed that many a battle has been lost.
Nevertheless, we continue to build our tower of algorithms, with greater
and greater difficulty. Each new generation of algorithms has to be built on
top of the previous ones and has to deal with their complexities in addition
to its own. The tower grows taller and taller, and it covers the whole world,
but it’s also increasingly fragile, like a house of cards waiting to collapse.
One tiny error in an algorithm and a billion-dollar rocket explodes, or the
power goes out for millions. Algorithms interact in unexpected ways, and
the stock market crashes.

If programmers are minor gods, the complexity monster is the devil
himself. Little by little, it’s winning the war.

There has to be a better way.

Enter the learner

Every algorithm has an input and an output: the data goes into the
computer, the algorithm does what it will with it, and out comes the result.
Machine learning turns this around: in goes the data and the desired result
and out comes the algorithm that turns one into the other. Learning
algorithms—also known as learners—are algorithms that make other



algorithms. With machine learning, computers write their own programs, so
we don’t have to.

Wow.
Computers write their own programs. Now that’s a powerful idea,

maybe even a little scary. If computers start to program themselves, how
will we control them? Turns out we can control them quite well, as we’ll
see. A more immediate objection is that perhaps this sounds too good to be
true. Surely writing algorithms requires intelligence, creativity, problem-
solving chops—things that computers just don’t have? How is machine
learning distinguishable from magic? Indeed, as of today people can write
many programs that computers can’t learn. But, more surprisingly,
computers can learn programs that people can’t write. We know how to
drive cars and decipher handwriting, but these skills are subconscious;
we’re not able to explain to a computer how to do these things. If we give a
learner a sufficient number of examples of each, however, it will happily
figure out how to do them on its own, at which point we can turn it loose.
That’s how the post office reads zip codes, and that’s why self-driving cars
are on the way.

The power of machine learning is perhaps best explained by a low-tech
analogy: farming. In an industrial society, goods are made in factories,
which means that engineers have to figure out exactly how to assemble
them from their parts, how to make those parts, and so on—all the way to
raw materials. It’s a lot of work. Computers are the most complex goods
ever invented, and designing them, the factories that make them, and the
programs that run on them is a ton of work. But there’s another, much older
way in which we can get some of the things we need: by letting nature
make them. In farming, we plant the seeds, make sure they have enough
water and nutrients, and reap the grown crops. Why can’t technology be
more like this? It can, and that’s the promise of machine learning. Learning
algorithms are the seeds, data is the soil, and the learned programs are the
grown plants. The machine-learning expert is like a farmer, sowing the
seeds, irrigating and fertilizing the soil, and keeping an eye on the health of
the crop but otherwise staying out of the way.

Once we look at machine learning this way, two things immediately
jump out. The first is that the more data we have, the more we can learn. No
data? Nothing to learn. Big data? Lots to learn. That’s why machine



learning has been turning up everywhere, driven by exponentially growing
mountains of data. If machine learning was something you bought in the
supermarket, its carton would say: “Just add data.”

The second thing is that machine learning is a sword with which to slay
the complexity monster. Given enough data, a learning program that’s only
a few hundred lines long can easily generate a program with millions of
lines, and it can do this again and again for different problems. The
reduction in complexity for the programmer is phenomenal. Of course, like
the Hydra, the complexity monster sprouts new heads as soon as we cut off
the old ones, but they start off smaller and take a while to grow, so we still
get a big leg up.

We can think of machine learning as the inverse of programming, in the
same way that the square root is the inverse of the square, or integration is
the inverse of differentiation. Just as we can ask “What number squared
gives 16?” or “What is the function whose derivative is x + 1?” we can ask,
“What is the algorithm that produces this output?” We will soon see how to
turn this insight into concrete learning algorithms.

Some learners learn knowledge, and some learn skills. “All humans are
mortal” is a piece of knowledge. Riding a bicycle is a skill. In machine
learning, knowledge is often in the form of statistical models, because most
knowledge is statistical: all humans are mortal, but only 4 percent are
Americans. Skills are often in the form of procedures: if the road curves
left, turn the wheel left; if a deer jumps in front of you, slam on the brakes.
(Unfortunately, as of this writing Google’s self-driving cars still confuse
windblown plastic bags with deer.) Often, the procedures are quite simple,
and it’s the knowledge at their core that’s complex. If you can tell which e-
mails are spam, you know which ones to delete. If you can tell how good a
board position in chess is, you know which move to make (the one that
leads to the best position).

Machine learning takes many different forms and goes by many
different names: pattern recognition, statistical modeling, data mining,
knowledge discovery, predictive analytics, data science, adaptive systems,
self-organizing systems, and more. Each of these is used by different
communities and has different associations. Some have a long half-life,
some less so. In this book I use the term machine learning to refer broadly
to all of them.



Machine learning is sometimes confused with artificial intelligence (or
AI for short). Technically, machine learning is a subfield of AI, but it’s
grown so large and successful that it now eclipses its proud parent. The goal
of AI is to teach computers to do what humans currently do better, and
learning is arguably the most important of those things: without it, no
computer can keep up with a human for long; with it, the rest follows.

In the information-processing ecosystem, learners are the
superpredators. Databases, crawlers, indexers, and so on are the herbivores,
patiently munging on endless fields of data. Statistical algorithms, online
analytical processing, and so on are the predators. Herbivores are necessary,
since without them the others couldn’t exist, but superpredators have a more
exciting life. A crawler is like a cow, the web is its worldwide meadow,
each page is a blade of grass. When the crawler is done munging, a copy of
the web is sitting on its hard disks. An indexer then makes a list of the
pages where each word appears, much like the index at the end of a book.
Databases, like elephants, are big and heavy and never forget. Among these
patient beasts dart statistical and analytical algorithms, compacting and
selecting, turning data into information. Learners eat up this information,
digest it, and turn it into knowledge.

Machine-learning experts (aka machine learners) are an elite priesthood
even among computer scientists. Many computer scientists, particularly
those of an older generation, don’t understand machine learning as well as
they’d like to. This is because computer science has traditionally been all
about thinking deterministically, but machine learning requires thinking
statistically. If a rule for, say, labeling e-mails as spam is 99 percent
accurate, that does not mean it’s buggy; it may be the best you can do and
good enough to be useful. This difference in thinking is a large part of why
Microsoft has had a lot more trouble catching up with Google than it did
with Netscape. At the end of the day, a browser is just a standard piece of
software, but a search engine requires a different mind-set.

The other reason machine learners are the über-geeks is that the world
has far fewer of them than it needs, even by the already dire standards of
computer science. According to tech guru Tim O’Reilly, “data scientist” is
the hottest job title in Silicon Valley. The McKinsey Global Institute
estimates that by 2018 the United States alone will need 140,000 to 190,000
more machine-learning experts than will be available, and 1.5 million more



data-savvy managers. Machine learning’s applications have exploded too
suddenly for education to keep up, and it has a reputation for being a
difficult subject. Textbooks are liable to give you math indigestion. This
difficulty is more apparent than real, however. All of the important ideas in
machine learning can be expressed math-free. As you read this book, you
may even find yourself inventing your own learning algorithms, with nary
an equation in sight.

The Industrial Revolution automated manual work and the Information
Revolution did the same for mental work, but machine learning automates
automation itself. Without it, programmers become the bottleneck holding
up progress. With it, the pace of progress picks up. If you’re a lazy and not-
too-bright computer scientist, machine learning is the ideal occupation,
because learning algorithms do all the work but let you take all the credit.
On the other hand, learning algorithms could put us out of our jobs, which
would only be poetic justice.

By taking automation to new heights, the machine-learning revolution
will cause extensive economic and social changes, just as the Internet, the
personal computer, the automobile, and the steam engine did in their time.
One area where these changes are already apparent is business.

Why businesses embrace machine learning

Why is Google worth so much more than Yahoo? They both make their
money from showing ads on the web, and they’re both top destinations.
Both use auctions to sell ads and machine learning to predict how likely a
user is to click on an ad (the higher the probability, the more valuable the
ad). But Google’s learning algorithms are much better than Yahoo’s. This is
not the only reason for the difference in their market caps, of course, but it’s
a big one. Every predicted click that doesn’t happen is a wasted opportunity
for the advertiser and lost revenue for the website. With Google’s annual
revenue of $50 billion, every 1 percent improvement in click prediction
potentially means another half billion dollars in the bank, every year, for the
company. No wonder Google is a big fan of machine learning, and Yahoo
and others are trying hard to catch up.



Web advertising is just one manifestation of a much larger phenomenon.
In every market, producers and consumers need to connect before a
transaction can happen. In pre-Internet days, the main obstacles to this were
physical. You could only buy books from your local bookstore, and your
local bookstore had limited shelf space. But when you can download any
book to your e-reader any time, the problem becomes the overwhelming
number of choices. How do you browse the shelves of a bookstore that has
millions of titles for sale? The same goes for other information goods:
videos, music, news, tweets, blogs, plain old web pages. It also goes for
every product and service that can be procured remotely: shoes, flowers,
gadgets, hotel rooms, tutoring, investments. It even applies to people
looking for a job or a date. How do you find each other? This is the defining
problem of the Information Age, and machine learning is a big part of the
solution.

As companies grow, they go through three phases. First, they do
everything manually: the owners of a mom-and-pop store personally know
their customers, and they order, display, and recommend items accordingly.
This is nice, but it doesn’t scale. In the second and least happy phase, the
company grows large enough that it needs to use computers. In come the
programmers, consultants, and database managers, and millions of lines of
code get written to automate all the functions of the company that can be
automated. Many more people are served, but not as well: decisions are
made based on coarse demographic categories, and computer programs are
too rigid to match humans’ infinite versatility.

After a point, there just aren’t enough programmers and consultants to
do all that’s needed, and the company inevitably turns to machine learning.
Amazon can’t neatly encode the tastes of all its customers in a computer
program, and Facebook doesn’t know how to write a program that will
choose the best updates to show to each of its users. Walmart sells millions
of products and has billions of choices to make every day; if the
programmers at Walmart tried to write a program to make all of them, they
would never be done. Instead, what these companies do is turn learning
algorithms loose on the mountains of data they’ve accumulated and let them
divine what customers want.

Learning algorithms are the matchmakers: they find producers and
consumers for each other, cutting through the information overload. If



they’re smart enough, you get the best of both worlds: the vast choice and
low cost of the large scale, with the personalized touch of the small.
Learners are not perfect, and the last step of the decision is usually still for
humans to make, but learners intelligently reduce the choices to something
a human can manage.

In retrospect, we can see that the progression from computers to the
Internet to machine learning was inevitable: computers enable the Internet,
which creates a flood of data and the problem of limitless choice; and
machine learning uses the flood of data to help solve the limitless choice
problem. The Internet by itself is not enough to move demand from “one
size fits all” to the long tail of infinite variety. Netflix may have one
hundred thousand DVD titles in stock, but if customers don’t know how to
find the ones they like, they will default to choosing the hits. It’s only when
Netflix has a learning algorithm to figure out your tastes and recommend
DVDs that the long tail really takes off.

Once the inevitable happens and learning algorithms become the
middlemen, power becomes concentrated in them. Google’s algorithms
largely determine what information you find, Amazon’s what products you
buy, and Match.com’s who you date. The last mile is still yours—choosing
from among the options the algorithms present you with—but 99.9 percent
of the selection was done by them. The success or failure of a company now
depends on how much the learners like its products, and the success of a
whole economy—whether everyone gets the best products for their needs at
the best price—depends on how good the learners are.

The best way for a company to ensure that learners like its products is to
run them itself. Whoever has the best algorithms and the most data wins. A
new type of network effect takes hold: whoever has the most customers
accumulates the most data, learns the best models, wins the most new
customers, and so on in a virtuous circle (or a vicious one, if you’re the
competition). Switching from Google to Bing may be easier than switching
from Windows to Mac, but in practice you don’t because Google, with its
head start and larger market share, knows better what you want, even if
Bing’s technology is just as good. And pity a new entrant into the search
business, starting with zero data against engines with over a decade of
learning behind them.

http://match.com/


You might think that after a while more data is just more of the same,
but that saturation point is nowhere in sight. The long tail keeps going. If
you look at the recommendations Amazon or Netflix gives you, it’s clear
they’re still very crude, and Google’s search results still leave a lot to be
desired. Every feature of a product, every corner of a website can
potentially be improved using machine learning. Should the link at the
bottom of a page be red or blue? Try them both and see which one gets the
most clicks. Better still, keep the learners running and continuously adjust
all aspects of the website.

The same dynamic happens in any market where there’s lots of choice
and lots of data. The race is on, and whoever learns fastest wins. It doesn’t
stop with understanding customers better: companies can apply machine
learning to every aspect of their operations, provided data is available, and
data is pouring in from computers, communication devices, and ever-
cheaper and more ubiquitous sensors. “Data is the new oil” is a popular
refrain, and as with oil, refining it is big business. IBM, as well plugged
into the corporate world as anyone, has organized its growth strategy
around providing analytics to companies. Businesses look at data as a
strategic asset: What data do I have that my competitors don’t? How can I
take advantage of it? What data do my competitors have that I don’t?

In the same way that a bank without databases can’t compete with a
bank that has them, a company without machine learning can’t keep up with
one that uses it. While the first company’s experts write a thousand rules to
predict what its customers want, the second company’s algorithms learn
billions of rules, a whole set of them for each individual customer. It’s about
as fair as spears against machine guns. Machine learning is a cool new
technology, but that’s not why businesses embrace it. They embrace it
because they have no choice.

Supercharging the scientific method

Machine learning is the scientific method on steroids. It follows the same
process of generating, testing, and discarding or refining hypotheses. But
while a scientist may spend his or her whole life coming up with and testing
a few hundred hypotheses, a machine-learning system can do the same in a



fraction of a second. Machine learning automates discovery. It’s no surprise,
then, that it’s revolutionizing science as much as it’s revolutionizing
business.

To make progress, every field of science needs to have data
commensurate with the complexity of the phenomena it studies. This is why
physics was the first science to take off: Tycho Brahe’s recordings of the
positions of the planets and Galileo’s observations of pendulums and
inclined planes were enough to infer Newton’s laws. It’s also why
molecular biology, despite being younger than neuroscience, has outpaced
it: DNA microarrays and high-throughput sequencing provide a volume of
data that neuroscientists can only hope for. And it’s the reason why social
science research is such an uphill battle: if all you have is a sample of a
hundred people, with a dozen measurements apiece, all you can model is
some very narrow phenomenon. But even this narrow phenomenon does not
exist in isolation; it’s affected by a myriad others, which means you’re still
far from understanding it.

The good news today is that sciences that were once data-poor are now
data-rich. Instead of paying fifty bleary-eyed undergraduates to perform
some task in the lab, psychologists can get as many subjects as they want by
posting the task on Amazon’s Mechanical Turk. (It makes for a more
diverse sample too.) It’s getting hard to remember, but little more than a
decade ago sociologists studying social networks lamented that they
couldn’t get their hands on a network with more than a few hundred
members. Now there’s Facebook, with over a billion. A good chunk of
those members post almost blow-by-blow accounts of their lives too; it’s
like having a live feed of social life on planet Earth. In neuroscience,
connectomics and functional magnetic resonance imaging have opened an
extraordinarily detailed window into the brain. In molecular biology,
databases of genes and proteins grow exponentially. Even in “older”
sciences like physics and astronomy, progress continues because of the
flood of data pouring forth from particle accelerators and digital sky
surveys.

Big data is no use if you can’t turn it into knowledge, however, and
there aren’t enough scientists in the world for the task. Edwin Hubble
discovered new galaxies by poring over photographic plates, but you can
bet the half-billion sky objects in the Sloan Digital Sky Survey weren’t



identified that way. It would be like trying to count the grains of sand on a
beach by hand. You can write rules to distinguish galaxies from stars from
noise objects (such as birds, planes, Superman), but they’re not very
accurate. Instead, the SKICAT (sky image cataloging and analysis tool)
project used a learning algorithm. Starting from plates where objects were
labeled with the correct categories, it figured out what characterizes each
one and applied the result to all the unlabeled plates. Even better, it could
classify objects that were too faint for humans to label, and these comprise
the majority of the survey.

With big data and machine learning, you can understand much more
complex phenomena than before. In most fields, scientists have traditionally
used only very limited kinds of models, like linear regression, where the
curve you fit to the data is always a straight line. Unfortunately, most
phenomena in the world are nonlinear. (Or fortunately, since otherwise life
would be very boring—in fact, there would be no life.) Machine learning
opens up a vast new world of nonlinear models. It’s like turning on the
lights in a room where only a sliver of moonlight filtered before.

In biology, learning algorithms figure out where genes are located in a
DNA molecule, where superfluous bits of RNA get spliced out before
proteins are synthesized, how proteins fold into their characteristic shapes,
and how different conditions affect the expression of different genes. Rather
than testing thousands of new drugs in the lab, learners predict whether they
will work, and only the most promising get tested. They also weed out
molecules likely to have nasty side effects, like cancer. This avoids
expensive failures, like candidate drugs being nixed only after human trials
have begun.

The biggest challenge, however, is assembling all this information into a
coherent whole. What are all the things that affect your risk of heart disease,
and how do they interact? All Newton needed was three laws of motion and
one of gravitation, but a complete model of a cell, an organism, or a society
is more than any one human can discover. As knowledge grows, scientists
specialize ever more narrowly, but no one is able to put the pieces together
because there are far too many pieces. Scientists collaborate, but language
is a very slow medium of communication. Scientists try to keep up with
others’ research, but the volume of publications is so high that they fall
farther and farther behind. Often, redoing an experiment is easier than



finding the paper that reported it. Machine learning comes to the rescue,
scouring the literature for relevant information, translating one area’s jargon
into another’s, and even making connections that scientists weren’t aware
of. Increasingly, machine learning acts as a giant hub, through which
modeling techniques invented in one field make their way into others.

If computers hadn’t been invented, science would have ground to a halt
in the second half of the twentieth century. This might not have been
immediately apparent to the scientists because they would have been
focused on whatever limited progress they could still make, but the ceiling
for that progress would have been much, much lower. Similarly, without
machine learning, many sciences would face diminishing returns in the
decades to come.

To see the future of science, take a peek inside a lab at the Manchester
Institute of Biotechnology, where a robot by the name of Adam is hard at
work figuring out which genes encode which enzymes in yeast. Adam has a
model of yeast metabolism and general knowledge of genes and proteins. It
makes hypotheses, designs experiments to test them, physically carries
them out, analyzes the results, and comes up with new hypotheses until it’s
satisfied. Today, human scientists still independently check Adam’s
conclusions before they believe them, but tomorrow they’ll leave it to robot
scientists to check each other’s hypotheses.

A billion Bill Clintons

Machine learning was the kingmaker in the 2012 presidential election. The
factors that usually decide presidential elections—the economy, likability of
the candidates, and so on—added up to a wash, and the outcome came
down to a few key swing states. Mitt Romney’s campaign followed a
conventional polling approach, grouping voters into broad categories and
targeting each one or not. Neil Newhouse, Romney’s pollster, said that “if
we can win independents in Ohio, we can win this race.” Romney won
them by 7 percent but still lost the state and the election.

In contrast, President Obama hired Rayid Ghani, a machine-learning
expert, as chief scientist of his campaign, and Ghani proceeded to put
together the greatest analytics operation in the history of politics. They



consolidated all voter information into a single database; combined it with
what they could get from social networking, marketing, and other sources;
and set about predicting four things for each individual voter: how likely he
or she was to support Obama, show up at the polls, respond to the
campaign’s reminders to do so, and change his or her mind about the
election based on a conversation about a specific issue. Based on these
voter models, every night the campaign ran 66,000 simulations of the
election and used the results to direct its army of volunteers: whom to call,
which doors to knock on, what to say.

In politics, as in business and war, there is nothing worse than seeing
your opponent make moves that you don’t understand and don’t know what
to do about until it’s too late. That’s what happened to the Romney
campaign. They could see the other side buying ads in particular cable
stations in particular towns but couldn’t tell why; their crystal ball was too
fuzzy. In the end, Obama won every battleground state save North Carolina
and by larger margins than even the most accurate pollsters had predicted.
The most accurate pollsters, in turn, were the ones (like Nate Silver) who
used the most sophisticated prediction techniques; they were less accurate
than the Obama campaign because they had fewer resources. But they were
a lot more accurate than the traditional pundits, whose predictions were
based on their expertise.

You might think the 2012 election was a fluke: most elections are not
close enough for machine learning to be the deciding factor. But machine
learning will cause more elections to be close in the future. In politics, as in
everything, learning is an arms race. In the days of Karl Rove, a former
direct marketer and data miner, the Republicans were ahead. By 2012,
they’d fallen behind, but now they’re catching up again. We don’t know
who’ll be ahead in the next election cycle, but both parties will be working
hard to win. That means understanding the voters better and tailoring the
candidates’ pitches—even choosing the candidates themselves—
accordingly. The same applies to entire party platforms, during and between
election cycles: if detailed voter models, based on hard data, say a party’s
current platform is a losing one, the party will change it. As a result, major
events aside, gaps between candidates in the polls will be smaller and
shorter lived. Other things being equal, the candidates with the better voter
models will win, and voters will be better served for it.



One of the greatest talents a politician can have is the ability to
understand voters, individually or in small groups, and speak directly to
them (or seem to). Bill Clinton is the paradigmatic example of this in recent
memory. The effect of machine learning is like having a dedicated Bill
Clinton for every voter. Each of these mini-Clintons is a far cry from the
real one, but they have the advantage of numbers; even Bill Clinton can’t
know what every single voter in America is thinking (although he’d surely
like to). Learning algorithms are the ultimate retail politicians.

Of course, as with companies, politicians can put their machine-learned
knowledge to bad uses as well as good ones. For example, they could make
inconsistent promises to different voters. But voters, media, and watchdog
organizations can do their own data mining and expose politicians who
cross the line. The arms race is not just between candidates but among all
participants in the democratic process.

The larger outcome is that democracy works better because the
bandwidth of communication between voters and politicians increases
enormously. In these days of high-speed Internet, the amount of information
your elected representatives get from you is still decidedly nineteenth
century: a hundred bits or so every two years, as much as fits on a ballot.
This is supplemented by polling and perhaps the occasional e-mail or town-
hall meeting, but that’s still precious little. Big data and machine learning
change the equation. In the future, provided voter models are accurate,
elected officials will be able to ask voters what they want a thousand times
a day and act accordingly—without having to pester the actual flesh-and-
blood citizens.

One if by land, two if by Internet

Out in cyberspace, learning algorithms man the nation’s ramparts. Every
day, foreign attackers attempt to break into computers at the Pentagon,
defense contractors, and other companies and government agencies. Their
tactics change continually; what worked against yesterday’s attacks is
powerless against today’s. Writing code to detect and block each one would
be as effective as the Maginot Line, and the Pentagon’s Cyber Command
knows it. But machine learning runs into a problem if an attack is the first



of its kind and there aren’t any previous examples of it to learn from.
Instead, learners build models of normal behavior, of which there’s plenty,
and flag anomalies. Then they call in the cavalry (aka system
administrators). If cyberwar ever comes to pass, the generals will be human,
but the foot soldiers will be algorithms. Humans are too slow and too few
and would be quickly swamped by an army of bots. We need our own bot
army, and machine learning is like West Point for bots.

Cyberwar is an instance of asymmetric warfare, where one side can’t
match the other’s conventional military power but can still inflict grievous
damage. A handful of terrorists armed with little more than box cutters can
knock down the Twin Towers and kill thousands of innocents. All the
biggest threats to US security today are in the realm of asymmetric warfare,
and there’s an effective weapon against all of them: information. If the
enemy can’t hide, he can’t survive. The good news is that we have plenty of
information, and that’s also the bad news.

The National Security Agency (NSA) has become infamous for its
bottomless appetite for data: by one estimate, every day it intercepts over a
billion phone calls and other communications around the globe. Privacy
issues aside, however, it doesn’t have millions of staffers to eavesdrop on
all these calls and e-mails or even just keep track of who’s talking to whom.
The vast majority of calls are perfectly innocent, and writing a program to
pick out the few suspicious ones is very hard. In the old days, the NSA used
keyword matching, but that’s easy to get around. (Just call the bombing a
“wedding” and the bomb the “wedding cake.”) In the twenty-first century,
it’s a job for machine learning. Secrecy is the NSA’s trademark, but its
director has testified to Congress that mining of phone logs has already
halted dozens of terrorism threats.

Terrorists can hide in the crowd at a football game, but learners can pick
out their faces. They can make exotic bombs, but learners can sniff them
out. Learners can also do something more subtle: connect the dots between
events that individually seem harmless but add up to an ominous pattern.
This approach could have prevented 9/11. There’s a further twist: once a
learned program is deployed, the bad guys change their behavior to defeat
it. This contrasts with the natural world, which always works the same way.
The solution is to marry machine learning with game theory, something I’ve
worked on in the past: don’t just learn to defeat what your opponent does



now; learn to parry what he might do against your learner. Factoring in the
costs and benefits of different actions, as game theory does, can also help
strike the right balance between privacy and security.

During the Battle of Britain, the Royal Air Force held back the
Luftwaffe despite being heavily outnumbered. German pilots couldn’t
understand how, wherever they went, they always ran into the RAF. The
British had a secret weapon: radar, which detected the German planes well
before they crossed into Britain’s airspace. Machine learning is like having
a radar that sees into the future. Don’t just react to your adversary’s moves;
predict them and preempt them.

An example of this closer to home is what’s known as predictive
policing. By forecasting crime trends and strategically focusing patrols
where they’re most likely to be needed, as well as taking other preventive
measures, a city’s police force can effectively do the job of a much larger
one. In many ways, law enforcement is similar to asymmetric warfare, and
many of the same learning techniques apply, whether it’s in fraud detection,
uncovering criminal networks, or plain old beat policing.

Machine learning also has a growing role on the battlefield. Learners
can help dissipate the fog of war, sifting through reconnaissance imagery,
processing after-action reports, and piecing together a picture of the
situation for the commander. Learning powers the brains of military robots,
helping them keep their bearings, adapt to the terrain, distinguish enemy
vehicles from civilian ones, and home in on their targets. DARPA’s
AlphaDog carries soldiers’ gear for them. Drones can fly autonomously
with the help of learning algorithms; although they are still partly controlled
by human pilots, the trend is for one pilot to oversee larger and larger
swarms. In the army of the future, learners will greatly outnumber soldiers,
saving countless lives.

Where are we headed?

Technology trends come and go all the time. What’s unusual about machine
learning is that, through all these changes, through boom and bust, it just
keeps growing. Its first big hit was in finance, predicting stock ups and
downs, starting in the late 1980s. The next wave was mining corporate



databases, which by the mid-1990s were starting to grow quite large, and in
areas like direct marketing, customer relationship management, credit
scoring, and fraud detection. Then came the web and e-commerce, where
automated personalization quickly became de rigueur. When the dot-com
bust temporarily curtailed that, the use of learning for web search and ad
placement took off. For better or worse, the 9/11 attacks put machine
learning in the front line of the war on terror. Web 2.0 brought a swath of
new applications, from mining social networks to figuring out what
bloggers are saying about your products. In parallel, scientists of all stripes
were increasingly turning to large-scale modeling, with molecular biologists
and astronomers leading the charge. The housing bust barely registered; its
main effect was a welcome transfer of talent from Wall Street to Silicon
Valley. In 2011, the “big data” meme hit, putting machine learning squarely
in the center of the global economy’s future. Today, there seems to be
hardly an area of human endeavor untouched by machine learning,
including seemingly unlikely candidates like music, sports, and wine
tasting.

As remarkable as this growth is, it’s only a foretaste of what’s to come.
Despite its usefulness, the generation of learning algorithms currently at
work in industry is, in fact, quite limited. When the algorithms now in the
lab make it to the front lines, Bill Gates’s remark that a breakthrough in
machine learning would be worth ten Microsofts will seem conservative.
And if the ideas that really put a glimmer in researchers’ eyes bear fruit,
machine learning will bring about not just a new era of civilization, but a
new stage in the evolution of life on Earth.

What makes this possible? How do learning algorithms work? What
can’t they currently do, and what will the next generation look like? How
will the machine-learning revolution unfold? And what opportunities and
dangers should you look out for? That’s what this book is about—read on!



CHAPTER TWO

The Master Algorithm

Even more astonishing than the breadth of applications of machine learning
is that it’s the same algorithms doing all of these different things. Outside of
machine learning, if you have two different problems to solve, you need to
write two different programs. They might use some of the same
infrastructure, like the same programming language or the same database
system, but a program to, say, play chess is of no use if you want to process
credit-card applications. In machine learning, the same algorithm can do
both, provided you give it the appropriate data to learn from. In fact, just a
few algorithms are responsible for the great majority of machine-learning
applications, and we’ll take a look at them in the next few chapters.

For example, consider Naïve Bayes, a learning algorithm that can be
expressed as a single short equation. Given a database of patient records—
their symptoms, test results, and whether or not they had some particular
condition—Naïve Bayes can learn to diagnose the condition in a fraction of
a second, often better than doctors who spent many years in medical school.
It can also beat medical expert systems that took thousands of person-hours
to build. The same algorithm is widely used to learn spam filters, a problem
that at first sight has nothing to do with medical diagnosis. Another simple
learner, called the nearest-neighbor algorithm, has been used for everything
from handwriting recognition to controlling robot hands to recommending
books and movies you might like. And decision tree learners are equally apt



at deciding whether your credit-card application should be accepted, finding
splice junctions in DNA, and choosing the next move in a game of chess.

Not only can the same learning algorithms do an endless variety of
different things, but they’re shockingly simple compared to the algorithms
they replace. Most learners can be coded up in a few hundred lines, or
perhaps a few thousand if you add a lot of bells and whistles. In contrast,
the programs they replace can run in the hundreds of thousands or even
millions of lines, and a single learner can induce an unlimited number of
different programs.

If so few learners can do so much, the logical question is: Could one
learner do everything? In other words, could a single algorithm learn all that
can be learned from data? This is a very tall order, since it would ultimately
include everything in an adult’s brain, everything evolution has created, and
the sum total of all scientific knowledge. But in fact all the major learners—
including nearest-neighbor, decision trees, and Bayesian networks, a
generalization of Naïve Bayes—are universal in the following sense: if you
give the learner enough of the appropriate data, it can approximate any
function arbitrarily closely—which is math-speak for learning anything.
The catch is that “enough data” could be infinite. Learning from finite data
requires making assumptions, as we’ll see, and different learners make
different assumptions, which makes them good for some things but not
others.

But what if instead of leaving these assumptions embedded in the
algorithm we make them an explicit input, along with the data, and allow
the user to choose which ones to plug in, perhaps even state new ones? Is
there an algorithm that can take in any data and assumptions and output the
knowledge that’s implicit in them? I believe so. Of course, we have to put
some limits on what the assumptions can be, otherwise we could cheat by
giving the algorithm the entire target knowledge, or close to it, in the form
of assumptions. But there are many ways to do this, from limiting the size
of the input to requiring that the assumptions be no stronger than those of
current learners.

The question then becomes: How weak can the assumptions be and still
allow all relevant knowledge to be derived from finite data? Notice the
word relevant: we’re only interested in knowledge about our world, not
about worlds that don’t exist. So inventing a universal learner boils down to



discovering the deepest regularities in our universe, those that all
phenomena share, and then figuring out a computationally efficient way to
combine them with data. This requirement of computational efficiency
precludes just using the laws of physics as the regularities, as we’ll see. It
does not, however, imply that the universal learner has to be as efficient as
more specialized ones. As so often happens in computer science, we’re
willing to sacrifice efficiency for generality. This also applies to the amount
of data required to learn a given target knowledge: a universal learner will
generally need more data than a specialized one, but that’s OK provided we
have the necessary amount—and the bigger data gets, the more likely this
will be the case.

Here, then, is the central hypothesis of this book:

All knowledge—past, present, and future—can be derived from data
by a single, universal learning algorithm.

I call this learner the Master Algorithm. If such an algorithm is possible,
inventing it would be one of the greatest scientific achievements of all time.
In fact, the Master Algorithm is the last thing we’ll ever have to invent
because, once we let it loose, it will go on to invent everything else that can
be invented. All we need to do is provide it with enough of the right kind of
data, and it will discover the corresponding knowledge. Give it a video
stream, and it learns to see. Give it a library, and it learns to read. Give it the
results of physics experiments, and it discovers the laws of physics. Give it
DNA crystallography data, and it discovers the structure of DNA.

This may sound far-fetched: How could one algorithm possibly learn so
many different things and such difficult ones? But in fact many lines of
evidence point to the existence of a Master Algorithm. Let’s see what they
are.

The argument from neuroscience

In April 2000, a team of neuroscientists from MIT reported in Nature the
results of an extraordinary experiment. They rewired the brain of a ferret,
rerouting the connections from the eyes to the auditory cortex (the part of



the brain responsible for processing sounds) and rerouting the connections
from the ears to the visual cortex. You’d think the result would be a
severely disabled ferret, but no: the auditory cortex learned to see, the
visual cortex learned to hear, and the ferret was fine. In normal mammals,
the visual cortex contains a map of the retina: neurons connected to nearby
regions of the retina are close to each other in the cortex. Instead, the
rewired ferrets developed a map of the retina in the auditory cortex. If the
visual input is redirected instead to the somatosensory cortex, responsible
for touch perception, it too learns to see. Other mammals also have this
ability.

In congenitally blind people, the visual cortex can take over other brain
functions. In deaf ones, the auditory cortex does the same. Blind people can
learn to “see” with their tongues by sending video images from a head-
mounted camera to an array of electrodes placed on the tongue, with high
voltages corresponding to bright pixels and low voltages to dark ones. Ben
Underwood was a blind kid who taught himself to use echolocation to
navigate, like bats do. By clicking his tongue and listening to the echoes, he
could walk around without bumping into obstacles, ride a skateboard, and
even play basketball. All of this is evidence that the brain uses the same
learning algorithm throughout, with the areas dedicated to the different
senses distinguished only by the different inputs they are connected to (e.g.,
eyes, ears, nose). In turn, the associative areas acquire their function by
being connected to multiple sensory regions, and the “executive” areas
acquire theirs by connecting the associative areas and motor output.

Examining the cortex under a microscope leads to the same conclusion.
The same wiring pattern is repeated everywhere. The cortex is organized
into columns with six distinct layers, feedback loops running to another
brain structure called the thalamus, and a recurring pattern of short-range
inhibitory connections and longer-range excitatory ones. A certain amount
of variation is present, but it looks more like different parameters or settings
of the same algorithm than different algorithms. Low-level sensory areas
have more noticeable differences, but as the rewiring experiments show,
these are not crucial. The cerebellum, the evolutionarily older part of the
brain responsible for low-level motor control, has a clearly different and
very regular architecture, built out of much smaller neurons, so it would
seem that at least motor learning uses a different algorithm. If someone’s



cerebellum is injured, however, the cortex takes over its function. Thus it
seems that evolution kept the cerebellum around not because it does
something the cortex can’t, but just because it’s more efficient.

The computations taking place within the brain’s architecture are also
similar throughout. All information in the brain is represented in the same
way, via the electrical firing patterns of neurons. The learning mechanism is
also the same: memories are formed by strengthening the connections
between neurons that fire together, using a biochemical process known as
long-term potentiation. All this is not just true of humans: different animals
have similar brains. Ours is unusually large, but seems to be built along the
same principles as other animals’.

Another line of argument for the unity of the cortex comes from what
might be called the poverty of the genome. The number of connections in
your brain is over a million times the number of letters in your genome, so
it’s not physically possible for the genome to specify in detail how the brain
is wired.

The most important argument for the brain being the Master Algorithm,
however, is that it’s responsible for everything we can perceive and
imagine. If something exists but the brain can’t learn it, we don’t know it
exists. We may just not see it or think it’s random. Either way, if we
implement the brain in a computer, that algorithm can learn everything we
can. Thus one route—arguably the most popular one—to inventing the
Master Algorithm is to reverse engineer the brain. Jeff Hawkins took a stab
at this in his book On Intelligence. Ray Kurzweil pins his hopes for the
Singularity—the rise of artificial intelligence that greatly exceeds the
human variety—on doing just that and takes a stab at it himself in his book
How to Create a Mind. Nevertheless, this is only one of several possible
approaches, as we’ll see. It’s not even necessarily the most promising one,
because the brain is phenomenally complex, and we’re still in the very early
stages of deciphering it. On the other hand, if we can’t figure out the Master
Algorithm, the Singularity won’t happen any time soon.

Not all neuroscientists believe in the unity of the cortex; we need to
learn more before we can be sure. The question of just what the brain can
and can’t learn is also hotly debated. But if there’s something we know but
the brain can’t learn, it must have been learned by evolution.



The argument from evolution

Life’s infinite variety is the result of a single mechanism: natural selection.
Even more remarkable, this mechanism is of a type very familiar to
computer scientists: iterative search, where we solve a problem by trying
many candidate solutions, selecting and modifying the best ones, and
repeating these steps as many times as necessary. Evolution is an algorithm.
Paraphrasing Charles Babbage, the Victorian-era computer pioneer, God
created not species but the algorithm for creating species. The “endless
forms most beautiful” Darwin spoke of in the conclusion of The Origin of
Species belie a most beautiful unity: all of those forms are encoded in
strings of DNA, and all of them come about by modifying and combining
those strings. Who would have guessed, given only a description of this
algorithm, that it could produce you and me? If evolution can learn us, it
can conceivably also learn everything that can be learned, provided we
implement it on a powerful enough computer. Indeed, evolving programs
by simulating natural selection is a popular endeavor in machine learning.
Evolution, then, is another promising path to the Master Algorithm.

Evolution is the ultimate example of how much a simple learning
algorithm can achieve given enough data. Its input is the experience and
fate of all living creatures that ever existed. (Now that’s big data.) On the
other hand, it’s been running for over three billion years on the most
powerful computer on Earth: Earth itself. A computer version of it had
better be faster and less data intensive than the original. Which one is the
better model for the Master Algorithm: evolution or the brain? This is
machine learning’s version of the nature versus nurture debate. And, just as
nature and nurture combine to produce us, perhaps the true Master
Algorithm contains elements of both.

The argument from physics

In a famous 1959 essay, the physicist and Nobel laureate Eugene Wigner
marveled at what he called “the unreasonable effectiveness of mathematics
in the natural sciences.” By what miracle do laws induced from scant
observations turn out to apply far beyond them? How can the laws be many



orders of magnitude more precise than the data they are based on? Most of
all, why is it that the simple, abstract language of mathematics can
accurately capture so much of our infinitely complex world? Wigner
considered this a deep mystery, in equal parts fortunate and unfathomable.
Nevertheless, it is so, and the Master Algorithm is a logical extension of it.

If the world were just a blooming, buzzing confusion, there would be
reason to doubt the existence of a universal learner. But if everything we
experience is the product of a few simple laws, then it makes sense that a
single algorithm can induce all that can be induced. All the Master
Algorithm has to do is provide a shortcut to the laws’ consequences,
replacing impossibly long mathematical derivations with much shorter ones
based on actual observations.

For example, we believe that the laws of physics gave rise to evolution,
but we don’t know how. Instead, we can induce natural selection directly
from observations, as Darwin did. Countless wrong inferences could be
drawn from those observations, but most of them never occur to us, because
our inferences are influenced by our broad knowledge of the world, and that
knowledge is consistent with the laws of nature.

How much of the character of physical law percolates up to higher
domains like biology and sociology remains to be seen, but the study of
chaos provides many tantalizing examples of very different systems with
similar behavior, and the theory of universality explains them. The
Mandelbrot set is a beautiful example of how a very simple iterative
procedure can give rise to an inexhaustible variety of forms. If the
mountains, rivers, clouds, and trees of the world are all the result of such
procedures—and fractal geometry shows they are—perhaps those
procedures are just different parametrizations of a single one that we can
induce from them.

In physics, the same equations applied to different quantities often
describe phenomena in completely different fields, like quantum mechanics,
electromagnetism, and fluid dynamics. The wave equation, the diffusion
equation, Poisson’s equation: once we discover it in one field, we can more
readily discover it in others; and once we’ve learned how to solve it in one
field, we know how to solve it in all. Moreover, all these equations are quite
simple and involve the same few derivatives of quantities with respect to
space and time. Quite conceivably, they are all instances of a master



equation, and all the Master Algorithm needs to do is figure out how to
instantiate it for different data sets.

Another line of evidence comes from optimization, the branch of
mathematics concerned with finding the input to a function that produces its
highest output. For example, finding the sequence of stock purchases and
sales that maximizes your total returns is an optimization problem. In
optimization, simple functions often give rise to surprisingly complex
solutions. Optimization plays a prominent role in almost every field of
science, technology, and business, including machine learning. Each field
optimizes within the constraints defined by optimizations in other fields.
We try to maximize our happiness within economic constraints, which are
firms’ best solutions within the constraints of the available technology—
which in turn consists of the best solutions we could find within the
constraints of biology and physics. Biology, in turn, is the result of
optimization by evolution within the constraints of physics and chemistry,
and the laws of physics themselves are solutions to optimization problems.
Perhaps, then, everything that exists is the progressive solution of an
overarching optimization problem, and the Master Algorithm follows from
the statement of that problem.

Physicists and mathematicians are not the only ones who find
unexpected connections between disparate fields. In his book Consilience,
the distinguished biologist E. O. Wilson makes an impassioned argument
for the unity of all knowledge, from science to the humanities. The Master
Algorithm is the ultimate expression of this unity: if all knowledge shares a
common pattern, the Master Algorithm exists, and vice versa.

Nevertheless, physics is unique in its simplicity. Outside physics and
engineering, the track record of mathematics is more mixed. Sometimes it’s
only reasonably effective, and sometimes its models are too oversimplified
to be useful. This tendency to oversimplify stems from the limitations of the
human mind, however, not from the limitations of mathematics. Most of the
brain’s hardware (or rather, wetware) is devoted to sensing and moving, and
to do math we have to borrow parts of it that evolved for language.
Computers have no such limitations and can easily turn big data into very
complex models. Machine learning is what you get when the unreasonable
effectiveness of mathematics meets the unreasonable effectiveness of data.



Biology and sociology will never be as simple as physics, but the method
by which we discover their truths can be.

The argument from statistics

According to one school of statisticians, a single simple formula underlies
all learning. Bayes’ theorem, as the formula is known, tells you how to
update your beliefs whenever you see new evidence. A Bayesian learner
starts with a set of hypotheses about the world. When it sees a new piece of
data, the hypotheses that are compatible with it become more likely, and the
hypotheses that aren’t become less likely (or even impossible). After seeing
enough data, a single hypothesis dominates, or a few do. For example, if
I’m looking for a program that accurately predicts stock movements and a
stock that a candidate program had predicted would go up instead goes
down, that candidate loses credibility. After I’ve reviewed a number of
candidates, only a few credible ones will remain, and they will encapsulate
my new knowledge of the stock market.

Bayes’ theorem is a machine that turns data into knowledge. According
to Bayesian statisticians, it’s the only correct way to turn data into
knowledge. If they’re right, either Bayes’ theorem is the Master Algorithm
or it’s the engine that drives it. Other statisticians have serious reservations
about the way Bayes’ theorem is used and prefer different ways to learn
from data. In the days before computers, Bayes’ theorem could only be
applied to very simple problems, and the idea of it as a universal learner
would have seemed far-fetched. With big data and big computing to go with
it, however, Bayes can find its way in vast hypothesis spaces and has spread
to every conceivable field of knowledge. If there’s a limit to what Bayes
can learn, we haven’t found it yet.

The argument from computer science

When I was a senior in college, I wasted a summer playing Tetris, a highly
addictive video game where variously shaped pieces fall from above and
which you try to pack as closely together as you can; the game is over when



the pile of pieces reaches the top of the screen. Little did I know that this
was my introduction to NP-completeness, the most important problem in
theoretical computer science. Turns out that, far from an idle pursuit,
mastering Tetris—really mastering it—is one of the most useful things you
could ever do. If you can solve Tetris, you can solve thousands of the
hardest and most important problems in science, technology, and
management—all in one fell swoop. That’s because at heart they are all the
same problem. This is one of the most astonishing facts in all of science.

Figuring out how proteins fold into their characteristic shapes;
reconstructing the evolutionary history of a set of species from their DNA;
proving theorems in propositional logic; detecting arbitrage opportunities in
markets with transaction costs; inferring a three-dimensional shape from
two-dimensional views; compressing data on a disk; forming a stable
coalition in politics; modeling turbulence in sheared flows; finding the
safest portfolio of investments with a given return, the shortest route to visit
a set of cities, the best layout of components on a microchip, the best
placement of sensors in an ecosystem, or the lowest energy state of a spin
glass; scheduling flights, classes, and factory jobs; optimizing resource
allocation, urban traffic flow, social welfare, and (most important) your
Tetris score: these are all NP-complete problems, meaning that if you can
efficiently solve one of them you can efficiently solve all problems in the
class NP, including each other. Who would have guessed that all these
problems, superficially so different, are really the same? But if they are, it
makes sense that one algorithm could learn to solve all of them (or, more
precisely, all efficiently solvable instances).

P and NP are the two most important classes of problems in computer
science. (The names are not very mnemonic, unfortunately.) A problem is
in P if we can solve it efficiently, and it’s in NP if we can efficiently check
its solution. The famous P = NP question is whether every efficiently
checkable problem is also efficiently solvable. Because of NP-
completeness, all it takes to answer it is to prove that one NP-complete
problem is efficiently solvable (or not). NP is not the hardest class of
problems in computer science, but it’s arguably the hardest “realistic” class:
if you can’t even check a problem’s solution before the universe ends,
what’s the point of trying to solve it? Humans are good at solving NP
problems approximately, and conversely, problems that we find interesting



(like Tetris) often have an “NP-ness” about them. One definition of artificial
intelligence is that it consists of finding heuristic solutions to NP-complete
problems. Often, we do this by reducing them to satisfiability, the canonical
NP-complete problem: Can a given logical formula ever be true, or is it
self-contradictory? If we invent a learner that can learn to solve
satisfiability, it has a good claim to being the Master Algorithm.

NP-completeness aside, the sheer existence of computers is itself a
powerful sign that there is a Master Algorithm. If you could travel back in
time to the early twentieth century and tell people that a soon-to-be-
invented machine would solve problems in every realm of human endeavor
—the same machine for every problem—no one would believe you. They
would say that each machine can only do one thing: sewing machines don’t
type, and typewriters don’t sew. Then in 1936 Alan Turing imagined a
curious contraption with a tape and a head that read and wrote symbols on
it, now known as a Turing machine. Every conceivable problem that can be
solved by logical deduction can be solved by a Turing machine.
Furthermore, a so-called universal Turing machine can simulate any other
by reading its specification from the tape—in other words, it can be
programmed to do anything.

The Master Algorithm is for induction, the process of learning, what the
Turing machine is for deduction. It can learn to simulate any other
algorithm by reading examples of its input-output behavior. Just as there are
many models of computation equivalent to a Turing machine, there are
probably many different equivalent formulations of a universal learner. The
point, however, is to find the first such formulation, just as Turing found the
first formulation of the general-purpose computer.

Machine learners versus knowledge engineers

Of course, the Master Algorithm has at least as many skeptics as it has
proponents. Doubt is in order when something looks like a silver bullet. The
most determined resistance comes from machine learning’s perennial foe:
knowledge engineering. According to its proponents, knowledge can’t be
learned automatically; it must be programmed into the computer by human
experts. Sure, learners can extract some things from data, but nothing you’d



confuse with real knowledge. To knowledge engineers, big data is not the
new oil; it’s the new snake oil.

In the early days of AI, machine learning seemed like the obvious path
to computers with humanlike intelligence; Turing and others thought it was
the only plausible path. But then the knowledge engineers struck back, and
by 1970 machine learning was firmly on the back burner. For a moment in
the 1980s, it seemed like knowledge engineering was about to take over the
world, with companies and countries making massive investments in it. But
disappointment soon set in, and machine learning began its inexorable rise,
at first quietly, and then riding a roaring wave of data.

Despite machine learning’s successes, the knowledge engineers remain
unconvinced. They believe that its limitations will soon become apparent,
and the pendulum will swing back. Marvin Minsky, an MIT professor and
AI pioneer, is a prominent member of this camp. Minsky is not just
skeptical of machine learning as an alternative to knowledge engineering,
he’s skeptical of any unifying ideas in AI. Minsky’s theory of intelligence,
as expressed in his book The Society of Mind, could be unkindly
characterized as “the mind is just one damn thing after another.” The
Society of Mind is a laundry list of hundreds of separate ideas, each with its
own vignette. The problem with this approach to AI is that it doesn’t work;
it’s stamp collecting by computer. Without machine learning, the number of
ideas needed to build an intelligent agent is infinite. If a robot had all the
same capabilities as a human except learning, the human would soon leave
it in the dust.

Minsky was an ardent supporter of the Cyc project, the most notorious
failure in the history of AI. The goal of Cyc was to solve AI by entering
into a computer all the necessary knowledge. When the project began in the
1980s, its leader, Doug Lenat, confidently predicted success within a
decade. Thirty years later, Cyc continues to grow without end in sight, and
commonsense reasoning still eludes it. Ironically, Lenat has belatedly
embraced populating Cyc by mining the web, not because Cyc can read, but
because there’s no other way.

Even if by some miracle we managed to finish coding up all the
necessary pieces, our troubles would be just beginning. Over the years, a
number of research groups have attempted to build complete intelligent
agents by putting together algorithms for vision, speech recognition,



language understanding, reasoning, planning, navigation, manipulation, and
so on. Without a unifying framework, these attempts soon hit an
insurmountable wall of complexity: too many moving parts, too many
interactions, too many bugs for poor human software engineers to cope
with. Knowledge engineers believe AI is just an engineering problem, but
we have not yet reached the point where engineering can take us the rest of
the way. In 1962, when Kennedy gave his famous moon-shot speech, going
to the moon was an engineering problem. In 1662, it wasn’t, and that’s
closer to where AI is today.

In industry, there’s no sign that knowledge engineering will ever be able
to compete with machine learning outside of a few niche areas. Why pay
experts to slowly and painfully encode knowledge into a form computers
can understand, when you can extract it from data at a fraction of the cost?
What about all the things the experts don’t know but you can discover from
data? And when data is not available, the cost of knowledge engineering
seldom exceeds the benefit. Imagine if farmers had to engineer each
cornstalk in turn, instead of sowing the seeds and letting them grow: we
would all starve.

Another prominent machine-learning skeptic is the linguist Noam
Chomsky. Chomsky believes that language must be innate, because the
examples of grammatical sentences children hear are not enough to learn a
grammar. This only puts the burden of learning language on evolution,
however; it does not argue against the Master Algorithm but only against it
being something like the brain. Moreover, if a universal grammar exists (as
Chomsky believes), elucidating it is a step toward elucidating the Master
Algorithm. The only way this is not the case is if language has nothing in
common with other cognitive abilities, which is implausible given its
evolutionary recency.

In any case, if we formalize Chomsky’s “poverty of the stimulus”
argument, we find that it’s demonstrably false. In 1969, J. J. Horning
proved that probabilistic context-free grammars can be learned from
positive examples only, and stronger results have followed. (Context-free
grammars are the linguist’s bread and butter, and the probabilistic version
models how likely each rule is to be used.) Besides, language learning
doesn’t happen in a vacuum; children get all sorts of cues from their parents
and the environment. If we’re able to learn language from a few years’



worth of examples, it’s partly because of the similarity between its structure
and the structure of the world. This common structure is what we’re
interested in, and we know from Horning and others that it suffices.

More generally, Chomsky is critical of all statistical learning. He has a
list of things statistical learners can’t do, but the list is fifty years out of
date. Chomsky seems to equate machine learning with behaviorism, where
animal behavior is reduced to associating responses with rewards. But
machine learning is not behaviorism. Modern learning algorithms can learn
rich internal representations, not just pairwise associations between stimuli.

In the end, the proof is in the pudding. Statistical language learners
work, and hand-engineered language systems don’t. The first eye-opener
came in the 1970s, when DARPA, the Pentagon’s research arm, organized
the first large-scale speech recognition project. To everyone’s surprise, a
simple sequential learner of the type Chomsky derided handily beat a
sophisticated knowledge-based system. Learners like it are now used in just
about every speech recognizer, including Siri. Fred Jelinek, head of the
speech group at IBM, famously quipped that “every time I fire a linguist,
the recognizer’s performance goes up.” Stuck in the knowledge-engineering
mire, computational linguistics had a near-death experience in the late
1980s. Since then, learning-based methods have swept the field, to the point
where it’s hard to find a paper devoid of learning in a computational
linguistics conference. Statistical parsers analyze language with accuracy
close to that of humans, where hand-coded ones lagged far behind. Machine
translation, spelling correction, part-of-speech tagging, word sense
disambiguation, question answering, dialogue, summarization: the best
systems in these areas all use learning. Watson, the Jeopardy! computer
champion, would not have been possible without it.

To this Chomsky might reply that engineering successes are not proof of
scientific validity. On the other hand, if your buildings collapse and your
engines don’t run, perhaps something is wrong with your theory of physics.
Chomsky thinks linguists should focus on “ideal” speaker-listeners, as
defined by him, and this gives him license to ignore things like the need for
statistics in language learning. Perhaps it’s not surprising, then, that few
experimentalists take his theories seriously any more.

Another potential source of objections to the Master Algorithm is the
notion, popularized by the psychologist Jerry Fodor, that the mind is



composed of a set of modules with only limited communication between
them. For example, when you watch TV your “higher brain” knows that it’s
only light flickering on a flat surface, but your visual system still sees three-
dimensional shapes. Even if we believe in the modularity of mind, however,
that does not imply that different modules use different learning algorithms.
The same algorithm operating on, say, visual and verbal information may
suffice.

Critics like Minsky, Chomsky, and Fodor once had the upper hand, but
thankfully their influence has waned. Nevertheless, we should keep their
criticisms in mind as we set out on the road to the Master Algorithm for two
reasons. The first is that knowledge engineers faced many of the same
problems machine learners do, and even if they didn’t succeed, they learned
many valuable lessons. The second is that learning and knowledge are
intertwined in surprisingly subtle ways, as we’ll soon find out.
Unfortunately, the two camps often talk past each other. They speak
different languages: machine learning speaks probability, and knowledge
engineering speaks logic. Later in the book we’ll see what to do about this.

Swan bites robot

“No matter how smart your algorithm, there are some things it just can’t
learn.” Outside of AI and cognitive science, the most common objections to
machine learning are variants of this claim. Nassim Taleb hammered on it
forcefully in his book The Black Swan. Some events are simply not
predictable. If you’ve only ever seen white swans, you think the probability
of ever seeing a black one is zero. The financial meltdown of 2008 was a
“black swan.”

It’s true that some things are predictable and some aren’t, and the first
duty of the machine learner is to distinguish between them. But the goal of
the Master Algorithm is to learn everything that can be known, and that’s a
vastly wider domain than Taleb and others imagine. The housing bust was
far from a black swan; on the contrary, it was widely predicted. Most banks’
models failed to see it coming, but that was due to well-understood
limitations of those models, not limitations of machine learning in general.
Learning algorithms are quite capable of accurately predicting rare, never-



before-seen events; you could even say that that’s what machine learning is
all about. What’s the probability of a black swan if you’ve never seen one?
How about it’s the fraction of known species that belatedly turned out to
have black specimens? This is only a crude example; we’ll see many deeper
ones in this book.

A related, frequently heard objection is “Data can’t replace human
intuition.” In fact, it’s the other way around: human intuition can’t replace
data. Intuition is what you use when you don’t know the facts, and since
you often don’t, intuition is precious. But when the evidence is before you,
why would you deny it? Statistical analysis beats talent scouts in baseball
(as Michael Lewis memorably documented in Moneyball), it beats
connoisseurs at wine tasting, and every day we see new examples of what it
can do. Because of the influx of data, the boundary between evidence and
intuition is shifting rapidly, and as with any revolution, entrenched ways
have to be overcome. If I’m the expert on X at company Y, I don’t like to be
overridden by some guy with data. There’s a saying in industry: “Listen to
your customers, not to the HiPPO,” HiPPO being short for “highest paid
person’s opinion.” If you want to be tomorrow’s authority, ride the data,
don’t fight it.

OK, some say, machine learning can find statistical regularities in data,
but it will never discover anything deep, like Newton’s laws. It arguably
hasn’t yet, but I bet it will. Stories of falling apples notwithstanding, deep
scientific truths are not low-hanging fruit. Science goes through three
phases, which we can call the Brahe, Kepler, and Newton phases. In the
Brahe phase, we gather lots of data, like Tycho Brahe patiently recording
the positions of the planets night after night, year after year. In the Kepler
phase, we fit empirical laws to the data, like Kepler did to the planets’
motions. In the Newton phase, we discover the deeper truths. Most science
consists of Brahe- and Kepler-like work; Newton moments are rare. Today,
big data does the work of billions of Brahes, and machine learning the work
of millions of Keplers. If—let’s hope so—there are more Newton moments
to be had, they are as likely to come from tomorrow’s learning algorithms
as from tomorrow’s even more overwhelmed scientists, or at least from a
combination of the two. (Of course, the Nobel prizes will go to the
scientists, whether they have the key insights or just push the button.
Learning algorithms have no ambitions of their own.) We’ll see in this book



what those algorithms might look like and speculate about what they might
discover—such as a cure for cancer.

Is the Master Algorithm a fox or a hedgehog?

We need to consider one more potential objection to the Master Algorithm,
perhaps the most serious one of all. It comes not from knowledge engineers
or disgruntled experts, but from the machine-learning practitioners
themselves. Putting that hat on for a moment, I might say: “But the Master
Algorithm does not look like my daily life. I try hundreds of variations of
many different learning algorithms on any given problem, and different
algorithms do better on different problems. How could a single algorithm
replace them all?”

To which the answer is: indeed. Wouldn’t it be nice if, instead of trying
hundreds of variations of many algorithms, we just had to try hundreds of
variations of a single one? If we can figure out what’s important and not so
important in each one, what the important parts have in common and how
they complement each other, we can, indeed, synthesize a Master Algorithm
from them. That’s what we’re going to do in this book, or as close to it as
we can. Perhaps you, dear reader, will have some ideas of your own as you
read it.

How complex will the Master Algorithm be? Thousands of lines of
code? Millions? We don’t know yet, but machine learning has a delightful
history of simple algorithms unexpectedly beating very fancy ones. In a
famous passage of his book The Sciences of the Artificial, AI pioneer and
Nobel laureate Herbert Simon asked us to consider an ant laboriously
making its way home across a beach. The ant’s path is complex, not
because the ant itself is complex but because the environment is full of
dunelets to climb and pebbles to get around. If we tried to model the ant by
programming in every possible path, we’d be doomed. Similarly, in
machine learning the complexity is in the data; all the Master Algorithm has
to do is assimilate it, so we shouldn’t be surprised if it turns out to be
simple. The human hand is simple—four fingers, one opposable thumb—
and yet it can make and use an infinite variety of tools. The Master



Algorithm is to algorithms what the hand is to pens, swords, screwdrivers,
and forks.

As Isaiah Berlin memorably noted, some thinkers are foxes—they know
many small things—and some are hedgehogs—they know one big thing.
The same is true of learning algorithms. I hope the Master Algorithm is a
hedgehog, but even if it’s a fox, we can’t catch it soon enough. The biggest
problem with today’s learning algorithms is not that they are plural; it’s that,
useful as they are, they still don’t do everything we’d like them to. Before
we can discover deep truths with machine learning, we have to discover
deep truths about machine learning.

What’s at stake

Suppose you’ve been diagnosed with cancer, and the traditional treatments
—surgery, chemotherapy, and radiation therapy—have failed. What
happens next will determine whether you live or die. The first step is to get
the tumor’s genome sequenced. Companies like Foundation Medicine in
Cambridge, Massachusetts, will do that for you: send them a sample of the
tumor and they will send back a list of the known cancer-related mutations
in its genome. This is needed because every cancer is different, and no
single drug is likely to work for all. Cancers mutate as they spread through
your body, and by natural selection, the mutations most resistant to the
drugs you’re taking are the most likely to grow. The right drug for you may
be one that works for only 5 percent of patients, or you may need a
combination of drugs that has never been tried before. Perhaps it will take a
new drug designed specifically for your cancer, or a sequence of drugs to
parry the cancer’s adaptations. Yet these drugs may have side effects that
are deadly for you but not most other people. No doctor can keep track of
all the information needed to predict the best treatment for you, given your
medical history and your cancer’s genome. It’s an ideal job for machine
learning, and yet today’s learners aren’t up to it. Each has some of the
needed capabilities but is missing others. The Master Algorithm is the
complete package. Applying it to vast amounts of patient and drug data,
combined with knowledge mined from the biomedical literature, is how we
will cure cancer.



A universal learner is sorely needed in many other areas, from life-and-
death to mundane situations. Picture the ideal recommender system, one
that recommends the books, movies, and gadgets you would pick for
yourself if you had the time to check them all out. Amazon’s algorithm is a
very far cry from it. That’s partly because it doesn’t have enough data—
mainly it just knows which items you previously bought from Amazon—
but if you went hog wild and gave it access to your complete stream of
consciousness from birth, it wouldn’t know what to do with it. How do you
transmute the kaleidoscope of your life, the myriad different choices you’ve
made, into a coherent picture of who you are and what you want? This is
well beyond the ken of today’s learners, but given enough data, the Master
Algorithm should be able to understand you roughly as well as your best
friend.

Someday there’ll be a robot in every house, doing the dishes, making
the beds, even looking after the children while the parents work. How soon
depends on how hard finding the Master Algorithm turns out to be. If the
best we can do is combine many different learners, each of which solves
only a small part of the AI problem, we’ll soon run into the complexity
wall. This piecemeal approach worked for Jeopardy!, but few believe
tomorrow’s housebots will be Watson’s grandchildren. It’s not that the
Master Algorithm will single-handedly crack AI; there’ll still be great feats
of engineering to perform, and Watson is a good preview of them. But the
80/20 rule applies: the Master Algorithm will be 80 percent of the solution
and 20 percent of the work, so it’s surely the best place to start.

The Master Algorithm’s impact on technology will not be limited to AI.
A universal learner is a phenomenal weapon against the complexity
monster. Systems that today are too complex to build will no longer be.
Computers will do more with less help from us. They will not repeat the
same mistakes over and over again, but learn with practice, like people do.
Sometimes, like the butlers of legend, they’ll even guess what we want
before we express it. If computers make us smarter, computers running the
Master Algorithm will make us feel like geniuses. Technological progress
will noticeably speed up, not just in computer science but in many different
fields. This in turn will add to economic growth and speed poverty’s
decline. With the Master Algorithm to help synthesize and distribute
knowledge, the intelligence of an organization will be more than the sum of



its parts, not less. Routine jobs will be automated and replaced by more
interesting ones. Every job will be done better than it is today, whether by a
better-trained human, a computer, or a combination of the two. Stock-
market crashes will be fewer and smaller. With a fine grid of sensors
covering the globe and learned models to make sense of its output moment
by moment, we will no longer be flying blind; the health of our planet will
take a turn for the better. A model of you will negotiate the world on your
behalf, playing elaborate games with other people’s and entities’ models.
And as a result of all this, our lives will be longer, happier, and more
productive.

Because the potential impact is so great, it would behoove us to try to
invent the Master Algorithm even if the odds of success were low. And
even if it takes a long time, searching for a universal learner has many
immediate benefits. One is the better understanding of machine learning
that a unified view enables. Too many business decisions are made with
scant understanding of the analytics underpinning them, but it doesn’t have
to be that way. To use a technology, we don’t need to master its inner
workings, but we do need to have a good conceptual model of it. We need
to know how to find a station on the radio, or change the volume. Today,
those of us who aren’t machine-learning experts have no conceptual model
of what a learner does. The algorithms we drive when we use Google,
Facebook, or the latest analytics suite are a bit like a black limo with tinted
windows that mysteriously shows up at our door one night: Should we get
in? Where will it take us? It’s time to get in the driver’s seat. Knowing the
assumptions that different learners make will help us pick the right one for
the job, instead of going with a random one that fell into our lap—and then
suffering with it for years, painfully rediscovering what we should have
known from the start. By knowing what learners optimize, we can make
certain they optimize what we care about, rather than what came in the box.
Perhaps most important, once we know how a particular learner arrives at
its conclusions, we’ll know what to make of that information—what to
believe, what to return to the manufacturer, and how to get a better result
next time around. And with the universal learner we’ll develop in this book
as the conceptual model, we can do all this without cognitive overload.
Machine learning is simple at heart; we just need to peel away the layers of
math and jargon to reveal the innermost Russian doll.



These benefits apply in both our personal and professional lives. How
do I make the best of the trail of data that my every step in the modern
world leaves? Every transaction works on two levels: what it accomplishes
for you and what it teaches the system you just interacted with. Being aware
of this is the first step to a happy life in the twenty-first century. Teach the
learners, and they will serve you; but first you need to understand them.
What in my job can be done by a learning algorithm, what can’t, and—most
important—how can I take advantage of machine learning to do it better?
The computer is your tool, not your adversary. Armed with machine
learning, a manager becomes a supermanager, a scientist a superscientist, an
engineer a superengineer. The future belongs to those who understand at a
very deep level how to combine their unique expertise with what algorithms
do best.

But perhaps the Master Algorithm is a Pandora’s box best left closed.
Will computers enslave us or even exterminate us? Will machine learning
be the handmaiden of dictators or evil corporations? Knowing where
machine learning is headed will help us to understand what to worry about,
what not, and what to do about it. The Terminator scenario, where a super-
AI becomes sentient and subdues mankind with a robot army, has no chance
of coming to pass with the kinds of learning algorithms we’ll meet in this
book. Just because computers can learn doesn’t mean they magically
acquire a will of their own. Learners learn to achieve the goals we set them;
they don’t get to change the goals. Rather, we need to worry about them
trying to serve us in ways that do more harm than good because they don’t
know any better, and the cure for that is to teach them better.

Most of all, we have to worry about what the Master Algorithm could
do in the wrong hands. The first line of defense is to make sure the good
guys get it first—or, if it’s not clear who the good guys are, to make sure it’s
open-sourced. The second is to realize that, no matter how good the
learning algorithm is, it’s only as good as the data it gets. He who controls
the data controls the learner. Your reaction to the datafication of life should
not be to retreat to a log cabin—the woods, too, are full of sensors—but to
aggressively seek control of the data that matters to you. It’s good to have
recommenders that find what you want and bring it to you; you’d feel lost
without them. But they should bring you what you want, not what someone
else wants you to have. Control of data and ownership of the models



learned from it is what many of the twenty-first century’s battles will be
about—between governments, corporations, unions, and individuals. But
you also have an ethical duty to share data for the common good. Machine
learning alone will not cure cancer; cancer patients will, by sharing their
data for the benefit of future patients.

A different theory of everything

Science today is thoroughly balkanized, a Tower of Babel where each
subcommunity speaks its own jargon and can see only into a few adjacent
subcommunities. The Master Algorithm would provide a unifying view of
all of science and potentially lead to a new theory of everything. At first this
may seem like an odd claim. What machine learning does is induce theories
from data. How could the Master Algorithm itself grow into a theory? Isn’t
string theory the theory of everything, and the Master Algorithm nothing
like it?

To answer these questions, we have to first understand what a scientific
theory is and is not. A theory is a set of constraints on what the world could
be, not a complete description of it. To obtain the latter, you have to
combine the theory with data. For example, consider Newton’s second law.
It says that force equals mass times acceleration, or F = ma. It does not say
what the mass or acceleration of any object are, or the forces acting on it. It
only requires that, if the mass of an object is m and its acceleration is a,
then the total force on it must be ma. It removes some of the universe’s
degrees of freedom, but not all. The same is true of all other physical
theories, including relativity, quantum mechanics, and string theory, which
are, in effect, refinements of Newton’s laws.

The power of a theory lies in how much it simplifies our description of
the world. Armed with Newton’s laws, we only need to know the masses,
positions, and velocities of all objects at one point in time; their positions
and velocities at all times follow. So Newton’s laws reduce our description
of the world by a factor of the number of distinguishable instants in the
history of the universe, past and future. Pretty amazing! Of course,
Newton’s laws are only an approximation of the true laws of physics, so
let’s replace them with string theory, ignoring all its problems and the



question of whether it can ever be empirically validated. Can we do better?
Yes, for two reasons.

The first is that, in reality, we never have enough data to completely
determine the world. Even ignoring the uncertainty principle, precisely
knowing the positions and velocities of all particles in the world at some
point in time is not remotely feasible. And because the laws of physics are
chaotic, uncertainty compounds over time, and pretty soon they determine
very little indeed. To accurately describe the world, we need a fresh batch
of data at regular intervals. In effect, the laws of physics only tell us what
happens locally. This drastically reduces their power.

The second problem is that, even if we had complete knowledge of the
world at some point in time, the laws of physics would still not allow us to
determine its past and future. This is because the sheer amount of
computation required to make those predictions would be beyond the
capabilities of any imaginable computer. In effect, to perfectly simulate the
universe we would need another, identical universe. This is why string
theory is mostly irrelevant outside of physics. The theories we have in
biology, psychology, sociology, or economics are not corollaries of the laws
of physics; they had to be created from scratch. We assume that they are
approximations of what the laws of physics would predict when applied at
the scale of cells, brains, and societies, but there’s no way to know.

Unlike the theories of a given field, which only have power within that
field, the Master Algorithm has power across all fields. Within field X, it
has less power than field X’s prevailing theory, but across all fields—when
we consider the whole world—it has vastly more power than any other
theory. The Master Algorithm is the germ of every theory; all we need to
add to it to obtain theory X is the minimum amount of data required to
induce it. (In the case of physics, that would be just the results of perhaps a
few hundred key experiments.) The upshot is that, pound for pound, the
Master Algorithm may well be the best starting point for a theory of
everything we’ll ever have. Pace Stephen Hawking, it may ultimately tell
us more about the mind of God than string theory.

Some may say that seeking a universal learner is the epitome of techno-
hubris. But dreaming is not hubris. Maybe the Master Algorithm will take
its place among the great chimeras, alongside the philosopher’s stone and
the perpetual motion machine. Or perhaps it will be more like finding the



longitude at sea, given up as too difficult until a lone genius solved it. More
likely, it will be the work of generations, raised stone by stone like a
cathedral. The only way to find out is to get up early one day and set out on
the journey.

Candidates that don’t make the cut

So, if the Master Algorithm exists, what is it? A seemingly obvious
candidate is memorization: just remember everything you’ve seen; after a
while you’ll have seen everything there is to see, and therefore know
everything there is to know. The problem with this is that, as Heraclitus
said, you never step in the same river twice. There’s far more to see than
you ever could. No matter how many snowflakes you’ve examined, the next
one will be different. Even if you had been present at the Big Bang and
everywhere since, you would still have seen only a tiny fraction of what
you could see in the future. If you had witnessed life on Earth up to ten
thousand years ago, that would not have prepared you for what was to
come. Someone who grew up in one city doesn’t become paralyzed when
they move to another, but a robot capable only of memorization would.
Besides, knowledge is not just a long list of facts. Knowledge is general,
and has structure. “All humans are mortal” is much more succinct than
seven billion statements of mortality, one for each human. Memorization
gives us none of these things.

Another candidate Master Algorithm is the microprocessor. After all,
the one in your computer can be viewed as a single algorithm whose job is
to execute other algorithms, like a universal Turing machine; and it can run
any imaginable algorithm, up to its limits of memory and speed. In effect, to
a microprocessor an algorithm is just another kind of data. The problem
here is that, by itself, the microprocessor doesn’t know how to do anything;
it just sits there idle all day. Where do the algorithms it runs come from? If
they were coded up by a human programmer, no learning is involved.
Nevertheless, there’s a sense in which the microprocessor is a good analog
for the Master Algorithm. A microprocessor is not the best hardware for
running any particular algorithm. That would be an ASIC (application-
specific integrated circuit) designed very precisely for that algorithm. Yet



microprocessors are what we use for almost all applications, because their
flexibility trumps their relative inefficiency. If we had to build an ASIC for
every new application, the Information Revolution would never have
happened. Similarly, the Master Algorithm is not the best algorithm for
learning any particular piece of knowledge; that would be an algorithm that
already encodes most of that knowledge (or all of it, making the data
superfluous). The point, however, is to induce the knowledge from data,
because it’s easier and costs less; so the more general the learning
algorithm, the better.

An even more extreme candidate is the humble NOR gate: a logic
switch whose output is 1 only if its inputs are both 0. Recall that all
computers are made of logic gates built out of transistors, and all
computations can be reduced to combinations of AND, OR, and NOT gates.
A NOR gate is just an OR gate followed by a NOT gate: the negation of a
disjunction, as in “I’m happy as long as I’m not starving or sick.” AND, OR
and NOT can all be implemented using NOR gates, so NOR can do
everything, and in fact it’s all some microprocessors use. So why can’t it be
the Master Algorithm? It’s certainly unbeatable for simplicity.
Unfortunately, a NOR gate is not the Master Algorithm any more than a
Lego brick is the universal toy. It can certainly be a universal building block
for toys, but a pile of Legos doesn’t spontaneously assemble itself into a
toy. The same applies to other simple computation schemes, like Petri nets
or cellular automata.

Moving on to more sophisticated alternatives, what about the queries
that any good database engine can answer, or the simple algorithms in a
statistical package? Aren’t those enough? These are bigger Lego bricks, but
they’re still only bricks. A database engine never discovers anything new; it
just tells you what it knows. Even if all the humans in a database are mortal,
it doesn’t occur to it to generalize mortality to other humans. (Database
engineers would blanch at the thought.) Much of statistics is about testing
hypotheses, but someone has to formulate them in the first place. Statistical
packages can do linear regression and other simple procedures, but these
have a very low limit on what they can learn, no matter how much data you
feed them. The better packages cross into the gray zone between statistics
and machine learning, but there are still many kinds of knowledge they
can’t discover.



OK, it’s time to come clean: the Master Algorithm is the equation U(X)
= 0. Not only does it fit on a T-shirt; it fits on a postage stamp. Huh? U(X) =
0 just says that some (possibly very complex) function U of some (possibly
very complex) variable X is equal to 0. Every equation can be reduced to
this form; for example, F = ma is equivalent to F – ma = 0, so if you think
of F – ma as a function U of F, voilà: U(F) = 0. In general, X could be any
input and U could be any algorithm, so surely the Master Algorithm can’t
be any more general than this; and since we’re looking for the most general
algorithm we can find, this must be it. I’m just kidding, of course, but this
particular failed candidate points to a real danger in machine learning:
coming up with a learner that’s so general, it doesn’t have enough content to
be useful.

So what’s the least content a learner can have in order to be useful?
How about the laws of physics? After all, everything in the world obeys
them (we believe), and they gave rise to evolution and (through it) the
brain. Well, perhaps the Master Algorithm is implicit in the laws of physics,
but if so, then we need to make it explicit. Just throwing data at the laws of
physics won’t result in any new laws. Here’s one way to think about it:
perhaps some field’s master theory is just the laws of physics compiled into
a more convenient form for that field, but if so then we need an algorithm
that finds a shortcut from that field’s data to its theory, and it’s not clear the
laws of physics can be of any help with this. Another issue is that, if the
laws of physics were different, the Master Algorithm would presumably
still be able to discover them in many cases. Mathematicians like to say that
God can disobey the laws of physics, but even he cannot defy the laws of
logic. This may be so, but the laws of logic are for deduction; what we need
is something equivalent, but for induction.

The five tribes of machine learning

Of course, we don’t have to start from scratch in our hunt for the Master
Algorithm. We have a few decades of machine learning research to draw
on. Some of the smartest people on the planet have devoted their lives to
inventing learning algorithms, and some would even claim that they already
have a universal learner in hand. We will stand on the shoulders of these



giants, but take such claims with a grain of salt. Which raises the question:
how will we know when we’ve found the Master Algorithm? When the
same learner, with only parameter changes and minimal input aside from
the data, can understand video and text as well as humans, and make
significant new discoveries in biology, sociology, and other sciences.
Clearly, by this standard no learner has yet been demonstrated to be the
Master Algorithm, even in the unlikely case one already exists.

Crucially, the Master Algorithm is not required to start from scratch in
each new problem. That bar is probably too high for any learner to meet,
and it’s certainly very unlike what people do. For example, language does
not exist in a vacuum; we couldn’t understand a sentence without our
knowledge of the world it refers to. Thus, when learning to read, the Master
Algorithm can rely on having previously learned to see, hear, and control a
robot. Likewise, a scientist does not just blindly fit models to data; he can
bring all his knowledge of the field to bear on the problem. Therefore, when
making discoveries in biology, the Master Algorithm can first read all the
biology it wants, relying on having previously learned to read. The Master
Algorithm is not just a passive consumer of data; it can interact with its
environment and actively seek the data it wants, like Adam, the robot
scientist, or like any child exploring her world.

Our search for the Master Algorithm is complicated, but also enlivened,
by the rival schools of thought that exist within machine learning. The main
ones are the symbolists, connectionists, evolutionaries, Bayesians, and
analogizers. Each tribe has a set of core beliefs, and a particular problem
that it cares most about. It has found a solution to that problem, based on
ideas from its allied fields of science, and it has a master algorithm that
embodies it.

For symbolists, all intelligence can be reduced to manipulating symbols,
in the same way that a mathematician solves equations by replacing
expressions by other expressions. Symbolists understand that you can’t
learn from scratch: you need some initial knowledge to go with the data.
They’ve figured out how to incorporate preexisting knowledge into
learning, and how to combine different pieces of knowledge on the fly in
order to solve new problems. Their master algorithm is inverse deduction,
which figures out what knowledge is missing in order to make a deduction
go through, and then makes it as general as possible.



For connectionists, learning is what the brain does, and so what we need
to do is reverse engineer it. The brain learns by adjusting the strengths of
connections between neurons, and the crucial problem is figuring out which
connections are to blame for which errors and changing them accordingly.
The connectionists’ master algorithm is backpropagation, which compares a
system’s output with the desired one and then successively changes the
connections in layer after layer of neurons so as to bring the output closer to
what it should be.

Evolutionaries believe that the mother of all learning is natural
selection. If it made us, it can make anything, and all we need to do is
simulate it on the computer. The key problem that evolutionaries solve is
learning structure: not just adjusting parameters, like backpropagation does,
but creating the brain that those adjustments can then fine-tune. The
evolutionaries’ master algorithm is genetic programming, which mates and
evolves computer programs in the same way that nature mates and evolves
organisms.

Bayesians are concerned above all with uncertainty. All learned
knowledge is uncertain, and learning itself is a form of uncertain inference.
The problem then becomes how to deal with noisy, incomplete, and even
contradictory information without falling apart. The solution is probabilistic
inference, and the master algorithm is Bayes’ theorem and its derivates.
Bayes’ theorem tells us how to incorporate new evidence into our beliefs,
and probabilistic inference algorithms do that as efficiently as possible.

For analogizers, the key to learning is recognizing similarities between
situations and thereby inferring other similarities. If two patients have
similar symptoms, perhaps they have the same disease. The key problem is
judging how similar two things are. The analogizers’ master algorithm is
the support vector machine, which figures out which experiences to
remember and how to combine them to make new predictions.

Each tribe’s solution to its central problem is a brilliant, hard-won
advance. But the true Master Algorithm must solve all five problems, not
just one. For example, to cure cancer we need to understand the metabolic
networks in the cell: which genes regulate which others, which chemical
reactions the resulting proteins control, and how adding a new molecule to
the mix would affect the network. It would be silly to try to learn all of this
from scratch, ignoring all the knowledge that biologists have painstakingly



accumulated over the decades. Symbolists know how to combine this
knowledge with data from DNA sequencers, gene expression microarrays,
and so on, to produce results that you couldn’t get with either alone. But the
knowledge we obtain by inverse deduction is purely qualitative; we need to
learn not just who interacts with whom, but how much, and
backpropagation can do that. Nevertheless, both inverse deduction and
backpropagation would be lost in space without some basic structure on
which to hang the interactions and parameters they find, and genetic
programming can discover it. At this point, if we had complete knowledge
of the metabolism and all the data relevant to a given patient, we could
figure out a treatment for her. But in reality the information we have is
always very incomplete, and even incorrect in places; we need to make
headway despite that, and that’s what probabilistic inference is for. In the
hardest cases, the patient’s cancer looks very different from previous ones,
and all our learned knowledge fails. Similarity-based algorithms can save
the day by seeing analogies between superficially very different situations,
zeroing in on their essential similarities and ignoring the rest.

In this book we will synthesize a single algorithm will all these
capabilities:



Our quest will take us across the territory of each of the five tribes. The
border crossings, where they meet, negotiate and skirmish, will be the
trickiest part of the journey. Each tribe has a different piece of the puzzle,
which we must gather. Machine learners, like all scientists, resemble the
blind men and the elephant: one feels the trunk and thinks it’s a snake,
another leans against the leg and thinks it’s a tree, yet another touches the



tusk and thinks it’s a bull. Our aim is to touch each part without jumping to
conclusions; and once we’ve touched all of them, we will try to picture the
whole elephant. It’s far from obvious how to combine all the pieces into one
solution—impossible, according to some—but this is what we will do.

The algorithm we’ll arrive at is not yet the Master Algorithm, for
reasons we’ll see, but it’s the closest anyone has come. And we’ll gather
enough riches along the way to make Croesus envious. Nevertheless, this
book is only part one of the Master Algorithm saga. Part two’s protagonist
is you, dear reader. Your mission, should you choose to accept it, is to go
the rest of the way and bring back the prize. I will be your humble guide in
part one, from here to the edge of the known world. Do I hear you protest
that you don’t know enough, or algorithms are not your forte? Fear not.
Computer science is still young, and unlike in physics or biology, you don’t
need a PhD to start a revolution. (Just ask Bill Gates, Messrs. Sergey Brin
and Larry Page, or Mark Zuckerberg.) Insight and persistence are what
counts.

Are you ready? Our journey begins with a visit to the symbolists, the
tribe with the oldest roots.



CHAPTER THREE

Hume’s Problem of Induction

Are you a rationalist or an empiricist?
Rationalists believe that the senses deceive and that logical reasoning is

the only sure path to knowledge. Empiricists believe that all reasoning is
fallible and that knowledge must come from observation and
experimentation. The French are rationalists; the Anglo-Saxons (as the
French call them) are empiricists. Pundits, lawyers, and mathematicians are
rationalists; journalists, doctors, and scientists are empiricists. Murder, She
Wrote is a rationalist TV crime show; CSI: Crime Scene Investigation is an
empiricist one. In computer science, theorists and knowledge engineers are
rationalists; hackers and machine learners are empiricists.

The rationalist likes to plan everything in advance before making the
first move. The empiricist prefers to try things and see how they turn out. I
don’t know if there’s a gene for rationalism or one for empiricism, but
looking at my computer scientist colleagues, I’ve observed time and again
that they are almost like personality traits: some people are rationalistic to
the core and could never have been otherwise; and others are empiricist
through and through, and that’s what they’ll always be. The two sides can
converse with each other and sometimes draw on each other’s results, but
they can understand each other only so much. Deep down each believes that
what the other does is secondary, and not very interesting.



Rationalists and empiricists have probably been around since the dawn
of Homo sapiens. Before setting out on a hunt, Caveman Bob spent a long
time sitting in his cave figuring out where the game would be. In the
meantime, Cavewoman Alice was out systematically surveying the
territory. Since both kinds are still with us, it’s probably safe to say that
neither approach was better. You might think that machine learning is the
final triumph of the empiricists, but the truth is more subtle, as we’ll soon
see.

Rationalism versus empiricism is a favorite question of philosophers.
Plato was an early rationalist, and Aristotle an early empiricist. But the
debate really took off during the Enlightenment, with a trio of great thinkers
on each side: Descartes, Spinoza, and Leibniz were the leading rationalists;
Locke, Berkeley, and Hume were their empiricist counterparts. Trusting in
their powers of reasoning, the rationalists concocted theories of the universe
that—to put it gently—did not stand the test of time, but they also invented
fundamental mathematical techniques like calculus and analytical geometry.
The empiricists were altogether more practical, and their influence is
everywhere from the scientific method to the Constitution of the United
States.

David Hume was the greatest of the empiricists and the greatest
English-speaking philosopher of all time. Thinkers like Adam Smith and
Charles Darwin count him among their key influences. You could also say
he’s the patron saint of the symbolists. He was born in Scotland in 1711 and
spent most of his life in eighteenth-century Edinburgh, a prosperous city
full of intellectual ferment. A man of genial disposition, he was
nevertheless an exacting skeptic who spent much of his time debunking the
myths of his age. He also took the empiricist train of thought that Locke had
started to its logical conclusion and asked a question that has since hung
like a sword of Damocles over all knowledge, from the most trivial to the
most advanced: How can we ever be justified in generalizing from what
we’ve seen to what we haven’t? Every learning algorithm is, in a sense, an
attempt to answer this question.

Hume’s question is also the departure point for our journey. We’ll start
by illustrating it with an example from daily life and meeting its modern
embodiment in the famous “no free lunch” theorem. Then we’ll see the
symbolists’ answer to Hume. This leads us to the most important problem



in machine learning: overfitting, or hallucinating patterns that aren’t really
there. We’ll see how the symbolists solve it, and how machine learning is at
heart a kind of alchemy, transmuting data into knowledge with the aid of a
philosopher’s stone. For the symbolists, the philosopher’s stone is
knowledge itself. In the next four chapters we’ll study the solutions of the
other tribes’ alchemists.

To date or not to date?

You have a friend you really like, and you want to ask her out on a date.
You have a hard time dealing with rejection, though, and you’re only going
to ask her if you’re pretty sure she’ll say yes. It’s Friday evening, and there
you sit with cell phone in hand, trying to decide whether or not to call her.
You remember that the previous time you asked her, she said no. But why?
Two times before that she said yes, and the one before those she said no.
Maybe there are days she doesn’t like to go out? Or maybe she likes
clubbing but not dinner dates? Being of an unusually systematic nature, you
put down the phone and jot down what you can remember about those
previous occasions:

So … what shall it be? Date or no date? Is there a pattern that
distinguishes the yeses from the nos? And, most important, what does that
pattern say about today?

Clearly, there’s no single factor that correctly predicts the answer: on
some weekends she likes to go out, and on some she doesn’t; sometimes she
likes to go clubbing, and sometimes she doesn’t, and so on. What about a
combination of factors? Maybe she likes to go clubbing on weekends? No,
occasion number 4 crosses that one out. Or maybe she only likes to go out



on warm weekend nights? Bingo! That works! In which case, looking at the
frosty weather outside, tonight doesn’t look promising. But wait! What if
she likes to go clubbing when there’s nothing good on TV? That also
works, and that means today is a yes! Quick, call her before it gets too late.
But wait a second. How do you know this is the right pattern? You’ve found
two that agree with your previous experience, but they make opposite
predictions. Come to think of it, what if she only goes clubbing when the
weather is nice? Or she goes out on weekends when there’s nothing to
watch on TV? Or—

At this point you crumple your notes in frustration and fling them into
the wastebasket. There’s no way to know! What can you do? The ghost of
Hume nods sadly over your shoulder. You have no basis to pick one
generalization over another. Yes and no are equally legitimate answers to
the question “What will she say?” And the clock is ticking. Bitterly, you
fish out a quarter from your pocket and prepare to flip it.

You’re not the only one in dire straits—so are we. We’ve only just set
out on our road to the Master Algorithm and already we seem to have run
into an insurmountable obstacle. Is there any way to learn something from
the past that we can be confident will apply in the future? And if there isn’t,
isn’t machine learning a hopeless enterprise? For that matter, isn’t all of
science, even all of human knowledge, on rather shaky ground?

It’s not like big data would solve the problem. You could be super-
Casanova and have dated millions of women thousands of times each, but
your master database still wouldn’t answer the question of what this woman
is going to say this time. Even if today is exactly like some previous
occasion when she said yes—same day of week, same type of date, same
weather, and same shows on TV—that still doesn’t mean that this time she
will say yes. For all you know, her answer is determined by some factor that
you didn’t think of or don’t have access to. Or maybe there’s no rhyme or
reason to her answers: they’re random, and you’re just spinning your
wheels trying to find a pattern in them.

Philosophers have debated Hume’s problem of induction ever since he
posed it, but no one has come up with a satisfactory answer. Bertrand
Russell liked to illustrate the problem with the story of the inductivist
turkey. On his first morning at the farm, the turkey was fed at 9:00 a.m., but
being a good inductivist, he didn’t jump to conclusions. He first collected



many observations on many different days under many different
circumstances. Having been fed consistently at 9:00 a.m. for many
consecutive days, he finally concluded that yes, he would always be fed at
9:00 a.m. Then came the morning of Christmas eve, and his throat was cut.

It would be nice if Hume’s problem was just a cute philosophical
conundrum we could ignore, but we can’t. For example, Google’s business
is based on guessing which web pages you’re looking for when you type
some keywords into the search box. Their key asset is massive logs of
search queries people have entered in the past and the links they clicked on
in the corresponding results pages. But what do you do if someone types in
a combination of keywords that’s not in the log? And even if it is, how can
you be confident that the current user wants the same pages as the previous
ones?

How about we just assume that the future will be like the past? This is
certainly a risky assumption. (It didn’t work for the inductivist turkey.) On
the other hand, without it all knowledge is impossible, and so is life. We’d
rather stay alive, even if precariously. Unfortunately, even with that
assumption we’re not out of the woods. It takes care of the “trivial” cases: If
I’m a doctor and patient B has exactly the same symptoms as patient A, I
assume that the diagnosis is the same. But if patient B’s symptoms don’t
exactly match anyone else’s, I’m still in the dark. This is the machine-
learning problem: generalizing to cases that we haven’t seen before.

But perhaps that’s not such a big deal? With enough data, won’t most
cases be in the “trivial” category? No. We saw in the previous chapter why
memorization won’t work as a universal learner, but now we can make it
more quantitative. Suppose you have a database with a trillion records, each
with a thousand Boolean fields (i.e., each field is the answer to a yes/no
question). That’s pretty big. What fraction of the possible cases have you
seen? (Take a guess before you read on.) Well, the number of possible
answers is two for each question, so for two questions it’s two times two
(yes-yes, yes-no, no-yes, and no-no), for three questions it’s two cubed (2 ×
2 × 2 = 23), and for a thousand questions it’s two raised to the power of a
thousand (21000). The trillion records in your database are one-gazillionth
of 1 percent of 21000, where “gazillionth” means “zero point 286 zeros
followed by 1.” Bottom line: no matter how much data you have—tera- or



peta- or exa- or zetta- or yottabytes—you’ve basically seen nothing. The
chances that the new case you need to make a decision on is already in the
database are so vanishingly small that, without generalization, you won’t
even get off the ground.

If this all sounds a bit abstract, suppose you’re a major e-mail provider,
and you need to label each incoming e-mail as spam or not spam. You may
have a database of a trillion past e-mails, each already labeled as spam or
not, but that won’t save you, since the chances that every new e-mail will be
an exact copy of a previous one are just about zero. You have no choice but
to try to figure out at a more general level what distinguishes spam from
nonspam. And, according to Hume, there’s no way to do that.

The “no free lunch” theorem

Two hundred and fifty years after Hume set off his bombshell, it was given
elegant mathematical form by David Wolpert, a physicist turned machine
learner. His result, known as the “no free lunch” theorem, sets a limit on
how good a learner can be. The limit is pretty low: no learner can be better
than random guessing! OK, we can go home: the Master Algorithm is just
flipping coins. Seriously, though, how is it that no learner can beat coin
flipping? And if that’s so, how come the world is full of highly successful
learners, from spam filters to (any day now) self-driving cars?

The “no free lunch” theorem is a lot like the reason Pascal’s wager fails.
In his Pensées, published in 1669, Pascal said we should believe in the
Christian God because if he exists that gains us eternal life, and if he
doesn’t we lose very little. This was a remarkably sophisticated argument
for the time, but as Diderot pointed out, an imam could make the same
argument for believing in Allah. And if you pick the wrong god, the price
you pay is eternal hell. On balance, considering the wide variety of possible
gods, you’re no better off picking a particular one to believe in than you are
picking any other. For every god that says “do this,” there’s another that
says “no, do that.” You may as well just forget about god and enjoy life
without religious constraints.

Replace “god” with “learning algorithm” and “eternal life” with
“accurate prediction,” and you have the “no free lunch” theorem. Pick your



favorite learner. (We’ll see many in this book.) For every world where it
does better than random guessing, I, the devil’s advocate, will deviously
construct one where it does worse by the same amount. All I have to do is
flip the labels of all unseen instances. Since the labels of the observed ones
agree, there’s no way your learner can distinguish between the world and
the antiworld. On average over the two, it’s as good as random guessing.
And therefore, on average over all possible worlds, pairing each world with
its antiworld, your learner is equivalent to flipping coins.

Don’t give up on machine learning or the Master Algorithm just yet,
though. We don’t care about all possible worlds, only the one we live in. If
we know something about the world and incorporate it into our learner, it
now has an advantage over random guessing. To this Hume would reply
that that knowledge must itself have come from induction and is therefore
fallible. That’s true, even if the knowledge was encoded into our brains by
evolution, but it’s a risk we’ll have to take. We can also ask whether there’s
a nugget of knowledge so incontestable, so fundamental, that we can build
all induction on top of it. (Something like Descartes’ “I think, therefore I
am,” although it’s hard to see how to turn that one into a learning
algorithm.) I think the answer is yes, and we’ll see what that nugget is in
Chapter 9.

In the meantime, the practical consequence of the “no free lunch”
theorem is that there’s no such thing as learning without knowledge. Data
alone is not enough. Starting from scratch will only get you to scratch.
Machine learning is a kind of knowledge pump: we can use it to extract a
lot of knowledge from data, but first we have to prime the pump.

Machine learning is what mathematicians call an ill-posed problem: it
doesn’t have a unique solution. Here’s a simple ill-posed problem: Which
two numbers add up to 1,000? Assuming the numbers are positive, there are
five hundred possible answers: 1 and 999, 2 and 998, and so on. The only
way to solve an ill-posed problem is to introduce additional assumptions. If
I tell you the second number is triple the first, bingo: the answer is 250 and
750.

Tom Mitchell, a leading symbolist, calls it “the futility of bias-free
learning.” In ordinary life, bias is a pejorative word: preconceived notions
are bad. But in machine learning, preconceived notions are indispensable;
you can’t learn without them. In fact, preconceived notions are also



indispensable to human cognition, but they’re hardwired into the brain, and
we take them for granted. It’s biases over and beyond those that are
questionable.

Aristotle said that there is nothing in the intellect that was not first in the
senses. Leibniz added, “Except the intellect itself.” The human brain is not
a blank slate because it’s not a slate. A slate is passive, something you write
on, but the brain actively processes the information it receives. Memory is
the slate it writes on, and it does start out blank. On the other hand, a
computer is a blank slate until you program it; the active process itself has
to be written into memory before anything can happen. Our goal is to figure
out the simplest program we can write such that it will continue to write
itself by reading data, without limit, until it knows everything there is to
know.

Machine learning has an unavoidable element of gambling. In the first
Dirty Harry movie, Clint Eastwood chases a bank robber, repeatedly firing
at him. Finally, the robber is lying next to a loaded gun, unsure whether to
spring for it. Did Harry fire six shots or only five? Harry sympathizes (so to
speak): “You’ve got to ask yourself one question: ‘Do I feel lucky?’ Well,
do you, punk?” That’s the question machine learners have to ask themselves
every day when they go to work: Do I feel lucky today? Just like evolution,
machine learning doesn’t get it right every time; in fact, errors are the rule,
not the exception. But it’s OK, because we discard the misses and build on
the hits, and the cumulative result is what matters. Once we acquire a new
piece of knowledge, it becomes a basis for inducing yet more knowledge.
The only question is where to begin.

Priming the knowledge pump

In the Principia, along with his three laws of motion, Newton enunciates
four rules of induction. Although these are much less well known than the
physical laws, they are arguably as important. The key rule is the third one,
which we can paraphrase thus:

Newton’s Principle: Whatever is true of everything we’ve seen is
true of everything in the universe.



It’s not an exaggeration to say that this innocuous-sounding statement is
at the heart of the Newtonian revolution and of modern science. Kepler’s
laws applied to exactly six entities: the planets of the solar system known in
his time. Newton’s laws apply to every last speck of matter in the universe.
The leap in generality between the two is staggering, and it’s a direct
consequence of Newton’s principle. This one principle is all by itself a
knowledge pump of phenomenal power. Without it there would be no laws
of nature, only a forever incomplete patchwork of small regularities.

Newton’s principle is the first unwritten rule of machine learning. We
induce the most widely applicable rules we can and reduce their scope only
when the data forces us to. At first sight this may seem ridiculously
overconfident, but it’s been working for science for over three hundred
years. It’s certainly possible to imagine a universe so varied and capricious
that Newton’s principle would systematically fail, but that’s not our
universe.

Newton’s principle is only the first step, however. We still need to figure
out what is true of everything we’ve seen—how to extract the regularities
from the raw data. The standard solution is to assume we know the form of
the truth, and the learner’s job is to flesh it out. For example, in the dating
problem you could assume that your friend’s answer is determined by a
single factor, in which case learning just consists of checking each known
factor (day of week, type of date, weather, and TV programming) to see if it
correctly predicts her answer every time. The problem, of course, is that
none of them do! You gambled and failed. So you relax your assumptions a
bit. What if your friend’s answer is determined by a conjunction of two
factors? With four factors, each with two possible values, there are twenty-
four possibilities to check (six pairs of factors to pick from times two
choices for each factor’s value). Now we have an embarrassment of riches:
four conjunctions of two factors correctly predict the outcome! What to do?
If you’re feeling lucky, you can just pick one of them and hope for the best.
A more sensible option, though, is democracy: let them vote, and pick the
winning prediction.

If all conjunctions of two factors fail, you can try all conjunctions of
any number of factors. Machine learners and psychologists call these
“conjunctive concepts.” Dictionary definitions are conjunctive concepts: a
chair has a seat and a back and some number of legs. Remove any of these



and it’s no longer a chair. A conjunctive concept is what Tolstoy had in
mind when he wrote the opening sentence of Anna Karenina: “All happy
families are alike; each unhappy family is unhappy in its own way.” The
same is true of individuals. To be happy, you need health, love, friends,
money, a job you like, and so on. Take any of these away, and misery
ensues.

In machine learning, examples of a concept are called positive
examples, and counterexamples are called negative examples. If you’re
trying to learn to recognize cats in images, images of cats are positive
examples and images of dogs are negative ones. If you compiled a database
of families from the world’s literature, the Karenins would be a negative
example of a happy family, and there would be precious few positive
examples.

Starting with restrictive assumptions and gradually relaxing them if they
fail to explain the data is typical of machine learning, and the process is
usually carried out automatically by the learner, without any help from you.
First, it tries all single factors, then all conjunctions of two factors, then all
conjunctions of three, and so on. But now we run into a problem: there are a
lot of conjunctive concepts and not enough time to try them all out.

The dating example is a little deceptive because it’s very small (four
variables and four examples). But suppose now that you run an online
dating service and you need to figure out which couples to match. If each
user of your system has filled out a questionnaire with answers to fifty
yes/no questions, each potential match is characterized by one hundred
attributes, fifty from each member of the prospective couple. Based on the
couples that have gone on a date and reported the outcome, can you find a
conjunctive definition for the concept of a “good match”? There are 3100
possible definitions to try. (The three options for each attribute are yes, no,
and not part of the concept.) Even with the fastest computer in the world,
the couples will all be long gone—and your company bankrupt—by the
time you’re done, unless you’re lucky and a very short definition hits the
jackpot. So many rules, so little time. We need to do something smarter.

Here’s one way. Suspend your disbelief and start by assuming that all
matches are good. Then try excluding all matches that don’t have some
attribute. Repeat this for each attribute, and choose the one that excludes the



most bad matches and the fewest good ones. Your definition now looks
something like, say, “It’s a good match only if he’s outgoing.” Now try
adding every other attribute to that in turn, and choose the one that excludes
the most remaining bad matches and fewest remaining good ones. Perhaps
the definition is now “It’s a good match only if he’s outgoing and so is she.”
Try adding a third attribute to those two, and so on. Once you’ve excluded
all the bad matches, you’re done: you have a definition of the concept that
includes all the positive examples and excludes all the negative ones. For
example: “A couple is a good match only if they’re both outgoing, he’s a
dog person, and she’s not a cat person.” You can now throw away the data
and keep only this definition, since it encapsulates all that’s relevant for
your purposes. This algorithm is guaranteed to finish in a reasonable
amount of time, and it’s also the first actual learner we meet in this book!

How to rule the world

Conjunctive concepts don’t get you very far, though. The problem is that, as
Rudyard Kipling said, “There are nine and sixty ways of constructing tribal
lays, and every one of them is right.” Real concepts are disjunctive. Chairs
can have four legs or one, and sometimes none. You can win at chess in
countless different ways. E-mails containing the word Viagra are probably
spam, but so are e-mails containing “FREE!!!” Besides, all rules have
exceptions. Some families manage to be dysfunctional yet happy. Birds fly,
unless they’re penguins, ostriches, cassowaries, or kiwis (or they’ve broken
a wing, or are locked in a cage, or . . . ).

What we need is to learn concepts that are defined by a set of rules, not
just a single rule, such as:

If you liked Star Wars, episodes IV–VI, you’ll like Avatar.
If you liked Star Trek: The Next Generation and Titanic, you’ll like

Avatar.
If you’re a member of the Sierra Club and read science-fiction books,

you’ll like Avatar.
Or:



If your credit card was used in China, Canada, and Nigeria yesterday, it
was stolen.

If your credit card was used twice after 11:00 p.m. on a weekday, it was
stolen.

If your credit card was used to purchase one dollar of gas, it was stolen.

(If you’re wondering about the last rule, credit-card thieves used to
routinely buy one dollar of gas to check that a stolen credit card was good
before data miners caught on to the tactic.)

We can learn sets of rules like this one rule at a time, using the
algorithm we saw before for learning conjunctive concepts. After we learn
each rule, we discard the positive examples that it accounts for, so the next
rule tries to account for as many of the remaining positive examples as
possible, and so on until all are accounted for. It’s an example of “divide
and conquer,” the oldest strategy in the scientist’s playbook. We can also
improve the algorithm for finding a single rule by keeping some number n
of hypotheses around, not just one, and at each step extending all of them in
all possible ways and keeping the n best results.

Discovering rules in this way was the brainchild of Ryszard Michalski,
a Polish computer scientist. Michalski’s hometown of Kalusz was
successively part of Poland, Russia, Germany, and Ukraine, which may
have left him more attuned than most to disjunctive concepts. After
immigrating to the United States in 1970, he went on to found the symbolist
school of machine learning, along with Tom Mitchell and Jaime Carbonell.
He had an imperious personality. If you gave a talk at a machine-learning
conference, the odds were good that at the end he’d raise his hand to point
out that you had just rediscovered one of his old ideas.

Sets of rules are popular with retailers who are deciding which goods to
stock. Typically, they use a more exhaustive approach than “divide and
conquer,” looking for all rules that strongly predict the purchase of each
item. Walmart was a pioneer in this area. One of their early findings was
that if you buy diapers you are also likely to buy beer. Huh? One
interpretation of this is that Mom sends Dad to the supermarket to buy
diapers, and as emotional compensation, Dad buys a case of beer to go with
them. Knowing this, the supermarket can now sell more beer by putting it
next to the diapers, which would never have occurred to it without rule



mining. The “beer and diapers” rule has acquired legendary status among
data miners (although some claim the legend is of the urban variety). Either
way, it’s a long way from the digital circuit design problems Michalski had
in mind when he first started thinking about rule induction in the 1960s.
When you invent a new learning algorithm, you can’t even begin to imagine
all the things it will be used for.

My first direct experience of rule learning in action was when, having
just moved to the United States to start graduate school, I applied for a
credit card. The bank sent me a letter saying “We regret that your
application has been rejected due to INSUFFICIENT-TIME-AT-
CURRENT-ADDRESS and NO-PREVIOUS-CREDIT-HISTORY” (or
some other all-cap words to that effect). I knew right then that there was
much research left to do in machine learning.

Between blindness and hallucination

Sets of rules are vastly more powerful than conjunctive concepts. They’re
so powerful, in fact, that you can represent any concept using them. It’s not
hard to see why. If you give me a complete list of all the instances of a
concept, I can just turn each instance into a rule that specifies all attributes
of that instance, and the set of all those rules is the definition of the concept.
Going back to the dating example, one rule would be: If it’s a warm
weekend night, there’s nothing good on TV, and you propose going to a
club, she’ll say yes. The table only contains a few examples, but if it
contained all 2 × 2 × 2 × 2 = 16 possible ones, with each labeled “Date” or
“No date,” turning each positive example into a rule in this way would do
the trick.

The power of rule sets is a double-edged sword. On the upside, you
know you can always find a rule set that perfectly matches the data. But
before you start feeling lucky, realize that you’re at severe risk of finding a
completely meaningless one. Remember the “no free lunch” theorem: you
can’t learn without knowledge. And assuming that the concept can be
defined by a set of rules is tantamount to assuming nothing.

An example of a useless rule set is one that just covers the exact
positive examples you’ve seen and nothing else. This rule set looks like it’s



100 percent accurate, but that’s an illusion: it will predict that every new
example is negative, and therefore get every positive one wrong. If there are
more positive than negative examples overall, this will be even worse than
flipping coins. Imagine a spam filter that decides an e-mail is spam only if
it’s an exact copy of a previously labeled spam message. It’s easy to learn
and looks great on the labeled data, but you might as well have no spam
filter at all. Unfortunately, our “divide and conquer” algorithm could easily
learn a rule set like that.

In his story “Funes the Memorious,” Jorge Luis Borges tells of meeting
a youth with perfect memory. This might at first seem like a great fortune,
but it is in fact an awful curse. Funes can remember the exact shape of the
clouds in the sky at an arbitrary time in the past, but he has trouble
understanding that a dog seen from the side at 3:14 p.m. is the same dog
seen from the front at 3:15 p.m. His own face in the mirror surprises him
every time he sees it. Funes can’t generalize; to him, two things are the
same only if they look the same down to every last detail. An unrestricted
rule learner is like Funes and is equally unable to function. Learning is
forgetting the details as much as it is remembering the important parts.
Computers are the ultimate idiot savants: they can remember everything
with no trouble at all, but that’s not what we want them to do.

The problem is not limited to memorizing instances wholesale.
Whenever a learner finds a pattern in the data that is not actually true in the
real world, we say that it has overfit the data. Overfitting is the central
problem in machine learning. More papers have been written about it than
about any other topic. Every powerful learner, whether symbolist,
connectionist, or any other, has to worry about hallucinating patterns. The
only safe way to avoid it is to severely restrict what the learner can learn,
for example by requiring that it be a short conjunctive concept.
Unfortunately, that throws out the baby with the bathwater, leaving the
learner unable to see most of the true patterns that are visible in the data.
Thus a good learner is forever walking the narrow path between blindness
and hallucination.

Humans are not immune to overfitting, either. You could even say that
it’s the root cause of a lot of our evils. Consider the little white girl who,
upon seeing a Latina baby at the mall, blurted out “Look, Mom, a baby
maid!” (True event.) It’s not that she’s a natural-born bigot. Rather, she



overgeneralized from the few Latina maids she has seen in her short life.
The world is full of Latinas with other occupations, but she hasn’t met them
yet. Our beliefs are based on our experience, which gives us a very
incomplete picture of the world, and it’s easy to jump to false conclusions.
Being smart and knowledgeable doesn’t immunize you against overfitting,
either. Aristotle overfit when he said that it takes a force to keep an object
moving. Galileo’s genius was to intuit that undisturbed objects keep moving
without having visited outer space to witness it firsthand.

Learning algorithms are particularly prone to overfitting, though,
because they have an almost unlimited capacity to find patterns in data. In
the time it takes a human to find one pattern, a computer can find millions.
In machine learning, the computer’s greatest strength—its ability to process
vast amounts of data and endlessly repeat the same steps without tiring—is
also its Achilles’ heel. And it’s amazing what you can find if you search
enough. The Bible Code, a 1998 bestseller, claimed that the Bible contains
predictions of future events that you can find by skipping letters at regular
intervals and assembling words from the letters you land on. Unfortunately,
there are so many ways to do this that you’re guaranteed to find
“predictions” in any sufficiently long text. Skeptics replied by finding them
in Moby Dick and Supreme Court rulings, along with mentions of Roswell
and UFOs in Genesis. John von Neumann, one of the founding fathers of
computer science, famously said that “with four parameters I can fit an
elephant, and with five I can make him wiggle his trunk.” Today we
routinely learn models with millions of parameters, enough to give each
elephant in the world his own distinctive wiggle. It’s even been said that
data mining means “torturing the data until it confesses.”

Overfitting is seriously exacerbated by noise. Noise in machine learning
just means errors in the data, or random events that you can’t predict.
Suppose that your friend really does like to go clubbing when there’s
nothing interesting on TV, but you misremembered occasion number 3 and
wrote down that there was something good on TV that night. If you now try
to come up with a set of rules that makes an exception for that night, you’ll
probably wind up with a worse answer than if you’d just ignored it. Or
suppose that your friend had a hangover from going out the previous night
and said no when ordinarily she would have said yes. Unless you know
about the hangover, learning a set of rules that gets this example right is



actually counterproductive: you’re better off “misclassifying” it as a no. It
gets worse: noise can make it impossible to come up with any consistent set
of rules. Notice that occasions 2 and 3 are in fact indistinguishable: they
have exactly the same attributes. If your friend said yes on occasion 2 and
no on occasion 3, there’s no rule that will get them both right.

Overfitting happens when you have too many hypotheses and not
enough data to tell them apart. The bad news is that even for the simple
conjunctive learner, the number of hypotheses grows exponentially with the
number of attributes. Exponential growth is a scary thing. An E. coli
bacterium can divide into two roughly every fifteen minutes; given enough
nutrients it can grow into a mass of bacteria the size of Earth in about a day.
When the number of things an algorithm needs to do grows exponentially
with the size of its input, computer scientists call it a combinatorial
explosion and run for cover. In machine learning, the number of possible
instances of a concept is an exponential function of the number of
attributes: if the attributes are Boolean, each new attribute doubles the
number of possible instances by taking each previous instance and
extending it with a yes or no for that attribute. In turn, the number of
possible concepts is an exponential function of the number of possible
instances: since a concept labels each instance as positive or negative,
adding an instance doubles the number of possible concepts. As a result, the
number of concepts is an exponential function of an exponential function of
the number of attributes! In other words, machine learning is a
combinatorial explosion of combinatorial explosions. Perhaps we should
just give up and not waste our time on such a hopeless problem?

Fortunately, something happens in learning that kills off one of the
exponentials, leaving only an “ordinary” singly exponential intractable
problem. Suppose you have a bag full of concept definitions, each written
on a piece of paper, and you take out a random one and see how well it
matches the data. A bad definition is no more likely to get, say, all thousand
examples in your data right than a coin is likely to come up heads a
thousand times in a row. “A chair has four legs and is red or has a seat but
no legs” will probably match some but not all chairs you’ve seen and also
match some but not all other things. So if a random definition correctly
matches a thousand examples, then it’s extremely unlikely to be the wrong
definition, or at least it’s pretty close to the real one. And if the definition



agrees with a million examples, then it’s practically certain to be the right
one. How else would it get all those examples right?

Of course, a real learning algorithm doesn’t just take one random
definition from the bag; it tries a whole bunch of them, and they’re not
chosen at random. The more definitions it tries, the more likely one of them
will match all the examples just by chance. If you do a million runs of a
thousand coin flips, it’s practically certain that at least one run will come up
all heads, and a million is a fairly small number of hypotheses to consider.
For example, that’s roughly the number of possible conjunctive concepts if
examples have only thirteen attributes. (Notice you don’t need to explicitly
try the concepts one by one; if the best one you found using the conjunctive
learner matches all the examples, the effect is the same.)

Bottom line: learning is a race between the amount of data you have and
the number of hypotheses you consider. More data exponentially reduces
the number of hypotheses that survive, but if you start with a lot of them,
you may still have some bad ones left at the end. As a rule of thumb, if the
learner only considers an exponential number of hypotheses (for example,
all possible conjunctive concepts), then the data’s exponential payoff
cancels it and you’re OK, provided you have plenty of examples and not
too many attributes. On the other hand, if it considers a doubly exponential
number (for example, all possible rule sets), then the data cancels only one
of the exponentials and you’re still in trouble. You can even figure out in
advance how many examples you’ll need to be pretty sure that the learner’s
chosen hypothesis is very close to the true one, provided it fits all the data;
in other words, for the hypothesis to be probably approximately correct.
Harvard’s Leslie Valiant received the Turing Award, the Nobel Prize of
computer science, for inventing this type of analysis, which he describes in
his book entitled, appropriately enough, Probably Approximately Correct.

Accuracy you can believe in

In practice, Valiant-style analysis tends to be very pessimistic and to call for
more data than you have. So how do you decide whether to believe what a
learner tells you? Simple: you don’t believe anything until you’ve verified it
on data that the learner didn’t see. If the patterns the learner hypothesized



also hold true on new data, you can be pretty confident that they’re real.
Otherwise you know the learner overfit. This is just the scientific method
applied to machine learning: it’s not enough for a new theory to explain past
evidence because it’s easy to concoct a theory that does that; the theory
must also make new predictions, and you only accept it after they’ve been
experimentally verified. (And even then only provisionally, because future
evidence could still falsify it.)

Einstein’s general relativity was only widely accepted once Arthur
Eddington empirically confirmed its prediction that the sun bends the light
of distant stars. But you don’t need to wait around for new data to arrive to
decide whether you can trust your learner. Rather, you take the data you
have and randomly divide it into a training set, which you give to the
learner, and a test set, which you hide from it and use to verify its accuracy.
Accuracy on held-out data is the gold standard in machine learning. You
can write a paper about a great new learning algorithm you’ve invented, but
if your algorithm is not significantly more accurate than previous ones on
held-out data, the paper is not publishable.

Accuracy on previously unseen data is a pretty stringent test; so much
so, in fact, that a lot of science fails it. That does not make it useless,
because science is not just about prediction; it’s also about explanation and
understanding. But ultimately, if your models don’t make accurate
predictions on new data, you can’t be sure you’ve truly understood or
explained the underlying phenomena. And for machine learning, testing on
unseen data is indispensable because it’s the only way to tell whether the
learner has overfit or not.

Even test-set accuracy is not foolproof. According to legend, in an early
military application a simple learner detected tanks with 100 percent
accuracy in both the training set and the test set, each consisting of one
hundred images. Amazing—or suspicious? Turns out all the tank images
were lighter than the nontank ones, and that’s all the learner was picking up.
These days we have larger data sets, but the quality of data collection isn’t
necessarily better, so caveat emptor. Hard-nosed empirical evaluation
played an important role in the growth of machine learning from a fledgling
field into a mature one. Up to the late 1980s, researchers in each tribe
mostly believed their own rhetoric, assumed their paradigm was
fundamentally better, and communicated little with the other camps. Then



symbolists like Ray Mooney and Jude Shavlik started to systematically
compare the different algorithms on the same data sets and—surprise,
surprise—no clear winner emerged. Today the rivalry continues, but there is
much more cross-pollination. Having a common experimental framework
and a large repository of data sets maintained by the machine-learning
group at the University of California, Irvine, did wonders for progress. And
as we’ll see, our best hope of creating a universal learner lies in
synthesizing ideas from different paradigms.

Of course, it’s not enough to be able to tell when you’re overfitting; we
need to avoid it in the first place. That means stopping short of perfectly
fitting the data even if we’re able to. One method is to use statistical
significance tests to make sure the patterns we’re seeing are really there.
For example, a rule covering three hundred positive examples versus one
hundred negatives and a rule covering three positives versus one negative
are both 75 percent accurate on the training data, but the first rule is almost
certainly better than coin flipping, while the second isn’t, since four flips of
an unbiased coin could easily result in three heads. When constructing a
rule, if at some point we can’t find any conditions that significantly improve
its accuracy then we just stop, even if it still covers some negative
examples. This reduces the rule’s training-set accuracy, but probably makes
it a more accurate generalization, which is what we really care about.

We’re not home free yet, though. If I try one rule and it’s 75 percent
accurate on four hundred examples, I can probably believe it. But if I try a
million rules and the best one is 75 percent accurate on four hundred
examples, I probably can’t, because that could easily happen by chance.
This is the same problem you have when picking a mutual fund. The
Clairvoyant Fund just beat the market ten years in a row. Wow, the manager
must be a genius. Or not? If you have a thousand funds to choose from, the
odds are better than even that one will beat the market ten years in a row,
even if they’re all secretly run by dart-throwing monkeys. The scientific
literature is also plagued by this problem. Significance tests are the gold
standard for deciding whether a research result is publishable, but if several
teams look for an effect and only one finds it, chances are it didn’t, even
though you’d never guess that from reading their solid-looking paper. One
solution would be to also publish negative results, so you’d know about all
those failed attempts, but that hasn’t caught on. In machine learning, we can



keep track of how many rules we’ve tried and adjust our significance tests
accordingly, but then they tend to throw out a lot of good rules along with
the bad ones. A better method is to realize that some false hypotheses will
inevitably get through, but keep their number under control by rejecting
enough low-significance ones, and then test the surviving hypotheses on
further data.

Another popular method is to prefer simpler hypotheses. The “divide
and conquer” algorithm implicitly prefers simpler rules because it stops
adding conditions to a rule as soon as it covers only positive examples and
stops adding rules as soon as all positive examples are covered. But to
combat overfitting, we need a stronger preference for simpler rules, one that
will cause us to stop adding conditions even before all negative examples
have been covered. For example, we can subtract a penalty proportional to
the length of the rule from its accuracy and use that as an evaluation
measure.

The preference for simpler hypotheses is popularly known as Occam’s
razor, but in a machine-learning context this is somewhat misleading.
“Entities should not be multiplied beyond necessity,” as the razor is often
paraphrased, just means choosing the simplest theory that fits the data.
Occam would probably have been perplexed by the notion that we should
prefer a theory that does not perfectly account for the evidence on the
grounds that it will generalize better. Simple theories are preferable because
they incur a lower cognitive cost (for us) and a lower computational cost
(for our algorithms), not because we necessarily expect them to be more
accurate. On the contrary, even our most elaborate models are usually
oversimplifications of reality. Even among theories that perfectly fit the
data, we know from the “no free lunch” theorem that there’s no guarantee
that the simplest one will generalize best, and in fact some of the best
learning algorithms—like boosting and support vector machines—learn
what appear to be gratuitously complex models. (We’ll see why they work
in Chapters 7 and 9.)

If your learner’s test-set accuracy disappoints, you need to diagnose the
problem. Was it blindness or hallucination? In machine learning, the
technical terms for these are bias and variance. A clock that’s always an
hour late has high bias but low variance. If instead the clock alternates
erratically between fast and slow but on average tells the right time, it has



high variance but low bias. Suppose you’re down at the pub with some
friends, drinking and playing darts. Unbeknownst to them, you’ve been
practicing for years, and you’re a master of the game. All your darts go
straight to the bull’s-eye. You have low bias and low variance, which is
shown in the bottom left corner of this diagram:

Your friend Ben is also pretty good, but he’s had a bit too much to drink.
His darts are all over, but he loudly points out that on average he’s hitting
the bull’s-eye. (Maybe he should have been a statistician.) This is the low-
bias, high-variance case, shown in the bottom right corner. Ben’s girlfriend,
Ashley, is very steady, but she has a tendency to aim too high and to the
right. She has low variance and high bias (top left corner). Cody, who’s
visiting from out of town and has never played darts before, is both all over
and off center. He has both high bias and high variance (top right).

You can estimate the bias and variance of a learner by comparing its
predictions after learning on random variations of the training set. If it
keeps making the same mistakes, the problem is bias, and you need a more
flexible learner (or just a different one). If there’s no pattern to the mistakes,
the problem is variance, and you want to either try a less flexible learner or
get more data. Most learners have a knob you can turn to make them more



or less flexible, such as the threshold for significance tests or the penalty on
the size of the model. Tweaking that knob is your first resort.

Induction is the inverse of deduction

The deeper problem, however, is that most learners start out knowing too
little, and no amount of knob-twiddling will get them to the finish line.
Without the guidance of an adult brain’s worth of knowledge, they can
easily go astray. Even though it’s what most learners do, just assuming you
know the form of the truth (for example, that it’s a small set of rules) is not
much to hang your hat on. A strict empiricist would say that that’s all a
newborn has, encoded in her brain’s architecture, and indeed children
overfit more than adults do, but we would like to learn faster than a child
does. (Eighteen years is a long time, and that’s not counting college.) The
Master Algorithm should be able to start with a large body of knowledge,
whether it was provided by humans or learned in previous runs, and use it
to guide new generalizations from data. That’s what scientists do, and it’s as
far as it gets from a blank slate. The “divide and conquer” rule induction
algorithm can’t do it, but there’s another way to learn rules that can.

The key is to realize that induction is just the inverse of deduction, in
the same way that subtraction is the inverse of addition, or integration the
inverse of differentiation. This idea was first proposed by William Stanley
Jevons in the late 1800s. Steve Muggleton and Wray Buntine, an English
Australian team, designed the first practical algorithm based on it in 1988.
The strategy of taking a well-known operation and figuring out its inverse
has a storied history in mathematics. Applying it to addition led to the
invention of the integers, because without negative numbers, addition
doesn’t always have an inverse (3 – 4 = –1). Similarly, applying it to
multiplication led to the rationals, and applying it to squaring led to
complex numbers. Let’s see if we can apply it to deduction. A classic
example of deductive reasoning is:

Socrates is human.
All humans are mortal.
Therefore. . . . . .? . . .



The first statement is a fact about Socrates, and the second is a general
rule about humans. What follows? That Socrates is mortal, of course, by
applying the rule to Socrates. In inductive reasoning we start instead with
the initial and derived facts, and look for a rule that would allow us to infer
the latter from the former:

Socrates is human.
. . . . . .? . . .
Therefore Socrates is mortal.

One such rule is: If Socrates is human, then he’s mortal. This does the
job, but is not very useful because it’s specific to Socrates. But now we
apply Newton’s principle and generalize the rule to all entities: If an entity
is human, then it’s mortal. Or, more succinctly: All humans are mortal. Of
course, it would be rash to induce this rule from Socrates alone, but we
know similar facts about other humans:

Plato is human. Plato is mortal.
Aristotle is human. Aristotle is mortal.
And so on.

For each pair of facts, we construct the rule that allows us to infer the
second fact from the first one and generalize it by Newton’s principle.
When the same general rule is induced over and over again, we can have
some confidence that it’s true.

So far we haven’t done anything that the “divide and conquer”
algorithm couldn’t do. Suppose, however, that instead of knowing that
Socrates, Plato, and Aristotle are human, we just know that they’re
philosophers. We still want to conclude that they’re mortal, and we have
previously induced or been told that all humans are mortal. What’s missing
now? A different rule: All philosophers are human. This also a valid
generalization (at least until we solve AI and robots start philosophizing),
and it “fills the hole” in our reasoning:

Socrates is a philosopher.
All philosophers are human.



All humans are mortal.
Therefore Socrates is mortal.

We can also induce rules purely from other rules. If we know that all
philosophers are human and mortal, we can induce that all humans are
mortal. (We don’t induce that all mortals are human because we know other
mortal creatures, like cats and dogs. On the other hand, scientists, artists,
and so on are also human and mortal, reinforcing the rule.) In general, the
more rules and facts we start out with, the more opportunities we have to
induce new rules using “inverse deduction.” And the more rules we induce,
the more rules we can induce. It’s a virtuous circle of knowledge creation,
limited only by overfitting risk and computational cost. But here, too,
having initial knowledge helps: if instead of one large hole we have many
small ones to fill, our induction steps will be less risky and therefore less
likely to overfit. (For example, given the same number of examples,
inducing that all philosophers are human is less risky than inducing that all
humans are mortal.)

Inverting an operation is often difficult because the inverse is not
unique. For example, a positive number has two square roots, one positive
and one negative (22 = (–2)2 = 4). Most famously, integrating the derivative
of a function only recovers the function up to a constant. The derivative of a
function tells us how much that function goes up or down at each point.
Adding up all those changes gives us the function back, except we don’t
know where it started; we can “slide” the integrated function up or down
without changing the derivative. To make life easy, we can “clamp down”
the function by assuming the additive constant is zero. Inverse deduction
has a similar problem, and Newton’s principle is one solution. For example,
from All Greek philosophers are human and All Greek philosophers are
mortal we can induce that All humans are mortal, or just that All Greeks are
mortal. But why settle for the more modest generalization? Instead, we can
assume that all humans are mortal until we meet an exception. (Which,
according to Ray Kurzweil, will be soon.)

In the meantime, one important application of inverse deduction is
predicting whether new drugs will have harmful side effects. Failure during
animal testing and clinical trials is the main reason new drugs take many



years and billions of dollars to develop. By generalizing from known toxic
molecular structures, we can form rules that quickly weed out many
apparently promising compounds, greatly increasing the chances of
successful trials on the remaining ones.

Learning to cure cancer

More generally, inverse deduction is a great way to discover new
knowledge in biology, and doing that is the first step in curing cancer.
According to the Central Dogma, everything that happens in a living cell is
ultimately controlled by its genes, via the proteins whose synthesis they
initiate. In effect, a cell is like a tiny computer, and DNA is the program
running on it: change the DNA, and a skin cell can become a neuron or a
mouse cell can turn into a human one. In a computer program, all bugs are
the programmer’s fault. But in a cell, bugs can arise spontaneously, when
radiation or a copying error changes a gene into a different one, a gene is
accidentally copied twice, and so on. Most of the time these mutations
cause the cell to die silently, but sometimes the cell starts to grow and
divide uncontrollably and a cancer is born.

Curing cancer means stopping the bad cells from reproducing without
harming the good ones. That requires knowing how they differ, and in
particular how their genomes differ, since all else follows from that.
Luckily, gene sequencing is becoming routine and affordable. Using it, we
can learn to predict which drugs will work against which cancer genes. This
contrasts with traditional chemotherapy, which affects all cells
indiscriminately. Learning which drugs work against which mutations
requires a database of patients, their cancers’ genomes, the drugs tried, and
the outcomes. The simplest rules encode one-to-one correspondences
between genes and drugs, such as If the BCR-ABL gene is present, then use
Gleevec. (BCR-ABL causes a type of leukemia, and Gleevec cures it in
nine out of ten patients.) Once sequencing cancer genomes and collating
treatment outcomes becomes standard practice, many more rules like this
will be discovered.

That’s only the beginning, however. Most cancers involve a
combination of mutations, or can only be cured by drugs that haven’t been



discovered yet. The next step is to learn rules with more complex
conditions, involving the cancer’s genome, the patient’s genome and
medical history, known side effects of drugs, and so on. But ultimately what
we need is a model of how the entire cell works, enabling us to simulate on
the computer the effect of a specific patient’s mutations, as well as the
effect of different combinations of drugs, existing or speculative. Our main
sources of information for building such models are DNA sequencers, gene
expression microarrays, and the biological literature. Combining these is
where inverse deduction can shine.

Adam, the robot scientist we met in Chapter 1, gives a preview. Adam’s
goal is to figure out how yeast cells work. It starts with basic knowledge of
yeast genetics and metabolism and a trove of gene expression data from
yeast cells. It then uses inverse deduction to hypothesize which genes are
expressed as which proteins, designs microarray experiments to test them,
revises its hypotheses, and repeats. Whether each gene is expressed depends
on other genes and conditions in the environment, and the resulting web of
interactions can be represented as a set of rules, such as:

If the temperature is high, gene A is expressed.
If gene A is expressed and gene B is not, gene C is expressed.
If gene C is expressed, gene D is not.

If we knew the first and third rules but not the second, and we had
microarray data where at a high temperature B and D were not expressed,
we could induce the second rule by inverse deduction. Once we have that
rule, and perhaps have verified it using a microarray experiment, we can
use it as the basis for further inductive inferences. In a similar manner, we
can piece together the sequences of chemical reactions by which proteins do
their work.

Just knowing which genes regulate which genes and how proteins
organize the cell’s web of chemical reactions is not enough, though. We
also need to know how much of each molecular species is produced. DNA
microarrays and other experiments can provide this type of quantitative
information, but inverse deduction, with its “all or none” logical character,
is not very good at dealing with it. For that we need the connectionist
methods that we’ll meet in the next chapter.



A game of twenty questions

Another limitation of inverse deduction is that it’s very computationally
intensive, which makes it hard to scale to massive data sets. For these, the
symbolist algorithm of choice is decision tree induction. Decision trees can
be viewed as an answer to the question of what to do if rules of more than
one concept match an instance. How do we then decide which concept the
instance belongs to? If we see a partly occluded object with a flat surface
and four legs, how do we decide whether it is a table or a chair? One option
is to order the rules, for example by decreasing accuracy, and choose the
first one that matches. Another is to let the rules vote. Decision trees instead
ensure a priori that each instance will be matched by exactly one rule. This
will be the case if each pair of rules differs in at least one attribute test, and
such a rule set can be organized into a decision tree. For example, consider
these rules:

If you’re for cutting taxes and pro-life, you’re a Republican.
If you’re against cutting taxes, you’re a Democrat.
If you’re for cutting taxes, pro-choice, and against gun control, you’re

an independent.
If you’re for cutting taxes, pro-choice, and pro-gun control, you’re a

Democrat.

These can be organized into the following decision tree:



A decision tree is like playing a game of twenty questions with an
instance. Starting at the root, each node asks about the value of one
attribute, and depending on the answer, we follow one or another branch.
When we arrive at a leaf, we read off the predicted concept. Each path from
the root to a leaf corresponds to a rule. If this reminds you of those
annoying phone menus you have to get through when you call customer
service, it’s not an accident: a phone menu is a decision tree. The computer
on the other end of the line is playing a game of twenty questions with you
to figure out what you want, and each menu is a question.

According to the decision tree above, you’re either a Republican, a
Democrat, or an independent; you can’t be more than one, or none of the
above. Sets of concepts with this property are called sets of classes, and the
algorithm that predicts them is a classifier. A single concept implicitly
defines two classes: the concept itself and its negation. (For example, spam
and nonspam.) Classifiers are the most widespread form of machine
learning.

We can learn decision trees using a variant of the “divide and conquer”
algorithm. First we pick an attribute to test at the root. Then we focus on the
examples that went down each branch and pick the next test for those. (For
example, we check whether tax-cutters are pro-life or pro-choice.) We
repeat this for each new node we induce until all the examples in a branch
have the same class, at which point we label that branch with the class.

One salient question is how to pick the best attribute to test at a node.
Accuracy—the number of correctly predicted examples—doesn’t work very



well, because we’re not trying to predict a particular class; rather, we’re
trying to gradually separate the classes until each branch is “pure.” This
brings to mind the concept of entropy from information theory. The entropy
of a set of objects is a measure of the amount of disorder in it. If a group of
150 people includes 50 Republicans, 50 Democrats, and 50 independents,
its political entropy is maximum. On the other hand, if they’re all
Republican then the entropy is zero (as far as party affiliation goes). So to
learn a good decision tree, we pick at each node the attribute that on
average yields the lowest class entropy across all its branches, weighted by
how many examples go into each branch.

As with rule learning, we don’t want to induce a tree that perfectly
predicts the classes of all the training examples, because it would probably
overfit. As before, we can use significance tests or a penalty on the size of
the tree to prevent this.

Having a branch for each value of an attribute is fine if the attribute is
discrete, but what about numeric attributes? If we had a branch for every
value of a continuous variable, the tree would be infinitely wide. A simple
solution is to pick a few key thresholds by entropy and use those. For
example, is the patient’s temperature above or below 100 degrees
Fahrenheit? That, combined with other symptoms, may be all the doctor
needs to know about the patient’s temperature to decide if he has an
infection.

Decision trees are used in many different fields. In machine learning,
they grew out of work in psychology. Earl Hunt and colleagues used them
in the 1960s to model how humans acquire new concepts, and one of Hunt’s
graduate students, J. Ross Quinlan, later tried using them for chess. His
original goal was to predict the outcome of king-rook versus king-knight
endgames from the board positions. From those humble beginnings,
decision trees have grown to be, according to surveys, the most widely used
machine-learning algorithm. It’s not hard to see why: they’re easy to
understand, fast to learn, and usually quite accurate without too much
tweaking. Quinlan is the most prominent researcher in the symbolist school.
An unflappable, down-to-earth Australian, he made decision trees the gold
standard in classification by dint of relentlessly improving them year after
year, and writing beautifully clear papers about them.



Whatever you want to predict, there’s a good chance someone has used
a decision tree for it. Microsoft’s Kinect uses decision trees to figure out
where various parts of your body are from the output of its depth camera; it
can then use their motions to control the Xbox game console. In a 2002
head-to-head competition, decision trees correctly predicted three out of
every four Supreme Court rulings, while a panel of experts got less than 60
percent correct. Thousands of decision tree users can’t be wrong, you think,
and sketch one to predict your friend’s reply when you ask her out:

According to this tree, tonight she’ll say yes. With a deep breath, you pick
up the phone and dial her number.

The symbolists

The symbolists’ core belief is that all intelligence can be reduced to
manipulating symbols. A mathematician solves equations by moving



symbols around and replacing symbols by other symbols according to
predefined rules. The same is true of a logician carrying out deductions.
According to this hypothesis, intelligence is independent of the substrate; it
doesn’t matter if the symbol manipulations are done by writing on a
blackboard, switching transistors on and off, firing neurons, or playing with
Tinkertoys. If you have a setup with the power of a universal Turing
machine, you can do anything. Software can be cleanly separated from
hardware, and if your concern is figuring out how machines can learn, you
(thankfully) don’t need to worry about the latter beyond buying a PC or
cycles on Amazon’s cloud.

Symbolist machine learners share this belief in the power of symbol
manipulation with many other computer scientists, psychologists, and
philosophers. The psychologist David Marr argued that every information
processing system should be studied at three distinct levels: the
fundamental properties of the problem it’s solving; the algorithms and
representations used to solve it; and how they are physically implemented.
For example, addition can be defined by a set of axioms irrespective of how
it’s carried out; numbers can be expressed in different ways (e.g., Roman
and Arabic) and added using different algorithms; and these can be
implemented using an abacus, a pocket calculator, or even, very
inefficiently, in your head. Learning is a prime example of a cognitive
faculty we can profitably study according to Marr’s levels.

Symbolist machine learning is an offshoot of the knowledge
engineering school of AI. In the 1970s, so-called knowledge-based systems
scored some impressive successes, and in the 1980s they spread rapidly, but
then they died out. The main reason they did was the infamous knowledge
acquisition bottleneck: extracting knowledge from experts and encoding it
as rules is just too difficult, labor-intensive, and failure-prone to be viable
for most problems. Letting the computer automatically learn to, say,
diagnose diseases by looking at databases of past patients’ symptoms and
the corresponding outcomes turned out to be much easier than endlessly
interviewing doctors. Suddenly, the work of pioneers like Ryszard
Michalski, Tom Mitchell, and Ross Quinlan had a new relevance, and the
field hasn’t stopped growing since. (Another important problem was that
knowledge-based systems had trouble dealing with uncertainty, of which
more in Chapter 6.)



Because of its origins and guiding principles, symbolist machine
learning is still closer to the rest of AI than the other schools. If computer
science were a continent, symbolist learning would share a long border with
knowledge engineering. Knowledge is traded in both directions—manually
entered knowledge for use in learners, induced knowledge for addition to
knowledge bases—but at the end of the day the rationalist-empiricist fault
line runs right down that border, and crossing it is not easy.

Symbolism is the shortest path to the Master Algorithm. It doesn’t
require us to figure out how evolution or the brain works, and it avoids the
mathematical complexities of Bayesianism. Sets of rules and decision trees
are easy to understand, so we know what the learner is up to. This makes it
easier to figure out what it’s doing right and wrong, fix the latter, and have
confidence in the results.

Despite the popularity of decision trees, inverse deduction is the better
starting point for the Master Algorithm. It has the crucial property that
incorporating knowledge into it is easy—and we know Hume’s problem
makes that essential. Also, sets of rules are an exponentially more compact
way to represent most concepts than decision trees. Converting a decision
tree to a set of rules is easy: each path from the root to a leaf becomes a
rule, and there’s no blowup. On the other hand, in the worst case converting
a set of rules into a decision tree requires converting each rule into a mini-
decision tree, and then replacing each leaf of rule 1’s tree with a copy of
rule 2’s tree, each leaf of each copy of rule 2 with a copy of rule 3, and so
on, causing a massive blowup.

Inverse deduction is like having a superscientist systematically looking
at the evidence, considering possible inductions, collating the strongest, and
using those along with other evidence to construct yet further hypotheses—
all at the speed of computers. It’s clean and beautiful, at least for the
symbolist taste. On the other hand, it has some serious shortcomings. The
number of possible inductions is vast, and unless we stay close to our initial
knowledge, it’s easy to get lost in space. Inverse deduction is easily
confused by noise: how do we figure out what the missing deductive steps
are, if the premises or conclusions are themselves wrong? Most seriously,
real concepts can seldom be concisely defined by a set of rules. They’re not
black and white: there’s a large gray area between, say, spam and nonspam.
They require weighing and accumulating weak evidence until a clear



picture emerges. Diagnosing an illness involves giving more weight to
some symptoms than others, and being OK with incomplete evidence. No
one has ever succeeded in learning a set of rules that will recognize a cat by
looking at the pixels in an image, and probably no one ever will.

Connectionists, in particular, are highly critical of symbolist learning.
According to them, concepts you can define with logical rules are only the
tip of the iceberg; there’s a lot going on under the surface that formal
reasoning just can’t see, in the same way that most of what goes on in our
minds is subconscious. You can’t just build a disembodied automated
scientist and hope he’ll do something meaningful—you have to first endow
him with something like a real brain, connected to real senses, growing up
in the world, perhaps even stubbing his toe every now and then. And how
do you build such a brain? By reverse engineering the competition. If you
want to reverse engineer a car, you look under the hood. If you want to
reverse engineer the brain, you look inside the skull.



CHAPTER FOUR

How Does Your Brain Learn?

Hebb’s rule, as it has come to be known, is the cornerstone of
connectionism. Indeed, the field derives its name from the belief that
knowledge is stored in the connections between neurons. Donald Hebb, a
Canadian psychologist, stated it this way in his 1949 book The
Organization of Behavior: “When an axon of cell A is near enough cell B
and repeatedly or persistently takes part in firing it, some growth process or
metabolic change takes place in one or both cells such that A’s efficiency, as
one of the cells firing B, is increased.” It’s often paraphrased as “Neurons
that fire together wire together.”

Hebb’s rule was a confluence of ideas from psychology and
neuroscience, with a healthy dose of speculation thrown in. Learning by
association was a favorite theme of the British empiricists, from Locke and
Hume to John Stuart Mill. In his Principles of Psychology, William James
enunciates a general principle of association that’s remarkably similar to
Hebb’s rule, with neurons replaced by brain processes and firing efficiency
by propagation of excitement. Around the same time, the great Spanish
neuroscientist Santiago Ramón y Cajal was making the first detailed
observations of the brain, staining individual neurons using the recently
invented Golgi method and cataloguing what he saw like a botanist
classifying new species of trees. By Hebb’s time, neuroscientists had a



rough understanding of how neurons work, but he was the first to propose a
mechanism by which they could encode associations.

In symbolist learning, there is a one-to-one correspondence between
symbols and the concepts they represent. In contrast, connectionist
representations are distributed: each concept is represented by many
neurons, and each neuron participates in representing many different
concepts. Neurons that excite one another form what Hebb called a cell
assembly. Concepts and memories are represented in the brain by cell
assemblies. Each of these can include neurons from different brain regions
and overlap with other assemblies. The cell assembly for “leg” includes the
one for “foot,” which includes assemblies for the image of a foot and the
sound of the word foot. If you ask a symbolist system where the concept
“New York” is represented, it can point to the precise location in memory
where it’s stored. In a connectionist system, the answer is “it’s stored a little
bit everywhere.”

Another difference between symbolist and connectionist learning is that
the former is sequential, while the latter is parallel. In inverse deduction, we
figure out one step at a time what new rules are needed to arrive at the
desired conclusion from the premises. In connectionist models, all neurons
learn simultaneously according to Hebb’s rule. This mirrors the different
properties of computers and brains. Computers do everything one small step
at a time, like adding two numbers or flipping a switch, and as a result they
need a lot of steps to accomplish anything useful; but those steps can be
very fast, because transistors can switch on and off billions of times per
second. In contrast, brains can perform a large number of computations in
parallel, with billions of neurons working at the same time; but each of
those computations is slow, because neurons can fire at best a thousand
times per second.

The number of transistors in a computer is catching up with the number
of neurons in a human brain, but the brain wins hands down in the number
of connections. In a microprocessor, a typical transistor is directly
connected to only a few others, and the planar semiconductor technology
used severely limits how much better a computer can do. In contrast, a
neuron has thousands of synapses. If you’re walking down the street and
come across an acquaintance, it takes you only about a tenth of a second to
recognize her. At neuron switching speeds, this is barely enough time for a



hundred processing steps, but in those hundred steps your brain manages to
scan your entire memory, find the best match, and adapt it to the new
context (different clothes, different lighting, and so on). In a brain, each
processing step can be very complex and involve a lot of information,
consonant with a distributed representation.

This does not mean that we can’t simulate a brain with a computer; after
all, that’s what connectionist algorithms do. Because a computer is a
universal Turing machine, it can implement the brain’s computations as
well as any others, provided we give it enough time and memory. In
particular, the computer can use speed to make up for lack of connectivity,
using the same wire a thousand times over to simulate a thousand wires. In
fact, these days the main limitation of computers compared to brains is
energy consumption: your brain uses only about as much power as a small
lightbulb, while Watson’s supply could light up a whole office building.

To simulate a brain, we need more than Hebb’s rule, however; we need
to understand how the brain is built. Each neuron is like a tiny tree, with a
prodigious number of roots—the dendrites—and a slender, sinuous trunk—
the axon. The brain is a forest of billions of these trees, but there’s
something unusual about them. Each tree’s branches make connections—
synapses—to the roots of thousands of others, forming a massive tangle like
nothing you’ve ever seen. Some neurons have short axons and some have
exceedingly long ones, reaching clear from one side of the brain to the
other. Placed end to end, the axons in your brain would stretch from Earth
to the moon.

And this jungle crackles with electricity. Sparks run along tree trunks
and set off more sparks in neighboring trees. Every now and then, a whole
area of the jungle whips itself into a frenzy before settling down again.
When you wiggle your toe, a series of electric discharges, called action
potentials, runs all the way down your spinal chord and leg until it reaches
your toe muscles and tells them to move. Your brain at work is a symphony
of these electric sparks. If you could sit inside it and watch what happens as
you read this page, the scene you’d see would make even the busiest
science-fiction metropolis look laid back by comparison. The end result of
this phenomenally complex pattern of neuron firings is your consciousness.

In Hebb’s time there was no way to measure synaptic strength or change
in it, let alone figure out the molecular biology of synaptic change. Today,



we know that synapses do grow (or form anew) when the postsynaptic
neuron fires soon after the presynaptic one. Like all cells, neurons have
different concentrations of ions inside and outside, creating a voltage across
their membrane. When the presynaptic neuron fires, tiny sacs release
neurotransmitter molecules into the synaptic cleft. These cause channels in
the postsynaptic neuron’s membrane to open, letting in potassium and
sodium ions and changing the voltage across the membrane as a result. If
enough presynaptic neurons fire close together, the voltage suddenly spikes,
and an action potential travels down the postsynaptic neuron’s axon. This
also causes the ion channels to become more responsive and new channels
to appear, strengthening the synapse. To the best of our knowledge, this is
how neurons learn.

The next step is to turn it into an algorithm.

The rise and fall of the perceptron

The first formal model of a neuron was proposed by Warren McCulloch and
Walter Pitts in 1943. It looked a lot like the logic gates computers are made
of. An OR gate switches on when at least one of its inputs is on, and an
AND gate when all of them are on. A McCulloch-Pitts neuron switches on
when the number of its active inputs passes some threshold. If the threshold
is one, the neuron acts as an OR gate; if the threshold is equal to the number
of inputs, as an AND gate. In addition, a McCulloch-Pitts neuron can
prevent another from switching on, which models both inhibitory synapses
and NOT gates. So a network of neurons can do all the operations a
computer does. In the early days, computers were often called electronic
brains, and this was not just an analogy.

What the McCulloch-Pitts neuron doesn’t do is learn. For that we need
to give variable weights to the connections between neurons, resulting in
what’s called a perceptron. Perceptrons were invented in the late 1950s by
Frank Rosenblatt, a Cornell psychologist. A charismatic speaker and lively
character, Rosenblatt did more than anyone else to shape the early days of
machine learning. The name perceptron derives from his interest in
applying his models to perceptual tasks like speech and character
recognition. Rather than implement perceptrons in software, which was



very slow in those days, Rosenblatt built his own devices. The weights were
implemented by variable resistors like those found in dimmable light
switches, and weight learning was carried out by electric motors that turned
the knobs on the resistors. (Talk about high tech!)

In a perceptron, a positive weight represents an excitatory connection,
and a negative weight an inhibitory one. The perceptron outputs 1 if the
weighted sum of its inputs is above threshold, and 0 if it’s below. By
varying the weights and threshold, we can change the function that the
perceptron computes. This ignores a lot of the details of how neurons work,
of course, but we want to keep things as simple as possible; our goal is to
develop a general-purpose learning algorithm, not to build a realistic model
of the brain. If some of the details we ignored turn out to be important, we
can always add them in later. Despite our simplifying abstractions, however,
we can still see how each part of this model corresponds to a part of the
neuron:

The higher an input’s weight, the stronger the corresponding synapse. The
cell body adds up all the weighted inputs, and the axon applies a step
function to the result. The axon’s box in the diagram shows the graph of a
step function: 0 for low values of the input, abruptly changing to 1 when the
input reaches the threshold.

Suppose a perceptron has two continuous inputs x and y. (In other
words, x and y can take on any numeric values, not just 0 and 1.) Then each
example can be represented by a point on the plane, and the boundary
between positive examples (for which the perceptron outputs 1) and
negative ones (output 0) is a straight line:



This is because the boundary is the set of points where the weighted sum
exactly equals the threshold, and a weighted sum is a linear function. For
example, if the weights are 2 for x and 3 for y and the threshold is 6, the
boundary is defined by the equation 2 x + 3 y = 6. The point x = 0, y = 2 is
on the boundary, and to stay on it we have to take three steps across for
every two steps down, so that the gain in x makes up for the loss in y. The
resulting points form a straight line.

Learning a perceptron’s weights means varying the direction of the
straight line until all the positive examples are on one side and all the
negative ones on the other. In one dimension, the boundary is a point; in
two, it’s a straight line; in three, it’s a plane; and in more than three, it’s a
hyperplane. It’s hard to visualize things in hyperspace, but the math works
just the same way. In n dimensions, we have n inputs and the perceptron has
n weights. To decide whether the perceptron fires or not, we multiply each
weight by the corresponding input and compare the sum of all of them with
the threshold.

If all inputs have a weight of one and the threshold is half the number of
inputs, then the perceptron fires if more than half its inputs fire. In other
words, the perceptron is a like a tiny parliament where the majority wins.
(Or perhaps not so tiny, considering it can have thousands of members.) It’s
not altogether democratic, though, because in general not everyone has an
equal vote. A neural network is more like a social network, where a few
close friends count for more than thousands of Facebook ones. And it’s the
friends you trust most that influence you the most. If a friend recommends a
movie and you go see it and like it, next time around you’ll probably follow
her advice again. On the other hand, if she keeps gushing about movies you



didn’t enjoy, you will start to ignore her opinions (and perhaps your
friendship even wanes a bit).

This is how Rosenblatt’s perceptron algorithm learns weights.
Consider the grandmother cell, a favorite thought experiment of

cognitive neuroscientists. The grandmother cell is a neuron in your brain
that fires whenever you see your grandmother, and only then. Whether or
not grandmother cells really exist is an open question, but let’s design one
for use in machine learning. A perceptron learns to recognize your
grandmother as follows. The inputs to the cell are either the raw pixels in
the image or various hardwired features of it, like brown eyes, which takes
the value 1 if the image contains a pair of brown eyes and 0 otherwise. In
the beginning, all the connections from features to the neuron have small
random weights, like the synapses in your brain at birth. Then we show the
perceptron a series of images, some of your grandmother and some not. If it
fires upon seeing an image of your grandmother, or doesn’t fire upon seeing
something else, then no learning needs to happen. (If it ain’t broke, don’t fix
it.) But if the perceptron fails to fire when it’s looking at your grandmother,
that means the weighted sum of its inputs should have been higher, so we
increase the weights of the inputs that are on. (For example, if your
grandmother has brown eyes, the weight of that feature goes up.)
Conversely, if the perceptron fires when it shouldn’t, we decrease the
weights of the active inputs. It’s the errors that drive the learning. Over
time, the features that are indicative of your grandmother acquire high
weights, and the ones that aren’t get low weights. Once the perceptron
always fires upon seeing your grandmother, and only then, the learning is
complete.

The perceptron generated a lot of excitement. It was simple, yet it could
recognize printed letters and speech sounds just by being trained with
examples. A colleague of Rosenblatt’s at Cornell proved that, if the positive
and negative examples could be separated by a hyperplane, the perceptron
would find it. For Rosenblatt and others, a genuine understanding of how
the brain learns seemed within reach, and with it a powerful general-
purpose learning algorithm.

But then the perceptron hit a brick wall. The knowledge engineers were
irritated by Rosenblatt’s claims and envious of all the attention and funding
neural networks, and perceptrons in particular, were getting. One of them



was Marvin Minsky, a former classmate of Rosenblatt’s at the Bronx High
School of Science and by then the leader of the AI group at MIT.
(Ironically, his PhD had been on neural networks, but he had grown
disillusioned with them.) In 1969, Minsky and his colleague Seymour
Papert published Perceptrons, a book detailing the shortcomings of the
eponymous algorithm, with example after example of simple things it
couldn’t learn. The simplest one—and therefore the most damning—was
the exclusive-OR function, or XOR for short, which is true if one of its
inputs is true but not both. For example, Nike’s two most loyal
demographics are supposedly teenage boys and middle-aged women. In
other words, you’re likely to buy Nike shoes if you’re young XOR female.
Young is good, female is good, but both is not. You’re also an unpromising
target for Nike advertising if you’re neither young nor female. The problem
with XOR is that there is no straight line capable of separating the positive
from the negative examples. This figure shows two failed candidates:

Since perceptrons can only learn linear boundaries, they can’t learn XOR.
And if they can’t do even that, they’re not a very good model of how the
brain learns, or a viable candidate for the Master Algorithm.

A perceptron models only a single neuron’s learning, however, and
although Minsky and Papert acknowledged that layers of interconnected
neurons should be capable of more, they didn’t see a way to learn them.
Neither did anyone else. The problem is that there’s no clear way to change
the weights of the neurons in the “hidden” layers to reduce the errors made
by the ones in the output layer. Every hidden neuron influences the output
via multiple paths, and every error has a thousand fathers. Who do you



blame? Or, conversely, who gets the credit for correct outputs? This credit-
assignment problem shows up whenever we try to learn a complex model
and is one of the central problems in machine learning.

Perceptrons was mathematically unimpeachable, searing in its clarity,
and disastrous in its effects. Machine learning at the time was associated
mainly with neural networks, and most researchers (not to mention funders)
concluded that the only way to build an intelligent system was to explicitly
program it. For the next fifteen years, knowledge engineering would hold
center stage, and machine learning seemed to have been consigned to the
ash heap of history.

Physicist makes brain out of glass

If the history of machine learning were a Hollywood movie, the villain
would be Marvin Minsky. He’s the evil queen who gives Snow White a
poisoned apple, leaving her in suspended animation. (In a 1988 essay,
Seymour Papert even compared himself, tongue-in-cheek, to the huntsman
the queen sent to kill Snow White in the forest.) And Prince Charming
would be a Caltech physicist by the name of John Hopfield. In 1982,
Hopfield noticed a striking analogy between the brain and spin glasses, an
exotic material much beloved of statistical physicists. This set off a
connectionist renaissance that culminated a few years later in the invention
of the first algorithms capable of solving the credit-assignment problem,
ushering in a new era where machine learning replaced knowledge
engineering as the dominant paradigm in AI.

Spin glasses are not actually glasses, although they have some glass-like
properties. Rather, they are magnetic materials. Every electron is a tiny
magnet by virtue of its spin, which can point “up” or “down.” In materials
like iron, electrons’ spins tend to line up: if an electron with down spin is
surrounded by electrons with up spins, it will probably flip to up. When
most of the spins in a chunk of iron line up, it turns into a magnet. In
ordinary magnets, the strength of interaction between adjacent spins is the
same for all pairs, but in a spin glass it can vary; it may even be negative,
causing nearby spins to point in opposite directions. The energy of an
ordinary magnet is lowest when all its spins align, but in a spin glass, it’s



not so simple. Indeed, finding the lowest-energy state of a spin glass is an
NP-complete problem, meaning that just about every other difficult
optimization problem can be reduced to it. Because of this, a spin glass
doesn’t necessarily settle into its overall lowest energy state; much like
rainwater may flow downhill into a lake instead of reaching the ocean, a
spin glass may get stuck in a local minimum, a state with lower energy than
all the states that can be reached from it by flipping a spin, rather than
evolve to the global one.

Hopfield noticed an interesting similarity between spin glasses and
neural networks: an electron’s spin responds to the behavior of its neighbors
much like a neuron does. In the electron’s case, it flips up if the weighted
sum of the neighbors exceeds a threshold and flips (or stays) down
otherwise. Inspired by this, he defined a type of neural network that evolves
over time in the same way that a spin glass does and postulated that the
network’s minimum energy states are its memories. Each such state has a
“basin of attraction” of initial states that converge to it, and in this way the
network can do pattern recognition: for example, if one of the memories is
the pattern of black-and-white pixels formed by the digit nine and the
network sees a distorted nine, it will converge to the “ideal” one and
thereby recognize it. Suddenly, a vast body of physical theory was
applicable to machine learning, and a flood of statistical physicists poured
into the field, helping it break out of the local minimum it had been stuck
in.

A spin glass is still a very unrealistic model of the brain, though. For
one, spin interactions are symmetric, and connections between neurons in
the brain are not. Another big issue that Hopfield’s model ignored is that
real neurons are statistical: they don’t deterministically turn on and off as a
function of their inputs; rather, as the weighted sum of inputs increases, the
neuron becomes more likely to fire, but it’s not certain that it will. In 1985,
David Ackley, Geoff Hinton, and Terry Sejnowski replaced the
deterministic neurons in Hopfield networks with probabilistic ones. A
neural network now had a probability distribution over its states, with
higher-energy states being exponentially less likely than lower-energy ones.
In fact, the probability of finding the network in a particular state was given
by the well-known Boltzmann distribution from thermodynamics, so they
called their network a Boltzmann machine.



A Boltzmann machine has a mix of sensory and hidden neurons
(analogous to, for example, the retina and the brain, respectively). It learns
by being alternately awake and asleep, just like humans. While awake, the
sensory neurons fire as dictated by the data, and the hidden ones evolve
according to the network dynamics and the sensory input. For example, if
the network is shown an image of a nine, the neurons corresponding to the
black pixels in the image stay on, the others stay off, and the hidden ones
fire randomly according to the Boltzmann distribution given those pixel
values. During sleep, the machine dreams, leaving both sensory and hidden
neurons free to wander. Just before the new day dawns, it compares the
statistics of its states during the dream and during yesterday’s activities and
changes the connection weights so that they match. If two neurons tend to
fire together during the day but less so while asleep, the weight of their
connection goes up; if it’s the opposite, they go down. By doing this day
after day, the predicted correlations between sensory neurons evolve until
they match the real ones. At this point, the Boltzmann machine has learned
a good model of the data and effectively solved the credit-assignment
problem.

Geoff Hinton went on to try many variations on Boltzmann machines
over the following decades. Hinton, a psychologist turned computer
scientist and great-great-grandson of George Boole, the inventor of the
logical calculus used in all digital computers, is the world’s leading
connectionist. He has tried longer and harder to understand how the brain
works than anyone else. He tells of coming home from work one day in a
state of great excitement, exclaiming “I did it! I’ve figured out how the
brain works!” His daughter replied, “Oh, Dad, not again!” Hinton’s latest
passion is deep learning, which we’ll meet later in this chapter. He was also
involved in the development of backpropagation, an even better algorithm
than Boltzmann machines for solving the credit-assignment problem that
we’ll look at next. Boltzmann machines could solve the credit-assignment
problem in principle, but in practice learning was very slow and painful,
making this approach impractical for most applications. The next
breakthrough involved getting rid of another oversimplification that dated
all the way back to McCulloch and Pitts.



The most important curve in the world

As far as its neighbors are concerned, a neuron can only be in one of two
states: firing or not firing. This misses an important subtlety, however.
Action potentials are short lived; the voltage spikes for a small fraction of a
second and immediately goes back to its resting state. And a single spike
barely registers in the receiving neuron; it takes a train of spikes closely on
each other’s heels to wake it up. A typical neuron spikes occasionally in the
absence of stimulation, spikes more and more frequently as stimulation
builds up, and saturates at the fastest spiking rate it can muster, beyond
which increased stimulation has no effect. Rather than a logic gate, a neuron
is more like a voltage-to-frequency converter. The curve of frequency as a
function of voltage looks like this:

This curve, which looks like an elongated S, is variously known as the
logistic, sigmoid, or S curve. Peruse it closely, because it’s the most
important curve in the world. At first the output increases slowly with the
input, so slowly it seems constant. Then it starts to change faster, then very
fast, then slower and slower until it becomes almost constant again. The
transfer curve of a transistor, which relates its input and output voltages, is
also an S curve. So both computers and the brain are filled with S curves.
But it doesn’t end there. The S curve is the shape of phase transitions of all
kinds: the probability of an electron flipping its spin as a function of the
applied field, the magnetization of iron, the writing of a bit of memory to a
hard disk, an ion channel opening in a cell, ice melting, water evaporating,
the inflationary expansion of the early universe, punctuated equilibria in



evolution, paradigm shifts in science, the spread of new technologies, white
flight from multiethnic neighborhoods, rumors, epidemics, revolutions, the
fall of empires, and much more. The Tipping Point could equally well (if
less appealingly) be entitled The S Curve. An earthquake is a phase
transition in the relative position of two adjacent tectonic plates. A bump in
the night is just the sound of the microscopic tectonic plates in your house’s
walls shifting, so don’t be scared. Joseph Schumpeter said that the economy
evolves by cracks and leaps: S curves are the shape of creative destruction.
The effect of financial gains and losses on your happiness follows an S
curve, so don’t sweat the big stuff. The probability that a random logical
formula is satisfiable—the quintessential NP-complete problem—
undergoes a phase transition from almost 1 to almost 0 as the formula’s
length increases. Statistical physicists spend their lives studying phase
transitions.

In Hemingway’s The Sun Also Rises, when Mike Campbell is asked
how he went bankrupt, he replies, “Two ways. Gradually and then
suddenly.” The same could be said of Lehman Brothers. That’s the essence
of an S curve. One of the futurist Paul Saffo’s rules of forecasting is: look
for the S curves. When you can’t get the temperature in the shower just
right—first it’s too cold, and then it quickly shifts to too hot—blame the S
curve. When you make popcorn, watch the S curve’s progress: at first
nothing happens, then a few kernels pop, then a bunch more, then the bulk
of them in a sudden burst of fireworks, then a few more, and then it’s ready
to eat. Every motion of your muscles follows an S curve: slow, then fast,
then slow again. Cartoons gained a new naturalness when the animators at
Disney figured this out and started copying it. Your eyes move in S curves,
fixating on one thing and then another, along with your consciousness.
Mood swings are phase transitions. So are birth, adolescence, falling in
love, getting married, getting pregnant, getting a job, losing it, moving to a
new town, getting promoted, retiring, and dying. The universe is a vast
symphony of phase transitions, from the cosmic to the microscopic, from
the mundane to the life changing.

The S curve is not just important as a model in its own right; it’s also
the jack-of-all-trades of mathematics. If you zoom in on its midsection, it
approximates a straight line. Many phenomena we think of as linear are in
fact S curves, because nothing can grow without limit. Because of relativity,



and contra Newton, acceleration does not increase linearly with force, but
follows an S curve centered at zero. So does electric current as a function of
voltage in the resistors found in electronic circuits, or in a light bulb (until
the filament melts, which is itself another phase transition). If you zoom out
from an S curve, it approximates a step function, with the output suddenly
changing from zero to one at the threshold. So depending on the input
voltages, the same curve represents the workings of a transistor in both
digital computers and analog devices like amplifiers and radio tuners. The
early part of an S curve is effectively an exponential, and near the saturation
point it approximates exponential decay. When someone talks about
exponential growth, ask yourself: How soon will it turn into an S curve?
When will the population bomb peter out, Moore’s law lose steam, or the
singularity fail to happen? Differentiate an S curve and you get a bell curve:
slow, fast, slow becomes low, high, low. Add a succession of staggered
upward and downward S curves, and you get something close to a sine
wave. In fact, every function can be closely approximated by a sum of S
curves: when the function goes up, you add an S curve; when it goes down,
you subtract one. Children’s learning is not a steady improvement but an
accumulation of S curves. So is technological change. Squint at the New
York City skyline and you can see a sum of S curves unfolding across the
horizon, each as sharp as a skyscraper’s corner.

Most importantly for us, S curves lead to a new solution to the credit-
assignment problem. If the universe is a symphony of phase transitions,
let’s model it with one. That’s what the brain does: it tunes the system of
phase transitions inside to the one outside. So let’s replace the perceptron’s
step function with an S curve and see what happens.

Climbing mountains in hyperspace

In the perceptron algorithm, the error signal is all or none: you got it either
right or wrong. That’s not much to go on, particularly if you have a network
of many neurons. You may know that the output neuron is wrong (oops, that
wasn’t your grandmother), but what about some neuron deep inside the
brain? What does it even mean for such a neuron to be right or wrong? If
the neurons’ output is continuous instead of binary, the picture changes. For



starters, we now know how much the output neuron is wrong by: the
difference between it and the desired output. If the neuron should be firing
away (“Oh hi, Grandma!”) and is firing a little, that’s better than if it’s not
firing at all. More importantly, we can now propagate that error to the
hidden neurons: if the output neuron should fire more and neuron A
connects to it, then the more A is firing, the more we should strengthen
their connection; but if A is inhibited by another neuron B, then B should
fire less, and so on. Based on the feedback from all the neurons it’s
connected to, each neuron decides how much more or less to fire. Based on
that and the activity of its input neurons, it strengthens or weakens its
connections to them. I need to fire more, and neuron B is inhibiting me?
Lower its weight. And neuron C is firing away, but its connection to me is
weak? Strengthen it. My “customer” neurons, downstream in the network,
will tell me how well I’m doing in the next round.

Whenever the learner’s “retina” sees a new image, that signal
propagates forward through the network until it produces an output.
Comparing this output with the desired one yields an error signal, which
then propagates back through the layers until it reaches the retina. Based on
this returning signal and on the inputs it had received during the forward
pass, each neuron adjusts its weights. As the network sees more and more
images of your grandmother and other people, the weights gradually
converge to values that let it discriminate between the two.
Backpropagation, as this algorithm is known, is phenomenally more
powerful than the perceptron algorithm. A single neuron could only learn
straight lines. Given enough hidden neurons, a multilayer perceptron, as it’s
called, can represent arbitrarily convoluted frontiers. This makes
backpropagation—or simply backprop—the connectionists’ master
algorithm.

Backprop is an instance of a strategy that is very common in both nature
and technology: if you’re in a hurry to get to the top of the mountain, climb
the steepest slope you can find. The technical term for this is gradient
ascent (if you want to get to the top) or gradient descent (if you’re looking
for the valley bottom). Bacteria can find food by swimming up the
concentration gradient of, say, glucose molecules, and they can flee from
poisons by swimming down their gradient. All sorts of things, from aircraft
wings to antenna arrays, can be optimized by gradient descent. Backprop is



an efficient way to do it in a multilayer perceptron: keep tweaking the
weights so as to lower the error, and stop when all tweaks fail. With
backprop, you don’t have to figure out how to tweak each neuron’s weights
from scratch, which would be too slow; you can do it layer by layer,
tweaking each neuron based on how you tweaked the neurons it connects
to. If you had to throw out your entire machine-learning toolkit in an
emergency save for one tool, gradient descent is probably the one you’d
want to hold on to.

So does backprop solve the machine-learning problem? Can we just
throw together a big pile of neurons, wait for it to do its magic, and on the
way to the bank collect a Nobel Prize for figuring out how the brain works?
Alas, life is not that easy. Suppose your network has only one weight, and
this is the graph of the error as a function of it:

The optimal weight, where the error is lowest, is 2.0. If the network starts
out with a weight of 0.75, for example, backprop will get to the optimum in
a few steps, like a ball rolling downhill. But if it starts at 5.5, on the other
hand, backprop will roll down to 7.0 and remain stuck there. Backprop,
with its incremental weight changes, doesn’t know how to find the global
error minimum, and local ones can be arbitrarily bad, like mistaking your
grandmother for a hat. With one weight, you could try every possible value
at increments of 0.01 and find the optimum that way. But with thousands of
weights, let alone millions or billions, this is not an option because the
number of points on the grid goes up exponentially with the number of
weights. The global minimum is hidden somewhere in the unfathomable
vastness of hyperspace—and good luck finding it.



Imagine you’ve been kidnapped and left blindfolded somewhere in the
Himalayas. Your head is throbbing, and your memory is not too good,
either. All you know is you need to get to the top of Mount Everest. What
do you do? You take a step forward and nearly slide into a ravine. After
catching your breath, you decide to be a bit more systematic. You carefully
feel around with your foot until you find the highest point you can and step
gingerly to that point. Then you do the same again. Little by little, you get
higher and higher. After a while, every step you can take is down, and you
stop. That’s gradient ascent. If the Himalayas were just Mount Everest, and
Everest was a perfect cone, it would work like a charm. But more likely,
when you get to a place where every step is down, you’re still very far from
the top. You’re just standing on a foothill somewhere, and you’re stuck.
That’s what happens to backprop, except it climbs mountains in hyperspace
instead of 3-D. If your network has a single neuron, just climbing to better
weights one step at a time will get you to the top. But with a multilayer
perceptron, the landscape is very rugged; good luck finding the highest
peak.

This was part of the reason Minsky, Papert, and others couldn’t see how
to learn multilayer perceptrons. They could imagine replacing step
functions by S curves and doing gradient descent, but then they were faced
with the problem of local minima of the error. In those days researchers
didn’t trust computer simulations; they demanded mathematical proof that
an algorithm would work, and there’s no such proof for backprop. But what
we’ve come to realize is that most of the time a local minimum is fine. The
error surface often looks like the quills of a porcupine, with many steep
peaks and troughs, but it doesn’t really matter if we find the absolute lowest
trough; any one will do. Better still, a local minimum may in fact be
preferable because it’s less likely to prove to have overfit our data than the
global one.

Hyperspace is a double-edged sword. On the one hand, the higher
dimensional the space, the more room it has for highly convoluted surfaces
and local optima. On the other hand, to be stuck in a local optimum you
have to be stuck in every dimension, so it’s more difficult to get stuck in
many dimensions than it is in three. In hyperspace there are mountain
passes all over the (hyper) place. So, with a little help from a human sherpa,
backprop can often find its way to a perfectly good set of weights. It may be



only the mystical valley of Shangri-La, not the sea, but why complain if in
hyperspace there are millions of Shangri-Las, each with billions of
mountain passes leading to it?

Beware of attaching too much meaning to the weights backprop finds,
however. Remember that there are probably many very different ones that
are just as good. Learning in multilayer perceptrons is a chaotic process in
the sense that starting in slightly different places can cause you to wind up
at very different solutions. The phenomenon is the same whether the slight
difference is in the initial weights or the training data and manifests itself in
all powerful learners, not just backprop.

We could do away with the problem of local optima by taking out the S
curves and just letting each neuron output the weighted sum of its inputs.
That would make the error surface very smooth, leaving only one minimum
—the global one. The problem, though, is that a linear function of linear
functions is still just a linear function, so a network of linear neurons is no
better than a single neuron. A linear brain, no matter how large, is dumber
than a roundworm. S curves are a nice halfway house between the
dumbness of linear functions and the hardness of step functions.

The perceptron’s revenge

Backprop was invented in 1986 by David Rumelhart, a psychologist at the
University of California, San Diego, with the help of Geoff Hinton and
Ronald Williams. Among other things, they showed that backprop can learn
XOR, enabling connectionists to thumb their noses at Minsky and Papert.
Recall the Nike example: young men and middle-aged women are the most
likely buyers of Nike shoes. We can represent this with a network of three
neurons: one that fires when it sees a young male, another that fires when it
sees a middle-aged female, and another that fires when either of those does.
And with backprop we can learn the appropriate weights, resulting in a
successful Nike prospect detector. (So there, Marvin.)

In an early demonstration of the power of backprop, Terry Sejnowski
and Charles Rosenberg trained a multilayer perceptron to read aloud. Their
NETtalk system scanned the text, selected the correct phonemes according
to context, and fed them to a speech synthesizer. NETtalk not only



generalized accurately to new words, which knowledge-based systems
could not, but it learned to speak in a remarkably human-like way.
Sejnowski used to mesmerize audiences at research meetings by playing a
tape of NETtalk’s progress: babbling at first, then starting to make sense,
then speaking smoothly with only the occasional error. (You can find
samples on YouTube by typing “sejnowski nettalk.”)

Neural networks’ first big success was in predicting the stock market.
Because they could detect small nonlinearities in very noisy data, they beat
the linear models then prevalent in finance and their use spread. A typical
investment fund would train a separate network for each of a large number
of stocks, let the networks pick the most promising ones, and then have
human analysts decide which of those to invest in. A few funds, however,
went all the way and let the learners themselves buy and sell. Exactly how
all these fared is a closely guarded secret, but it’s probably not an accident
that machine learners keep disappearing into hedge funds at an alarming
rate.

Nonlinear models are important far beyond the stock market. Scientists
everywhere use linear regression because that’s what they know, but more
often than not the phenomena they study are nonlinear, and a multilayer
perceptron can model them. Linear models are blind to phase transitions;
neural networks soak them up like a sponge.

Another notable early success of neural networks was learning to drive
a car. Driverless cars first broke into the public consciousness with the
DARPA Grand Challenges in 2004 and 2005, but a over a decade earlier,
researchers at Carnegie Mellon had already successfully trained a
multilayer perceptron to drive a car by detecting the road in video images
and appropriately turning the steering wheel. Carnegie Mellon’s car
managed to drive coast to coast across America with very blurry vision
(thirty by thirty-two pixels), a brain smaller than a worm’s, and only a few
assists from the human copilot. (The project was dubbed “No Hands Across
America.”) It may not have been the first truly self-driving car, but it did
compare favorably with most teenage drivers.

Backprop’s applications are now too many to count. As its fame has
grown, more of its history has come to light. It turns out that, as is often the
case in science, backprop was invented more than once. Yann LeCun in
France and others hit on it at around the same time as Rumelhart. A paper



on backprop was rejected by the leading AI conference in the early 1980s
because, according to the reviewers, Minsky and Papert had already proved
that perceptrons don’t work. In fact, Rumelhart is credited with inventing
backprop by the Columbus test: Columbus was not the first person to
discover America, but the last. It turns out that Paul Werbos, a graduate
student at Harvard, had proposed a similar algorithm in his PhD thesis in
1974. And in a supreme irony, Arthur Bryson and Yu-Chi Ho, two control
theorists, had done the same even earlier: in 1969, the same year that
Minsky and Papert published Perceptrons! Indeed, the history of machine
learning itself shows why we need learning algorithms. If algorithms that
automatically find related papers in the scientific literature had existed in
1969, they could have potentially helped avoid decades of wasted time and
accelerated who knows what discoveries.

Among the many ironies of the history of the perceptron, perhaps the
saddest is that Frank Rosenblatt died in a boating accident in Chesapeake
Bay in 1969 and never lived to see the second act of his creation.

A complete model of a cell

A living cell is a quintessential example of a nonlinear system. The cell
performs all of its functions by turning raw materials into end products
through a complex web of chemical reactions. We can discover the structure
of this network using symbolist methods like inverse deduction, as we saw
in the last chapter, but to build a complete model of a cell we need to get
quantitative, learning the parameters that couple the expression levels of
different genes, relate environmental variables to internal ones, and so on.
This is difficult because there is no simple linear relationship between these
quantities. Rather, the cell maintains its stability through interlocking
feedback loops, leading to very complex behavior. Backpropagation is well
suited to this problem because of its ability to efficiently learn nonlinear
functions. If we had a complete map of the cell’s metabolic pathways and
enough observations of all the relevant variables, backprop could in
principle learn a detailed model of the cell, with a multilayer perceptron to
predict each variable as a function of its immediate causes.



For the foreseeable future, however, we’ll have only partial knowledge
of cells’ metabolic networks and be able to observe only a fraction of the
variables we’d like to. Learning useful models despite all this missing
information, and despite all the inevitable inconsistencies in the information
that is available, calls for Bayesian methods, which we’ll delve into in
Chapter 6. The same goes for making predictions for a particular patient,
model in hand: the evidence available is necessarily noisy and incomplete,
and Bayesian inference makes the best of it. It helps that, if the goal is to
cure cancer, we don’t necessarily need to understand all the details of how
tumor cells work, only enough to disable them without harming normal
cells. In Chapter 6, we’ll also see how to orient learning toward the goal
while steering clear of the things we don’t know and don’t need to know.

More immediately, we know we can use inverse deduction to infer the
structure of the cell’s networks from data and previous knowledge, but
there’s a combinatorial explosion of ways to apply it, and we need a
strategy. Since metabolic networks were designed by evolution, perhaps
simulating it in our learning algorithms is the way to go. In the next chapter,
we’ll see how to do just that.

Deeper into the brain

When backprop first hit the streets, connectionists had visions of quickly
learning larger and larger networks until, hardware permitting, they
amounted to artificial brains. It didn’t turn out that way. Learning networks
with one hidden layer was fine, but after that things soon got very difficult.
Networks with a few layers worked only if they were carefully designed for
the application (character recognition, say). Beyond that, backprop broke
down. As we add layers, the error signal becomes more and more diffuse,
like a river branching into smaller and smaller tributaries, until we’re down
to individual raindrops that just don’t register. Learning with dozens or
hundreds of hidden layers, like the brain, remained a distant dream, and by
the mid-1990s, the excitement for multilayer perceptrons had petered out. A
hard core of connectionists soldiered on, but by and large the attention of
the machine-learning field moved elsewhere. (We’ll survey those lands in
Chapters 6 and 7.)



Today, however, connectionism is resurgent. We’re learning deeper
networks than ever before, and they’re setting new standards in vision,
speech recognition, drug discovery, and other areas. The new field of deep
learning is on the front page of the New York Times. Look under the hood,
and . . . surprise: it’s the trusty old backprop engine, still humming. What
changed? Nothing much, say the critics: just faster computers and bigger
data. To which Hinton and others reply: exactly, we were right all along!

In truth, connectionists have made genuine progress. One of the
protagonists of this latest twist in the connectionist roller coaster is an
unassuming little device called an autoencoder. An autoencoder is a
multilayer perceptron whose output is the same as its input. In goes a
picture of your grandmother and out comes—the same picture of your
grandmother. At first this seems like a silly idea: What use could such a
contraption possibly be? The key is to make the hidden layer much smaller
than the input and output layers, so the network can’t just learn to copy the
input to the hidden layer and the hidden layer to the output, in which case
we may as well throw the whole thing out. But if the hidden layer is small,
something interesting happens: the network is forced to encode the input in
fewer bits, so it can be represented in the hidden layer, and then decode
those bits back to full size. It could, for example, learn to encode a million-
pixel image of your grandmother as just the seven-character word grandma,
or some such short code invented by itself, and simultaneously learn to
decode “grandma” into an image of dear old granny. So an autoencoder is
not unlike a file compression tool, with two important advantages: it figures
out how to compress things on its own, and like Hopfield networks, it can
turn a noisy, distorted image into a nice clean one.

Autoencoders were known in the 1980s, but they were very hard to
learn, even though they had a single hidden layer. Figuring out how to pack
a lot of information into the same few bits is a hellishly difficult problem
(one code for your grandmother, a slightly different one for your
grandfather, another one for Jennifer Aniston, etc). The landscape in
hyperspace is just too rugged to get to a good peak; the hidden units need to
learn what amounts to too many exclusive-ORs of the inputs. So
autoencoders didn’t really catch on. The trick that took over a decade to
discover was to make the hidden layer larger than the input and output ones.
Huh? Actually, that’s only half the trick: the other half is to force all but a



few of the hidden units to be off at any given time. This still prevents the
hidden layer from just copying the input, and—crucially—it makes learning
much easier. If we allow different bits to represent different inputs, the
inputs no longer have to compete to set the same bits. Also, the network
now has many more parameters, so the hyperspace you’re in has many
more dimensions, and you have many more ways to get out of what would
otherwise be local maxima. This is called a sparse autoencoder, and it’s a
neat trick.

We haven’t seen any deep learning yet, though. The next clever idea is
to stack sparse autoencoders on top of each other like a club sandwich. The
hidden layer of the first autoencoder becomes the input/output layer of the
second one, and so on. Because the neurons are nonlinear, each hidden layer
learns a more sophisticated representation of the input, building on the
previous one. Given a large set of face images, the first autoencoder learns
to encode local features like corners and spots, the second uses those to
encode facial features like the tip of a nose or the iris of an eye, the third
one learns whole noses and eyes, and so on. Finally, the top layer can be a
conventional perceptron that learns to recognize your grandmother from the
high-level features provided by the layer below it—much easier than using
only the crude information provided by a single hidden layer or than trying
to backpropagate through all the layers at once. The Google Brain network
of New York Times fame is a nine-layer sandwich of autoencoders and other
ingredients that learns to recognize cats from YouTube videos. At one
billion connections, it was at the time the largest network ever learned. It’s
no surprise that Andrew Ng, one of the project’s principals, is also one of
the leading proponents of the idea that human intelligence boils down to a
single algorithm, and all we need to do is figure it out. Ng, whose affability
belies a fierce ambition, believes that stacked sparse autoencoders can take
us closer to solving AI than anything that came before.

Stacked autoencoders are not the only kind of deep learner. Another is
based on Boltzmann machines, and another—convolutional neural
networks—on a model of the visual cortex. Despite their remarkable
successes, however, all of these are still a far cry from the brain. The
Google network can recognize cat faces seen head on; humans can
recognize cats in any pose and even when the face is hard to make out. The
Google network is still pretty shallow; only three of its nine layers are



autoencoders. A multilayer perceptron is a passable model of the
cerebellum, the part of the brain responsible for low-level motor control,
but the cortex is another story. It’s missing the backward connections
needed to propagate errors, for one, and yet it’s where the real learning
wizardry resides. In his book On Intelligence, Jeff Hawkins advocated
designing algorithms closely based on the organization of the cortex, but so
far none of these algorithms can compete with today’s deep networks.

This may change as our understanding of the brain improves. Inspired
by the human genome project, the new field of connectomics seeks to map
every synapse in the brain. The European Union is investing a billion euros
to build a soup-to-nuts model of it. America’s BRAIN initiative, with $100
million in funding in 2014 alone, has similar aims. Nevertheless, symbolists
are very skeptical of this path to the Master Algorithm. Even if we can
image the whole brain at the level of individual synapses, we (ironically)
need better machine-learning algorithms to turn those images into wiring
diagrams; doing it by hand is out of the question. Worse than that, even if
we had a complete map of the brain, we would still be at a loss to figure out
what it does. The nervous system of the C. elegans worm consists of only
302 neurons and was completely mapped in 1986, but we still have only a
fragmentary understanding of what it does. We need higher-level concepts
to make sense of the morass of low-level details, weeding out the ones that
are specific to wetware or just quirks of evolution. We don’t build airplanes
by reverse engineering feathers, and airplanes don’t flap their wings.
Rather, airplane designs are based on the principles of aerodynamics, which
all flying objects must obey. We still do not understand those analogous
principles of thought.

Perhaps connectomics is overkill. Some connectionists have been
overheard claiming that backprop is the Master Algorithm and we just need
to scale it up. But symbolists pour scorn on this notion. They point to a long
list of things that humans can do but neural networks can’t. Take
commonsense reasoning. It involves combining pieces of information that
may have never been seen together before. Did Mary eat a shoe for lunch?
No, because Mary is a person, people only eat edible things, and shoes are
not edible. Symbolic systems have no trouble with this—they just chain the
relevant rules—but multilayer perceptrons can’t do it; once they’re done
learning, they just compute the same fixed function over and over again.



Neural networks are not compositional, and compositionality is a big part of
human cognition. Another big issue is that humans—and symbolic models
like sets of rules and decision trees—can explain their reasoning, while
neural networks are big piles of numbers that no one can understand.

But if humans have all these abilities that their brains didn’t learn by
tweaking synapses, where did they come from? Unless you believe in
magic, the answer must be evolution. If you’re a connectionism skeptic and
you have the courage of your convictions, it behooves you to figure out
how evolution learned everything a baby knows at birth—and the more you
think is innate, the taller the order. But if you can figure it out and program
a computer to do it, it would be churlish to deny that you’ve invented at
least one version of the Master Algorithm.



CHAPTER FIVE

Evolution: Nature’s Learning Algorithm

Robotic Park is a massive robot factory surrounded by ten thousand square
miles of jungle, urban and otherwise. Ringing that jungle is the tallest,
thickest wall ever built, bristling with sentry posts, searchlights, and gun
turrets. The wall has two purposes: to keep trespassers out and the park’s
inhabitants—millions of robots battling for survival and control of the
factory—within. The winning robots get to spawn, their reproduction
accomplished by programming the banks of 3-D printers inside. Step-by-
step, the robots become smarter, faster—and deadlier. Robotic Park is run
by the US Army, and its purpose is to evolve the ultimate soldier.

Robotic Park doesn’t exist yet, but it may someday. I suggested it as a
thought experiment at a DARPA workshop a few years ago, and one of the
military brass present said matter-of-factly, “That’s feasible.” His
willingness might seem less startling if you consider that the army already
runs a full-blown mockup of an Afghan village in the California desert,
complete with villagers, for training its troops, and a few billion dollars
would be a small price to pay for the ultimate soldier.

The first steps toward Robotic Park have already been taken. Inside Hod
Lipson’s Creative Machines Lab at Cornell University, fantastically shaped
robots are learning to crawl and fly, probably even as you read this. One
looks like a slithering tower of rubber bricks, another like a helicopter with
dragonfly wings, yet another like a shape-shifting Tinkertoy. These robots



were not designed by any human engineer but created by evolution, the
same process that gave rise to the diversity of life on Earth. Although the
robots initially evolve inside a computer simulation, once they look
proficient enough to make it in the real world, solid versions are
automatically fabricated by 3-D printing. These are not yet ready to take
over the world, but they’ve come a long way from the primordial soup of
simulated parts they started with.

The algorithm that evolved these robots was invented by Charles
Darwin in the nineteenth century. He didn’t think of it as an algorithm at the
time, partly because a key subroutine was still missing. Once James Watson
and Francis Crick provided it in 1953, the stage was set for the second
coming of evolution: in silico instead of in vivo, and a billion times faster.
Its prophet was a ruddy-faced, perpetually grinning midwesterner by the
name of John Holland.

Darwin’s algorithm

Like many other early machine-learning researchers, Holland started out
working on neural networks, but his interests took a different turn when,
while a graduate student at the University of Michigan, he read Ronald
Fisher’s classic treatise The Genetical Theory of Natural Selection. In it,
Fisher, who was also the founder of modern statistics, formulated the first
mathematical theory of evolution. Brilliant as it was, Holland felt that
Fisher’s theory left out the essence of evolution. Fisher considered each
gene in isolation, but an organism’s fitness is a complex function of all its
genes. If genes are independent, the relative frequencies of their variants
rapidly converge to the maximum fitness point and remain in equilibrium
thereafter. But if genes interact, evolution—the search for maximum fitness
—is vastly more complex. With one thousand genes, each with two
variants, the genome has 21000 possible states, and no planet in the
universe is remotely large or ancient enough to have tried them all out. Yet
on Earth evolution has managed to come up with some remarkably fit
organisms, and Darwin’s theory of natural selection explains how, at least
qualitatively. Holland decided to turn it into an algorithm.



But first he had to graduate. Prudently, he picked a more conservative
topic for his dissertation—Boolean circuits with cycles—and in 1959 he
earned the world’s first PhD in computer science. His PhD advisor, Arthur
Burks, nevertheless encouraged Holland’s interest in evolutionary
computation and was instrumental in getting him a faculty job at Michigan
and shielding him from senior colleagues who didn’t think that stuff was
computer science. Burks himself was so open-minded because he had been
a close collaborator of John von Neumann, who had proved the possibility
of self-reproducing machines. Indeed, it had fallen to him to complete the
work when von Neumann died of cancer in 1957. That von Neumann could
prove that such machines are possible was quite remarkable, given the
primitive state of genetics and computer science at the time. But his
automaton just made exact copies of itself; evolving automata had to wait
for Holland.

The key input to a genetic algorithm, as Holland’s creation came to be
known, is a fitness function. Given a candidate program and some purpose
it is meant to fill, the fitness function assigns the program a numeric score
reflecting how well it fits the purpose. In natural selection, it’s questionable
whether fitness can be interpreted this way: while the fitness of a wing for
flight makes intuitive sense, evolution as a whole has no known purpose.
Nevertheless, in machine learning having something like a fitness function
is a no-brainer. If we need a program that can diagnose a patient, one that
correctly diagnoses 60 percent of the patients in our database is better than
one that only gets it right 55 percent of the time, and thus a possible fitness
function is the fraction of correctly diagnosed cases.

In this regard, genetic algorithms are a lot like selective breeding.
Darwin opened The Origin of Species with a discussion of it, as a stepping-
stone to the more difficult concept of natural selection. All the domesticated
plants and animals we take for granted today are the result of selecting and
mating, generation after generation, the organisms that best served our
purposes: the corn with the largest corncobs, the sweetest fruit trees, the
shaggiest sheep, the hardiest horses. Genetic algorithms do the same, except
they breed programs instead of living creatures, and a generation is a few
seconds of computer time instead of a creature’s lifetime.

The fitness function encapsulates the human’s role in the process. But
the more subtle part is nature’s. Starting with a population of not-very-fit



individuals—possibly completely random ones—the genetic algorithm has
to come up with variations that can then be selected according to fitness.
How does nature do that? Darwin didn’t know. This is where the genetic
part of the algorithm comes in. In the same way that DNA encodes an
organism as a sequence of base pairs, we can encode a program as a string
of bits. Instead of 0 and 1, the DNA alphabet has four characters—the four
bases adenine, thymine, cytosine, and guanine—but that’s a superficial
difference. Variations, whether in DNA sequences or bit strings, can be
generated in several ways. The simplest approach is point mutation,
flipping a random bit in the string or changing a single base in a stretch of
DNA. But for Holland, the real power of genetic algorithms lay in
something more complicated: sex.

Stripped down to its bare essentials (no giggles, please), sexual
reproduction consists of swapping material between chromosomes from the
mother and father, a process called crossing over. This produces two new
chromosomes, one of which consists of the mother’s chromosome up to the
crossover point and the father’s thereafter, and the other one is the opposite:

A genetic algorithm works by mimicking this process. In each generation, it
mates the fittest individuals, producing two offspring from each pair of
parents by crossing over their bit strings at a random point. After applying
point mutations to the new strings, it lets them loose in its virtual world.
Each one returns with a fitness score, and the process repeats. Each
generation is fitter than the previous one, and the process terminates when
the desired fitness is reached or time runs out.

For example, suppose we want to evolve a rule for filtering spam. If ten
thousand different words appear in the training data, each candidate rule can
be represented by a string of twenty thousand bits, two for each word. The
first bit corresponding to the word free is one if e-mails containing free are
allowed to match the rule, and zero if they’re not. The second bit is the
opposite: one if e-mails not containing free are allowed to match, and zero



if they’re not. So if both bits are one, e-mails are allowed to match the rule
regardless of whether they contain free, and the rule effectively has no
condition on that word. On the other hand, if both bits are zero, no e-mails
match the rule, since one or the other bit always fails, and all e-mails get
through the filter (yikes). Overall, an e-mail matches a rule only if its entire
pattern of present and absent words is allowed by the rule. A rule’s fitness
is, say, the percentage of e-mails it classifies correctly. Starting from a
population of random strings, each representing a rule with random
conditions, the genetic algorithm can now evolve better and better rules by
repeatedly crossing over and mutating the fittest strings in each generation.
For example, if the current population includes the rules If the e-mail
contains the word free then it’s spam and If the e-mail contains the word
easy then it’s spam, crossing them over will yield the probably fitter rule If
the e-mail contains free and easy then it’s spam, provided the crossover
point does not fall between the two bits corresponding to one of those
words. It will also yield the rule All e-mail is spam, which results from
dropping both conditions, but that rule is unlikely to have much progeny in
the next generation.

Since our goal is to produce the best spam filter we can, as opposed to
faithfully simulating real natural selection, we can cheat liberally by
modifying the algorithm to fit our needs. One way in which genetic
algorithms routinely cheat is by allowing immortality. (Too bad we can’t do
that in real life.) That way, a highly fit individual doesn’t simply compete to
reproduce within its own generation, but also with its children, and then its
grandchildren, great-grandchildren, and so on, as long as it remains one of
the fittest individuals in the population. In contrast, in the real world the
best a highly fit individual can do is pass on half its genes to many children,
each of which will probably be less fit because of the genes it inherited
from its other parent. Immortality avoids this backsliding and with any luck,
lets the algorithm reach the desired fitness sooner. Of course, since the
fittest humans in history as measured by number of descendants are the
likes of Genghis Khan—ancestor to one in two hundred men alive today—
perhaps it’s not so bad that in real life immortality is verboten.

If we want to evolve a whole set of spam-filtering rules, not just one, we
can represent a candidate set of n rules by a string of n × 20,000 bits
(20,000 for each rule, assuming ten thousand different words in the data, as



before). Rules containing 00 for some word effectively disappear from the
rule set, since they don’t match any e-mails, as we saw before. If an e-mail
matches any rule in the set, it’s classified as spam; otherwise it’s legit. We
can still let fitness be the percentage of correctly classified e-mails, but to
combat overfitting, we’ll probably want to subtract from it a penalty
proportional to the total number of active conditions in the rule set.

We can get even fancier by allowing rules for intermediate concepts to
evolve, and then chaining these rules at performance time. For example, we
could evolve the rules If the e-mail contains the word loan then it’s a scam
and If the e-mail is a scam then it’s spam. Since a rule’s consequent is no
longer always spam, this requires introducing additional bits in rule strings
to represent their consequents. Of course, the computer doesn’t literally use
the word scam; it just comes up with some arbitrary bit string to represent
the concept, but that’s good enough for our purposes. Sets of rules like this,
which Holland called classifier systems, are one of the workhorses of the
machine-learning tribe he founded: the evolutionaries. Like multilayer
perceptrons, classifier systems face the credit-assignment problem—what is
the fitness of rules for intermediate concepts?—and Holland devised the so-
called bucket brigade algorithm to solve it. Nevertheless, classifier systems
are much less widely used than multilayer perceptrons.

Compared to the simple model in Fisher’s book, genetic algorithms are
quite a leap forward. Darwin lamented his lack of mathematical ability, but
if he had lived a century later he probably would have yearned for
programming prowess instead. Indeed, capturing natural selection by a set
of equations is extremely difficult, but expressing it as an algorithm is
another matter, and can shed light on many otherwise vexing questions.
Why do species appear suddenly in the fossil record? Where’s the evidence
that they evolved gradually from earlier species? In 1972, Niles Eldredge
and Stephen Jay Gould proposed that evolution consists of a series of
“punctuated equilibria,” alternating long periods of stasis with short bursts
of rapid change, like the Cambrian explosion. This sparked a heated debate,
with critics of the theory nicknaming it “evolution by jerks” and Eldredge
and Gould retorting that gradualism is “evolution by creeps.” Experience
with genetic algorithms lends support to the jerks. If you run a genetic
algorithm for one hundred thousand generations and observe the population
at one-thousand-generation intervals, the graph of fitness against time will



probably look like an uneven staircase, with sudden improvements followed
by flat periods that tend to become longer over time. It’s also not hard to see
why. Once the algorithm reaches a local maximum of fitness—a peak in the
fitness landscape—it will stay there for a long time until a lucky mutation
or crossover lands an individual on the slope to a higher peak, at which
point that individual will multiply and climb up the slope with each passing
generation. And the higher the current peak, the longer before that happens.
Of course, natural evolution is more complicated than this: for one, the
environment may change, either physically or because other organisms have
themselves evolved, and an organism that was on a fitness peak may
suddenly find itself under pressure to evolve again. So, while helpful,
current genetic algorithms are far from the end of the story.

The exploration-exploitation dilemma

Notice how much genetic algorithms differ from multilayer perceptrons.
Backprop entertains a single hypothesis at any given time, and the
hypothesis changes gradually until it settles into a local optimum. Genetic
algorithms consider an entire population of hypotheses at each step, and
these can make big jumps from one generation to the next, thanks to
crossover. Backprop proceeds deterministically after setting the initial
weights to small random values. Genetic algorithms, in contrast, are full of
random choices: which hypotheses to keep alive and cross over (with fitter
hypotheses being more likely candidates), where to cross two strings, which
bits to mutate. Backprop learns weights for a predefined network
architecture; denser networks are more flexible but also harder to learn.
Genetic algorithms make no a priori assumptions about the structures they
will learn, other than their general form.

Because of all this, genetic algorithms are much less likely than
backprop to get stuck in a local optimum and in principle better able to
come up with something truly new. But they are also much more difficult to
analyze. How do we know a genetic algorithm will get somewhere
meaningful instead of randomly walking around like the proverbial
drunkard? The key is to think in terms of building blocks. Every subset of a
string’s bits potentially encodes a useful building block, and when we cross



over two strings, those building blocks come together into a larger one,
which in turn becomes grist for the mill. Holland likes to use police
sketches to illustrate the power of building blocks. In the days before
computers, a police artist could quickly put together a portrait of a suspect
from eyewitness interviews by selecting a mouth from a set of paper strips
depicting typical mouth shapes and doing the same for the eyes, nose, chin,
and so on. With only ten building blocks and ten options for each, this
system would allow for ten billion different faces, more than there are
people on Earth.

In machine learning, as elsewhere in computer science, there’s nothing
better than getting such a combinatorial explosion to work for you instead
of against you. What’s clever about genetic algorithms is that each string
implicitly contains an exponential number of building blocks, known as
schemas, and so the search is a lot more efficient than it seems. This is
because every subset of the string’s bits is a schema, representing some
potentially fit combination of properties, and a string has an exponential
number of subsets. We can represent a schema by replacing the bits in the
string that aren’t part of it with *. For example, the string 110 contains the
schemas ***, **0, *1*, 1**, *10, 11*, 1*0, and 110. We get a different
schema for every different choice of bits to include; since we have two
choices for each bit (include/don’t include), we have 2n schemas.
Conversely, a particular schema may be represented in many different
strings in a population, and is implicitly evaluated every time they are.
Suppose that a hypothesis’s probability of surviving into the next generation
is proportional to its fitness. Holland showed that, in this case, the fitter a
schema’s representatives in one generation are compared to the average, the
more of them we can expect to see in the next generation. So, while the
genetic algorithm explicitly manipulates strings, it implicitly searches the
much larger space of schemas. Over time, fitter schemas come to dominate
the population, and so unlike the drunkard, the genetic algorithm finds its
way home.

One of the most important problems in machine learning—and life—is
the exploration-exploitation dilemma. If you’ve found something that
works, should you just keep doing it? Or is it better to try new things,
knowing it could be a waste of time but also might lead to a better solution?



Would you rather be a cowboy or a farmer? Start a company or run an
existing one? Go steady or play the field? A midlife crisis is the yearning to
explore after many years spent exploiting. On an impulse, you fly to Vegas,
ready to gamble away your life’s savings on the chance of becoming a
millionaire. You enter the first casino and face a row of slot machines. The
one to play is the one that gives you the best payoff on average, but you
don’t know which that is. You have to try each one enough times to figure it
out. But if you do this for too long, you waste your money on losing
machines. Conversely, if you jump the gun and pick a machine that looked
good by chance on the first few turns but is in fact not the best one, you
waste your money playing it for the rest of the night. That’s the exploration-
exploitation dilemma. Each time you play, you have to choose between
repeating the best move you’ve found so far, which gives you the best
payoff, or trying other moves, which gather information that may lead to
even better payoffs. With two slot machines, Holland showed that the
optimal strategy is to flip a biased coin each time, where the coin becomes
exponentially more biased as you go along. (Don’t sue me if it doesn’t work
for you, though. Remember the house always wins in the end.) The better a
slot machine looks, the more you should play it, but never completely give
up on the other one, in case it turns out to be the best one after all.

A genetic algorithm is like the ringleader of a group of gamblers,
playing slot machines in every casino in town at the same time. Two
schemas compete with each other if they include the same bits and differ in
at least one of them, like *10 and *11, and n competing schemas are like n
slot machines. Every set of competing schemas is a casino, and the genetic
algorithm simultaneously figures out the winning machine in every casino,
following the optimal strategy of playing the better-seeming machines with
exponentially increasing frequency. Pretty smart.

In The Hitchhiker’s Guide to the Galaxy, an alien race builds a massive
supercomputer to answer the ultimate question, and after a long time the
computer spits out “42.” But the computer also points out that the aliens
don’t know what the question is, so they build an even bigger computer to
figure that out. This computer—otherwise known as planet Earth—is
unfortunately destroyed to make way for a space freeway minutes before
finishing its multimillion-year computation. We can only guess at the
question now, but perhaps it was: Which slot machine should you play?



Survival of the fittest programs

For the first few decades, the genetic algorithms community consisted
mainly of John Holland, his students, and their students. Circa 1983, the
biggest problem genetic algorithms had been able to solve was learning to
control gas pipeline systems. But then, at around the same time neural
networks were making their comeback, interest in evolutionary computation
took off. The first international conference on genetic algorithms was held
in Pittsburgh in 1985, and a Cambrian explosion of genetic algorithm
variants was under way. Some of these tried to model evolution more
closely—the basic genetic algorithm was only a very crude approximation,
after all—and others radiated in very different directions, crossing over
evolutionary ideas with computer science concepts that would have
bemused Darwin.

One of Holland’s more remarkable students was John Koza. In 1987,
while flying back to California from a conference in Italy, he had a
lightbulb moment. Instead of evolving comparatively simple things like If .
. . then . . . rules and gas pipeline controllers, why not evolve full-blown
computer programs? And if that’s the goal, why stick with bit strings as the
representation? A program is really a tree of subroutine calls, so better to
directly cross over those subtrees than to shoehorn them into bit strings and
run the risk of destroying perfectly good subroutines when you cross them
over at a random point.

For example, suppose you want to evolve a program to compute the
duration of a planet’s year, T, from its average distance to the sun, D.
According to Kepler’s third law, T is the square root of D cubed, times a
constant C that depends on the units you use for time and distance. A
genetic algorithm should be able to discover this by looking at Tycho
Brahe’s data on planetary motions like Kepler did. In Koza’s approach, D
and C are the leaves of a program tree, and the operations that combine
them, like multiplication and taking the square root, are the internal nodes.
The following program tree correctly computes T:



In genetic programming, as Koza called his method, we cross over two
program trees by randomly swapping two of their subtrees. For example,
crossing over these two trees at the highlighted nodes yields the correct
program for computing T as one of the children:

We can measure a program’s fitness (or lack thereof) by the distance
between its output and the correct one on the training data. For example, if
the program says an Earth year is three hundred days, that would subtract
sixty-five points from its fitness. Starting with a population of random
program trees, genetic programming uses crossover, mutation, and survival
to gradually evolve better programs until it’s satisfied.



Of course, computing the length of a planet’s year is a very simple
problem, involving only multiplication and square roots. In general,
program trees can include the full range of programming constructs, such as
If . . . then . . . statements, loops, and recursion. A more illustrative example
of what genetic programming can do is figuring out the sequence of actions
a robot needs to perform to achieve some goal. Suppose I ask my officebot
to bring me a stapler from the closet down the hall. The robot has a large set
of behaviors available to it, such as moving down a hallway, opening a
door, picking up an object, and so on. Each of these can in turn be
composed of various sub-behaviors: move the robot’s hand toward the
object, or grasp it at various possible points, for example. Each behavior
may be executed or not depending on the results of previous behaviors, may
need to be repeated some number of times, and so on. The challenge is to
assemble the right structure of behaviors and sub-behaviors, together with
the parameters for each, such as how far to move the hand. Starting with the
robot’s “atomic” behaviors and their allowed combinations, genetic
programming can assemble a complex behavior that accomplishes the
desired goal. A number of researchers have evolved strategies for robot
soccer players in this way.

One consequence of crossing over program trees instead of bit strings is
that the resulting programs can have any size, making the learning more
flexible. The overall tendency is for bloat, however, with larger and larger
trees growing as evolution goes on longer (also known as “survival of the
fattest”). Evolutionaries can take comfort from the fact that human-written
programs are no different (Microsoft Windows: forty-five million lines of
code and counting), and that human-made code doesn’t allow a solution as
simple as adding a complexity penalty to the fitness function.

Genetic programming’s first success, in 1995, was in designing
electronic circuits. Starting with a pile of electronic components such as
transistors, resistors, and capacitors, Koza’s system reinvented a previously
patented design for a low-pass filter, a circuit that can be used for things
like enhancing the bass on a dance-music track. Since then he’s made a
sport of reinventing patented devices, turning them out by the dozen. The
next milestone came in 2005, when the US Patent and Trademark Office
awarded a patent to a genetically designed factory optimization system. If
the Turing test had been to fool a patent examiner instead of a



conversationalist, then January 25, 2005, would have been a date for the
history books.

Koza’s confidence stands out even in a field not known for its shrinking
violets. He sees genetic programming as an invention machine, a silicon
Edison for the twenty-first century. He and other evolutionaries believe it
can learn any program, making it their entry in the Master Algorithm
sweepstakes. In 2004, they instituted the annual Humie Awards to recognize
“human-competitive” genetic creations; thirty-nine have been awarded to
date.

What is sex for?

Despite their successes, and the insights they’ve provided on issues like
gradualism versus punctuated equilibria, genetic algorithms have left one
great mystery unsolved: the role of sex in evolution. Evolutionaries set
great store by crossover, but members of the other tribes think it’s not worth
the trouble. None of Holland’s theoretical results show that crossover
actually helps; mutation suffices to exponentially increase the frequency of
the fittest schemas in the population over time. And the “building blocks”
intuition is appealing but quickly runs into trouble, even when genetic
programming is used. As larger blocks evolve, crossover also becomes
increasingly likely to break them up. Also, once a highly fit individual
appears, its descendants tend to quickly take over the population, crowding
out potentially better schemas that were trapped in overall less fit
individuals. This effectively reduces the search to variations of the fitness
champ. Researchers have come up with a number of schemes for preserving
diversity in the population, but the results so far are inconclusive. Engineers
certainly use building blocks extensively, but combining them involves,
well, a lot of engineering; it’s not just a matter of throwing them together
any old way, and it’s not clear crossover can do the trick.

Eliminating sex would leave evolutionaries with only mutation to power
their engine. If the size of the population is substantially larger than the
number of genes, chances are that every point mutation is represented in it,
and the search becomes a type of hill climbing: try all possible one-step
variations, pick the best one, and repeat. (Or pick several of the best



variations, in which case it’s called beam search.) Symbolists, in particular,
use this all the time to learn sets of rules, although they don’t think of it as a
form of evolution. To avoid getting trapped in local maxima, hill climbing
can be enhanced with randomness (make a downhill move with some
probability) and random restarts (after a while, jump to a random state and
continue from there). Doing this is enough to find good solutions to
problems; whether the benefit of adding crossover to it justifies the extra
computational cost remains an open question.

No one is sure why sex is pervasive in nature, either. Several theories
have been proposed, but none is widely accepted. The leader of the pack is
the Red Queen hypothesis, popularized by Matt Ridley in the eponymous
book. As the Red Queen said to Alice in Through the Looking Glass, “It
takes all the running you can do, to keep in the same place.” In this view,
organisms are in a perpetual arms race with parasites, and sex helps keep
the population varied, so that no single germ can infect all of it. If this is the
answer, then sex is irrelevant to machine learning, at least until learned
programs have to vie with computer viruses for processor time and
memory. (Intriguingly, Danny Hillis claims that deliberately introducing
coevolving parasites into a genetic algorithm can help it escape local
maxima by gradually ratcheting up the difficulty, but no one has followed
up on this yet.) Christos Papadimitriou and colleagues have shown that sex
optimizes not fitness but what they call mixability: a gene’s ability to do
well on average when combined with other genes. This can be useful when
the fitness function is either not known or not constant, as in natural
selection, but in machine learning and optimization, hill climbing tends to
do better.

The problems for genetic programming do not end there. Indeed, even
its successes might not be as genetic as evolutionaries would like. Take
circuit design, which was genetic programming’s emblematic success. As a
rule, even relatively simple designs require an enormous amount of search,
and it’s not clear how much the results owe to brute force rather than
genetic smarts. To address the growing chorus of critics, Koza included in
his 1992 book Genetic Programming experiments showing that genetic
programming beat randomly generating candidates on Boolean circuit
synthesis problems, but the margin of victory was small. Then, at the 1995
International Conference on Machine Learning (ICML) in Lake Tahoe,



California, Kevin Lang published a paper showing that hill climbing beat
genetic programming on the same problems, often by a large margin. Koza
and other evolutionaries had repeatedly tried to publish papers in ICML, a
leading venue in the field, but to their increasing frustration they kept being
rejected due to insufficient empirical validation. Already frustrated with his
papers being rejected, seeing Lang’s paper made Koza blow his top. On
short order, he produced a twenty-three-page paper in two-column ICML
format refuting Lang’s conclusions and accusing the ICML reviewers of
scientific misconduct. He then placed a copy on every seat in the
conference auditorium. Depending on your point of view, either Lang’s
paper or Koza’s response was the last straw; regardless, the Tahoe incident
marked the final divorce between the evolutionaries and the rest of the
machine-learning community, with the evolutionaries moving out of the
house. Genetic programmers started their own conference, which merged
with the genetic algorithms conference to form GECCO, the Genetic and
Evolutionary Computing Conference. For its part, the machine-learning
mainstream largely forgot them. A sad dénouement, but not the first time in
history that sex is to blame for a breakup.

Sex may not have succeeded in machine learning, but as a consolation,
it has played a prominent role in the evolution of technology in other ways.
Pornography was the unacknowledged “killer app” of the World Wide Web,
not to mention the printing press, photography, and video before it. The
vibrator was the first handheld electrical device, predating the cell phone by
a century. Scooters took off in postwar Europe, particularly Italy, because
they let young couples get away from their families. Facilitating dating was
surely one of the “killer apps” of fire when Homo erectus discovered it a
million years ago; and equally surely, a key driver of increasing realism in
humanlike robots will be the sexbot industry. Sex just seems to be the end,
rather than the means, of technological evolution.

Nurturing nature

Evolutionaries and connectionists have something important in common:
they both design learning algorithms inspired by nature. But then they part
ways. Evolutionaries focus on learning structure; to them, fine-tuning an



evolved structure by optimizing parameters is of secondary importance. In
contrast, connectionists prefer to take a simple, hand-coded structure with
lots of connections and let weight learning do all the work. This is machine
learning’s version of the nature versus nurture controversy, and there are
good arguments on both sides.

On the one hand, evolution has produced many amazing things, none
more amazing than you. With or without crossover, evolving structure is an
essential part of the Master Algorithm. The brain can learn anything, but it
can’t evolve a brain. If we thoroughly understood its architecture, we could
just implement it in hardware, but we’re very far from that; getting an assist
from computer-simulated evolution is a no-brainer. What’s more, we also
want to evolve the brains of robots, systems with arbitrary sensors, and
super-AIs. There’s no reason to stick with the design of the human brain if
there are better ones for those tasks. On the other hand, evolution is
excruciatingly slow. The entire life of an organism yields only one piece of
information about its genome: its fitness, reflected in the organism’s
number of offspring. That’s a colossal waste of information, which neural
learning avoids by acquiring the information at the point of use (so to
speak). As connectionists like Geoff Hinton like to point out, there’s no
advantage to carrying around in the genome information that we can readily
acquire from the senses. When a newborn opens his eyes, the visual world
comes flooding in; the brain just has to organize it. What does need to be
specified in the genome, however, is the architecture of the machine that
does the organizing.

As in the nature versus nurture debate, neither side has the whole
answer; the key is figuring out how to combine the two. The Master
Algorithm is neither genetic programming nor backprop, but it has to
include the key elements of both: structure learning and weight learning. In
the conventional view, nature does its part first—evolving a brain—and
then nurture takes it from there, filling the brain with information. We can
easily reproduce this in learning algorithms. First, learn the structure of the
network, using (for example) hill climbing to decide which neurons connect
to which: try adding each possible new connection to the network, keep the
one that most improves performance, and repeat. Then learn the connection
weights using backprop, and your brand-new brain is ready to use.



But now there’s an important subtlety, in both natural and artificial
evolution. We need to learn weights for every candidate structure along the
way, not just the final one, in order to see how well it does in the struggle
for life (in the natural case) or on the training data (in the artificial case).
The structure we want to select at each step is the one that does best after
learning weights, not before. So in reality, nature does not come before
nurture; rather, they alternate, with each round of “nurture” learning setting
the stage for the next round of “nature” learning and vice versa. Nature
evolves for the nurture it gets. The evolutionary growth of the cortex’s
associative areas builds on neural learning in the sensory areas, without
which it would be useless. Goslings follow their mother around (evolved
behavior) but that requires recognizing her (learned ability). If you’re the
first thing they see when they hatch, they’ll follow you instead, as Konrad
Lorenz memorably showed. The newborn brain already encodes features of
the environment but not explicitly; rather, evolution optimized it to extract
those features from the expected input. Likewise, in an algorithm that
iteratively learns both structure and weights, each new structure is
implicitly a function of the weights learned in previous rounds.

Of all the possible genomes, very few correspond to viable organisms.
The typical fitness landscape thus consists of vast flatlands with occasional
sharp peaks, making evolution very hard. If you start out blindfolded in
Kansas, you have no idea which way the Rockies lie, and you’ll wander
around for a long time before you bump into their foothills and start
climbing. But if you combine evolution with neural learning, something
interesting happens. If you’re on flat ground, but not too far from the
foothills, neural learning can get you there, and the closer you are to the
foothills, the more likely it will. It’s like being able to scan the horizon: it
won’t help you in Wichita, but in Denver you’ll see the Rockies in the
distance and head that way. Denver now looks a lot fitter than it did when
you were blindfolded. The net effect is to widen the fitness peaks, making it
possible for you to find your way to them from previously very tough
places, like point A in this graph:



In biology, this is called the Baldwin effect, after J. M. Baldwin, who
proposed it in 1896. In Baldwinian evolution, behaviors that are first
learned later become genetically hardwired. If dog-like mammals can learn
to swim, they have a better chance to evolve into seals—as they did—than
if they drown. Thus individual learning can influence evolution without
recourse to Lamarckism. Geoff Hinton and Steven Nowlan demonstrated
the Baldwin effect in machine learning by using genetic algorithms to
evolve neural network structure and observing that fitness increased over
time only when individual learning was allowed.

He who learns fastest wins

Evolution searches for good structures, and neural learning fills them in:
this combination is the easiest of the steps we’ll take toward the Master
Algorithm. This may come as a surprise to anyone familiar with the never-
ending twists and turns of the nature versus nurture controversy, 2,500 years
old and still going strong. Seeing life through the eyes of a computer
clarifies a lot of things, however. “Nature” for a computer is the program it
runs, and “nurture” is the data it gets. The question of which one is more
important is clearly absurd; there’s no output without both program and
data, and it’s not like the output is, say, 60 percent caused by the program
and 40 percent by the data. That’s the kind of linear thinking that a
familiarity with machine learning immunizes you against.

On the other hand, you may be wondering why we’re not done at this
point. Surely if we’ve combined nature’s two master algorithms, evolution
and the brain, that’s all we could ask for. Unfortunately, what we have so far
is only a very crude cartoon of how nature learns, good enough for a lot of
applications but still a pale shadow of the real thing. For example, the



development of the embryo is a crucial part of life, but there’s no analog of
it in machine learning: the “organism” is a very straightforward function of
the genome, and we may be missing something important there. But another
reason is that we wouldn’t be satisfied even if we had completely figured
out how nature learns. For one thing, it’s too slow. Evolution takes billions
of years to learn, and the brain takes a lifetime. Culture is better: I can distill
a lifetime of learning into a book, and you can read it in a few hours. But
learning algorithms should be able to learn in minutes or seconds. He who
learns fastest wins, whether it’s the Baldwin effect speeding up evolution,
verbal communication speeding up human learning, or computers
discovering patterns at the speed of light. Machine learning is the latest
chapter in the arms race of life on Earth, and swifter hardware is only half
the equation. The other half is smarter software.

Most of all, the goal of machine learning is to find the best possible
learning algorithm, by any means available, and evolution and the brain are
unlikely to provide it. The products of evolution have many obvious faults.
For example, the mammalian optic nerve attaches to the front of the retina
instead of the back, causing an unnecessary—and egregious—blind spot
right next to the fovea, the area of sharpest vision.

The molecular biology of living cells is such a mess that molecular
biologists often quip that only people who don’t know any of it could
believe in intelligent design. The architecture of the brain may well have
similar faults—the brain has many constraints that computers don’t, like
very limited short-term memory—and there’s no reason to stay within them.
Moreover, we know of many situations where humans seem to consistently
do the wrong thing, as Daniel Kahneman illustrates at length in his book
Thinking, Fast and Slow.

In contrast to the connectionists and evolutionaries, symbolists and
Bayesians do not believe in emulating nature. Rather, they want to figure
out from first principles what learners should do—and that includes us
humans. If we want to learn to diagnose cancer, for example, it’s not
enough to say “this is how nature learns; let’s do the same.” There’s too
much at stake. Errors cost lives. Doctors should diagnose in the most
foolproof way they can, with methods similar to those mathematicians use
to prove theorems, or as close to that as they can manage, given that it’s
seldom possible to be that rigorous. They need to weigh the evidence to



minimize the chances of a wrong diagnosis; or more precisely, so that the
costlier an error is, the less likely they are to make it. (For example, failing
to find a tumor that’s really there is potentially much worse than inferring
one that isn’t.) They need to make optimal decisions, not just decisions that
seem good.

This is an instance of a tension that runs throughout much of science
and philosophy: the split between descriptive and normative theories,
between “this is how it is” and “this is how it should be.” Symbolists and
Bayesians like to point out, however, that figuring out how we should learn
can also help us to understand how we do learn because the two are
presumably not entirely unrelated—far from it. In particular, behaviors that
are important for survival and have had a long time to evolve should not be
far from optimal. We’re not very good at answering written questions about
probabilities, but we are very good at instantly choosing hand and arm
movements to hit a target. Many psychologists have used symbolist or
Bayesian models to explain aspects of human behavior. Symbolists
dominated the first few decades of cognitive psychology. In the 1980s and
1990s, connectionists held sway, but now Bayesians are on the rise.

For the hardest problems—the ones we really want to solve but haven’t
been able to, like curing cancer—pure nature-inspired approaches are
probably too uninformed to succeed, even given massive amounts of data.
We can in principle learn a complete model of a cell’s metabolic networks
by a combination of structure search, with or without crossover, and
parameter learning via backpropagation, but there are too many bad local
optima to get stuck in. We need to reason with larger chunks, assembling
and reassembling them as needed and using inverse deduction to fill in the
gaps. And we need our learning to be guided by the goal of optimally
diagnosing cancer and finding the best drugs to cure it.

Optimal learning is the Bayesians’ central goal, and they are in no doubt
that they’ve figured out how to reach it. This way, please . . .



CHAPTER SIX

In the Church of the Reverend Bayes

The dark hulk of the cathedral rises from the night. Light pours from its
stained-glass windows, projecting intricate equations onto the streets and
buildings beyond. As you approach, you can hear chanting inside. It seems
to be Latin, or perhaps math, but the Babel fish in your ear translates it into
English: “Turn the crank! Turn the crank!” Just as you enter, the chant
dissolves into an “Aaaah!” of satisfaction, and a murmur of “The posterior!
The posterior!” You peek through the crowd. A massive stone tablet towers
above the altar with a formula engraved on it in ten-foot letters:

P(A|B) = P(A) P(B|A) / P(B)

As you stare uncomprehendingly at it, your Google Glass helpfully
flashes: “Bayes’ theorem.” Now the crowd starts to chant “More data! More
data!” A stream of sacrificial victims is being inexorably pushed toward the
altar. Suddenly, you realize that you’re in the middle of it—too late. As the
crank looms over you, you scream, “No! I don’t want to be a data point! Let
me gooooo!”

You wake up in a cold sweat. Lying on your lap is a book entitled The
Master Algorithm. Shaking off the nightmare, you resume reading where
you had left off.



The theorem that runs the world

The path to optimal learning begins with a formula that many people have
heard of: Bayes’ theorem. But here we’ll see it in a whole new light and
realize that it’s vastly more powerful than you’d guess from its everyday
uses. At heart, Bayes’ theorem is just a simple rule for updating your degree
of belief in a hypothesis when you receive new evidence: if the evidence is
consistent with the hypothesis, the probability of the hypothesis goes up; if
not, it goes down. For example, if you test positive for AIDS, your
probability of having it goes up. Things get more interesting when you have
many pieces of evidence, such as the results of multiple tests. To combine
them all without suffering a combinatorial explosion, we need to make
simplifying assumptions. Things get even more interesting when we
consider many hypotheses at once, such as all the different possible
diagnoses for a patient. Computing the probability of each disease from the
patient’s symptoms in a reasonable amount of time can take a lot of smarts.
Once we know how to do all these things, we’ll be ready to learn the
Bayesian way. For Bayesians, learning is “just” another application of
Bayes’ theorem, with whole models as the hypotheses and the data as the
evidence: as you see more data, some models become more likely and some
less, until ideally one model stands out as the clear winner. Bayesians have
invented fiendishly clever kinds of models. So let’s get started.

Thomas Bayes was an eighteenth-century English clergyman who,
without realizing it, became the center of a new religion. You may well ask
how that could happen, until you notice that it happened to Jesus, too:
Christianity as we know it was invented by Saint Paul, while Jesus saw
himself as the pinnacle of the Jewish faith. Similarly, Bayesianism as we
know it was invented by Pierre-Simon de Laplace, a Frenchman who was
born five decades after Bayes. Bayes was the preacher who first described a
new way to think about chance, but it was Laplace who codified those
insights into the theorem that bears Bayes’s name.

One of the greatest mathematicians of all time, Laplace is perhaps best
known for his dream of Newtonian determinism:



An intelligence that, at a given instant, could comprehend all the
forces by which nature is animated and the respective situation of
the beings that make it up, if moreover it were vast enough to submit
these data to analysis, would encompass in the same formula the
movements of the greatest bodies of the universe and those of the
lightest atoms. For such an intelligence nothing would be uncertain,
and the future, like the past, would be open to its eyes.

This is ironic, since Laplace was also the father of probability theory,
which he believed was just common sense reduced to calculation. At the
heart of his explorations in probability was a preoccupation with Hume’s
question. For example, how do we know the sun will rise tomorrow? It has
done so every day until today, but that’s no guarantee it will continue.
Laplace’s answer had two parts. The first is what we now call the principle
of indifference, or principle of insufficient reason. We wake up one day—at
the beginning of time, let’s say, which for Laplace was five thousand years
or so ago—and after a beautiful afternoon, we see the sun go down. Will it
come back? We’ve never seen the sun rise, and there is no particular reason
to believe it will or won’t. Therefore we should consider the two scenarios
equally likely and say that the sun will rise again with a probability of one-
half. But, Laplace went on, if the past is any guide to the future, every day
that the sun rises should increase our confidence that it will continue to do
so. After five thousand years, the probability that the sun will rise yet again
tomorrow should be very close to one, but not quite there, since we can
never be completely certain. From this thought experiment, Laplace derived
his so-called rule of succession, which estimates the probability that the sun
will rise again after having risen n times as (n + 1) / (n + 2). When n = 0,
this is just ½; and as n increases, so does the probability, approaching 1
when n approaches infinity.

This rule arises from a more general principle. Suppose you awake in
the middle of the night on a strange planet. Even though all you can see is
the starry sky, you have reason to believe that the sun will rise at some
point, since most planets revolve around themselves and their sun. So your
estimate of the corresponding probability should be greater than one-half
(two-thirds, say). We call this the prior probability that the sun will rise,
since it’s prior to seeing any evidence. It’s not based on counting the



number of times the sun has risen on this planet in the past, because you
weren’t there to see it; rather, it reflects your a priori beliefs about what will
happen, based on your general knowledge of the universe. But now the stars
start to fade, so your confidence that the sun does rise on this planet goes
up, based on your experience on Earth. Your confidence is now a posterior
probability, since it’s after seeing some evidence. The sky begins to lighten,
and the posterior probability takes another leap. Finally, a sliver of the sun’s
bright disk appears above the horizon and perhaps catches “the Sultan’s
turret in a noose of light,” as in the opening verse of the Rubaiyat. Unless
you’re hallucinating, it is now certain that the sun will rise.

The crucial question is exactly how the posterior probability should
evolve as you see more evidence. The answer is Bayes’ theorem. We can
think of it in terms of cause and effect. Sunrise causes the stars to fade and
the sky to lighten, but the latter is stronger evidence of daybreak, since the
stars could fade in the middle of the night due to, say, fog rolling in. So the
probability of sunrise should increase more after seeing the sky lighten than
after seeing the stars fade. In mathematical notation, we say that P(sunrise |
lightening-sky), the conditional probability of sunrise given that the sky is
lightening, is greater than P(sunrise | fading-stars), its conditional
probability given that the stars are fading. According to Bayes’ theorem, the
more likely the effect is given the cause, the more likely the cause is given
the effect: if P(lightening-sky | sunrise) is higher than P(fading-stars |
sunrise), perhaps because some planets are far enough from their sun that
the stars still shine after sunrise, then P(sunrise | lightening sky) is also
higher than P(sunrise | fading-stars).

This is not the whole story, however. If we observe an effect that would
happen even without the cause, then surely that’s not much evidence of the
cause being present. Bayes’ theorem incorporates this by saying that
P(cause | effect) goes down with P(effect), the prior probability of the effect
(i.e., its probability in the absence of any knowledge of the causes). Finally,
other things being equal, the more likely a cause is a priori, the more likely
it should be a posteriori. Putting all of these together, Bayes’ theorem says
that

P(cause | effect) = P(cause) × P(effect | cause) / P(effect).



Replace cause by A and effect by B and omit the multiplication sign for
brevity, and you get the ten-foot formula in the cathedral.

That’s just a statement of the theorem, not a proof, of course. But the
proof is surprisingly simple. We can illustrate it with an example from
medical diagnosis, one of the “killer apps” of Bayesian inference. Suppose
you’re a doctor, and you’ve diagnosed a hundred patients in the last month.
Fourteen of them had the flu, twenty had a fever, and eleven had both. The
conditional probability of fever given flu is therefore eleven out of fourteen,
or 11/14. Conditioning reduces the size of the universe that we’re
considering, in this case from all patients to only patients with the flu. In the
universe of all patients, the probability of fever is 20/100; in the universe of
flu-stricken patients, it’s 11/14. The probability that a patient has the flu and
a fever is the fraction of patients that have the flu times the fraction of those
that have a fever: P(flu, fever) = P(flu) × P(fever | flu) = 14/100 × 11/14 =
11/100. But we could equally well have done this the other way around:
P(flu, fever) = P(fever) × P(flu | fever). Therefore, since they’re both equal
to P(flu,fever), P(fever) × P(flu | fever) = P(flu) × P(fever | flu). Divide
both sides by P(fever), and you get P(flu | fever) = P(flu) × P(fever | flu) /
P(fever). That’s it! That’s Bayes’ theorem, with flu as the cause and fever as
the effect.

Humans, it turns out, are not very good at Bayesian inference, at least
when verbal reasoning is involved. The problem is that we tend to neglect
the cause’s prior probability. If you test positive for HIV, and the test only
gives 1 percent false positives, should you panic? At first sight, it seems
like your chances of having AIDS are now 99 percent. Yikes! But let’s keep
a cool head and apply Bayes’ theorem step-by-step: P(HIV | positive) =
P(HIV) × P(positive | HIV) / P(positive). P(HIV) is the prevalence of HIV
in the general population, which is about 0.3 percent in the United States.
P(positive) is the probability that the test comes out positive whether or not
you have AIDS; let’s say that’s 1 percent. So P(HIV | positive) = 0.003 ×
0.99 / 0.01 = 0.297. That’s very different from 0.99! The reason is that HIV
is rare in the general population. The test coming out positive increases
your chances of having AIDS by two orders of magnitude, but they’re still
less than half. If you test positive for HIV, the right thing to do is to stay
calm and take another, more definitive test. Chances are you’ll be fine.



Bayes’ theorem is useful because what we usually know is the
probability of the effects given the causes, but what we want to know is the
probability of the causes given the effects. For example, we know what
percentage of flu patients have a fever, but what we really want to know is
how likely a patient with a fever is to have the flu. Bayes’ theorem lets us
go from one to the other. Its significance extends far beyond that, however.
For Bayesians, this innocent-looking formula is the F = ma of machine
learning, the foundation from which a vast number of results and
applications flow. And whatever the Master Algorithm is, it must be “just”
a computational implementation of Bayes’ theorem. I put just in quotes
because implementing Bayes’ theorem on a computer turns out to be
fiendishly hard for all but the simplest problems, for reasons that we’re
about to see.

Bayes’ theorem as a foundation for statistics and machine learning is
bedeviled not just by computational difficulty but also by extreme
controversy. You might be forgiven for wondering why: Isn’t it a
straightforward consequence of the notion of conditional probability, as we
saw in the flu example? Indeed, no one has a problem with the formula
itself. The controversy is in how Bayesians obtain the probabilities that go
into it and what those probabilities mean. For most statisticians, the only
legitimate way to estimate probabilities is by counting how often the
corresponding events occur. For example, the probability of fever is 0.2
because twenty out of one hundred observed patients had it. This is the
“frequentist” interpretation of probability, and the dominant school of
thought in statistics takes its name from it. But notice that in the sunrise
example, and in Laplace’s principle of indifference, we did something
different: we pulled a probability out of thin air. What exactly justifies
assuming a priori that the probability the sun will rise is one-half, or two-
thirds, or whatever? Bayesians’ answer is that a probability is not a
frequency but a subjective degree of belief. Therefore it’s up to you what
you make it, and all that Bayesian inference lets you do is update your prior
beliefs with new evidence to obtain your posterior beliefs (also known as
“turning the Bayesian crank”). Bayesians’ devotion to this idea is near
religious, enough to withstand two hundred years of attacks and counting.
And with the appearance on the stage of computers powerful enough to do



Bayesian inference, and the massive data sets to go with it, they’re
beginning to gain the upper hand.

All models are wrong, but some are useful

In reality, a doctor doesn’t diagnose the flu just based on whether you have
a fever; she takes a whole bunch of symptoms into account, including
whether you have a cough, a sore throat, a runny nose, a headache, chills,
and so on. So what we really need to compute is P(flu | fever, cough, sore
throat, runny nose, headache, chills, . . . ). By Bayes’ theorem, we know
that this is proportional to P(fever, cough, sore throat, runny nose,
headache, chills, . . .| flu). But now we run into a problem. How are we
supposed to estimate this probability? If each symptom is a Boolean
variable (you either have it or you don’t) and the doctor takes n symptoms
into account, a patient could have 2n possible combinations of symptoms. If
we have, say, twenty symptoms and a database of ten thousand patients,
we’ve only seen a small fraction of the roughly one million possible
combinations. Worse still, to accurately estimate the probability of a
particular combination, we need at least tens of observations of it, meaning
the database would need to include tens of millions of patients. Add another
ten symptoms, and we’d need more patients than there are people on Earth.
With a hundred symptoms, even if we were somehow able to magically get
the data, there wouldn’t be enough space on all the hard disks in the world
to store all the probabilities. And if a patient walks in with a combination of
symptoms we haven’t seen before, we won’t know how to diagnose him.
We’re face-to-face with our old foe: the combinatorial explosion.

Therefore we do what we always have to do in life: compromise. We
make simplifying assumptions that whittle the number of probabilities we
have to estimate down to something manageable. A very simple and
popular assumption is that all the effects are independent given the cause.
This means that, for example, having a fever doesn’t change how likely you
are to also have a cough, if we already know you have the flu.
Mathematically, this is saying that P(fever, cough | flu) is just P(fever | flu)
× P(cough | flu). Lo and behold: each of these is easy to estimate from a



small number of observations. In fact, we did it for fever in the previous
section, and it would be no different for cough or any other symptom. The
number of observations we need no longer goes up exponentially with the
number of symptoms; in fact, it doesn’t go up at all.

Notice that we’re only saying that fever and cough are independent
given that you have the flu, not overall. Clearly, if we don’t know whether
you have the flu, fever and cough are highly correlated, since you’re much
more likely to have a cough if you already have a fever. P(fever, cough) is
not equal to P(fever) × P(cough). All we’re saying is that, if we know you
have the flu, knowing whether you have a fever gives us no additional
information about whether you have a cough. Likewise, if you don’t know
the sun is about to rise and you see the stars fade, your expectation that the
sky will lighten increases; but if you already know that sunrise is imminent,
seeing the stars fade makes no difference.

Notice also that it’s only thanks to Bayes’ theorem that we were able to
pull off this trick. If we wanted to directly estimate P(flu | fever, cough,
etc.), without first turning it into P(fever, cough, etc. | flu) using the
theorem, we’d still need an exponential number of probabilities, one for
each combination of symptoms and flu/not flu.

A learner that uses Bayes’ theorem and assumes the effects are
independent given the cause is called a Naïve Bayes classifier. That’s
because, well, that’s such a naïve assumption. In reality, having a fever
makes having a cough more likely, even if you already know you have the
flu, because (for example) it makes you more likely to have a bad flu. But
machine learning is the art of making false assumptions and getting away
with it. As the statistician George Box famously put it: “All models are
wrong, but some are useful.” An oversimplified model that you have
enough data to estimate is better than a perfect one that you don’t. It’s
astonishing how simultaneously very wrong and very useful some models
can be. The economist Milton Friedman even argued in a highly influential
essay that the best theories are the most oversimplified, provided their
predictions are accurate, because they explain the most with the least. That
seems to me like a bridge too far, but it illustrates that, counter to Einstein’s
dictum, science often progresses by making things as simple as possible,
and then some.



No one is sure who invented the Naïve Bayes algorithm. It was
mentioned without attribution in a 1973 pattern recognition textbook, but it
only took off in the 1990s, when researchers noticed that, surprisingly, it
was often more accurate than much more sophisticated learners. I was a
graduate student at the time, and when I belatedly decided to include Naïve
Bayes in my experiments, I was shocked to find it did better than all the
other algorithms I was comparing, save one—luckily, the algorithm I was
developing for my thesis, or I might not be here now.

Naïve Bayes is now very widely used. For example, it forms the basis of
many spam filters. It all began when David Heckerman, a prominent
Bayesian researcher who is also a medical doctor, had the idea of treating
spam as a disease whose symptoms are the words in the e-mail: Viagra is a
symptom, and so is free, but your best friend’s first name probably signals a
legit e-mail. We can then use Naïve Bayes to classify e-mails into spam and
nonspam, provided spammers generate e-mails by picking words at random.
That’s a ridiculous assumption, of course: it would only be true if sentences
had no syntax and no content. But that summer Mehran Sahami, then a
Stanford graduate student, tried it out during an internship at Microsoft
Research, and it worked great. When Bill Gates asked Heckerman how this
could be, he pointed out that to identify spam you don’t need to understand
the details of the message; it’s enough to get the gist of it by seeing which
words it contains.

A basic search engine also uses an algorithm quite similar to Naïve
Bayes to decide which web pages to return in answer to your query. The
main difference is that, instead of spam/not-spam, it’s trying to predict
relevant/not-relevant. The list of prediction problems Naïve Bayes has been
applied to is practically endless. Peter Norvig, director of research at
Google, told me at one point that it was the most widely used learner there,
and Google uses machine learning in every nook and cranny of what it
does. It’s not hard to see why Naïve Bayes would be popular among
Googlers. Surprising accuracy aside, it scales great; learning a Naïve Bayes
classifier is just a matter of counting how many times each attribute co-
occurs with each class and takes barely longer than reading the data from
disk.

You could even use Naïve Bayes, tongue-in-cheek, on a much larger
scale than Google’s: to model the whole universe. Indeed, if you believe in



an omnipotent God, then you can model the universe as a vast Naïve Bayes
distribution where everything that happens is independent given God’s will.
The catch, of course, is that we can’t read God’s mind, but in Chapter 8
we’ll investigate how to learn Naïve Bayes models even when we don’t
know the classes of the examples.

It might not seem so at first, but Naïve Bayes is closely related to the
perceptron algorithm. The perceptron adds weights and Naïve Bayes
multiplies probabilities, but if you take a logarithm, the latter reduces to the
former. Both can be seen as generalizations of simple If . . . then . . . rules,
where each antecedent can count more or less toward the conclusion instead
of being “all or none.” This is just one example of the deeper connections
among learners that hint at a Master Algorithm. You may not consciously
know Bayes’ theorem (well, now you do), but in a way every one of the ten
billion neurons in your brain is a tiny instance of it.

Naïve Bayes is a good conceptual model of a learner to use when
reading the press: it captures the pairwise correlation between each input
and the output, which is often all that’s needed to understand references to
learning algorithms in news stories. But machine learning is not just
pairwise correlations, of course, any more than the brain is just one neuron.
The real action begins when we look for more complex patterns.

From Eugene Onegin to Siri

In 1913, on the eve of World War I, the Russian mathematician Andrei
Markov published a paper applying probability to, of all things, poetry. In
it, he modeled a classic of Russian literature, Pushkin’s Eugene Onegin,
using what we now call a Markov chain. Rather than assume that each letter
was generated at random independently of the rest, he introduced a bare
minimum of sequential structure: he let the probability of each letter depend
on the letter immediately preceding it. He showed that, for example, vowels
and consonants tend to alternate, so if you see a consonant, the next letter
(ignoring punctuation and white space) is much more likely to be a vowel
than it would be if letters were independent. This may not seem like much,
but in the days before computers, it required spending hours manually
counting characters, and Markov’s idea was quite new. If Voweli is a



Boolean variable that’s true if the ith letter of Eugene Onegin is a vowel and
false if it’s a consonant, we can represent Markov’s model with a chain-like
graph like this, with an arrow between two nodes indicating a direct
dependency between the corresponding variables:

Markov assumed (wrongly but usefully) that the probabilities are the same
at every position in the text. Thus we need to estimate only three
probabilities: P(Vowel1 = True), P(Voweli+1 = True | Voweli = True), and
P(Voweli+1 = True | Voweli = False). (Since probabilities sum to one, from
these we can immediately obtain P(Vowel1 = False), etc.) As with Naïve
Bayes, we can have as many variables as we want without the number of
probabilities we need to estimate going through the roof, but now the
variables actually depend on each other.

If we measure not just the probability of vowels versus consonants, but
the probability of each letter in the alphabet following each other, we can
have fun generating new texts with the same statistics as Onegin: choose
the first letter, then choose the second based on the first, and so on. The
result is complete gibberish, of course, but if we let each letter depend on
several previous letters instead of just one, it starts to sound more like the
ramblings of a drunkard, locally coherent even if globally meaningless. Still
not enough to pass the Turing test, but models like this are a key component
of machine-translation systems, like Google Translate, which lets you see
the whole web in English (or almost), regardless of the language the pages
were originally written in.

PageRank, the algorithm that gave rise to Google, is itself a Markov
chain. Larry Page’s idea was that web pages with many incoming links are
probably more important than pages with few, and links from important
pages should themselves count for more. This sets up an infinite regress,
but we can handle it with a Markov chain. Imagine a web surfer going from
page to page by randomly following links: the states of this Markov chain
are web pages instead of characters, making it a vastly larger problem, but
the math is the same. A page’s score is then the fraction of the time the



surfer spends on it, or equivalently, his probability of landing on the page
after wandering around for a long time.

Markov chains turn up everywhere and are one of the most intensively
studied topics in mathematics, but they’re still a very limited kind of
probabilistic model. We can go one step further with a model like this:

The states form a Markov chain, as before, but we don’t get to see them; we
have to infer them from the observations. This is called a hidden Markov
model, or HMM for short. (Slightly misleading, because it’s the states that
are hidden, not the model.) HMMs are at the heart of speech-recognition
systems like Siri. In speech recognition, the hidden states are written words,
the observations are the sounds spoken to Siri, and the goal is to infer the
words from the sounds. The model has two components: the probability of
the next word given the current one, as in a Markov chain, and the
probability of hearing various sounds given the word being pronounced.
(How exactly to do the inference is a fascinating problem that we’ll turn to
after the next section.)

Siri aside, you use an HMM every time you talk on your cell phone.
That’s because your words get sent over the air as a stream of bits, and the
bits get corrupted in transit. The HMM then figures out the intended bits
(hidden state) from the ones received (observations), which it should be
able to do as long as not too many bits got mangled.

HMMs are also a favorite tool of computational biologists. A protein is
a sequence of amino acids, and DNA is a sequence of bases. If we want to
predict, for example, how a protein will fold into a 3-D shape, we can treat
the amino acids as the observations and the type of fold at each point as the
hidden state. Similarly, we can use an HMM to identify the sites in DNA
where gene transcription is initiated and many other properties.



If the states and observations are continuous variables instead of
discrete ones, the HMM becomes what’s known as a Kalman filter.
Economists use Kalman filters to remove noise from time series of
quantities like GDP, inflation, and unemployment. The “true” GDP values
are the hidden states; at each time step, the true value should be similar to
the observed one, but also to the previous true value, since the economy
seldom makes abrupt jumps. The Kalman filter trades off these two,
yielding a smoother curve that still accords with the observations. When a
missile cruises to its target, it’s a Kalman filter that keeps it on track.
Without it, there would have been no man on the moon.

Everything is connected, but not directly

HMMs are good for modeling sequences of all kinds, but they’re still a far
cry from the flexibility of the symbolists’ If . . . then . . . rules, where
anything can appear as an antecedent, and a rule’s consequent can in turn be
an antecedent in any downstream rule. If we allow such an arbitrary
structure in practice, however, the number of probabilities we need to learn
blows up. For a long time no one knew how to square this circle, and
researchers resorted to ad-hoc schemes, like attaching confidence estimates
to rules and somehow combining them. If A implies B with confidence 0.8
and B implies C with confidence 0.7, then perhaps A implies C with
confidence 0.8 × 0.7.

The problem with these schemes is that they can go badly awry. From
the two perfectly reasonable rules If the sprinkler is on, then the grass is wet
and If the grass is wet, then it rained, I can infer the nonsensical rule If the
sprinkler is on, then it rained. A more insidious problem is that with
confidence-rated rules we’re prone to double-counting evidence. Suppose
you read in the New York Times that aliens have landed. Maybe it’s a prank,
even though it’s not April 1. But now you see the same headline in the Wall
Street Journal, USA Today, and the Washington Post. You start to panic, like
the listeners to Orson Welles’s infamous War of the Worlds radio broadcast
who didn’t realize it was a dramatization. If, however, you check the fine
print and notice that all four newspapers got the story from the Associated
Press, you go back to suspecting it’s a prank, this time by an AP reporter.



Rule systems have no way of dealing with this, and neither does Naïve
Bayes. If it uses features like Reported in the New York Times as predictors
that a news story is true, all it can do is add Reported by AP, which only
makes things worse.

The breakthrough came in the early 1980s, when Judea Pearl, a
professor of computer science at the University of California, Los Angeles,
invented a new representation: Bayesian networks. Pearl is one of the most
distinguished computer scientists in the world, his methods having swept
through machine learning, AI, and many other fields. He won the Turing
Award, the Nobel Prize of computer science, in 2012.

Pearl realized that it’s OK to have a complex network of dependencies
among random variables, provided each variable depends directly on only a
few others. We can represent these dependencies with a graph like the ones
we saw for Markov chains and HMMs, except now the graph can have any
structure (as long as the arrows don’t form closed loops). One of Pearl’s
favorite examples is burglar alarms. The alarm at your house should go off
if a burglar attempts to break in, but it could also be triggered by an
earthquake. (In Los Angeles, where Pearl lives, earthquakes are almost as
frequent as burglaries.) If you’re working late one night and your neighbor
Bob calls to say he just heard your alarm go off, but your neighbor Claire
doesn’t, should you call the police? Here’s the graph of dependencies:

If there’s an arrow from one node to another in the graph, we say that the
first node is a parent of the second. So Alarm’s parents are Burglary and
Earthquake, and Alarm is the sole parent of Bob calls and Claire calls. A
Bayesian network is a graph of dependencies like this, together with a table
for each variable, giving its probability for each combination of values of its
parents. For Burglary and Earthquake we only need one probability each,



since they have no parents. For Alarm we need four: the probability that it
goes off even if there’s no burglary or earthquake, the probability that it
goes off if there’s a burglary and no earthquake, and so on. For Bob calls
we need two probabilities (given alarm and given no alarm), and similarly
for Claire.

Here’s the crucial point: Bob calling depends on Burglary and
Earthquake, but only through Alarm. Bob’s call is conditionally
independent of Burglary and Earthquake given Alarm, and so is Claire’s. If
the alarm doesn’t go off, your neighbors sleep soundly, and the burglar
proceeds undisturbed. Also, Bob and Claire are independent given Alarm.
Without this independence structure, you’d need to learn 25 = 32
probabilities, one for each possible state of the five variables. (Or 31, if
you’re a stickler for details, since the last one can be left implicit.) With the
conditional independencies, all you need is 1 + 1 + 4 + 2 + 2 = 10, a savings
of 68 percent. And that’s just in this tiny example; with hundreds or
thousands of variables, the savings would be very close to 100 percent.

The first law of ecology, according to biologist Barry Commoner, is that
everything is connected to everything else. That may be true, but it would
also make the world impossible to understand, if not for the saving grace of
conditional independence: everything is connected, but only indirectly. In
order to affect me, something that happens a mile away must first affect
something in my neighborhood, even if only through the propagation of
light. As one wag put it, space is the reason everything doesn’t happen to
you. Put another way, the structure of space is an instance of conditional
independence.

In the burglary example, the full table of thirty-two probabilities is
never represented explicitly, but it’s implicit in the collection of smaller
tables and graph structure. To obtain P(Burglary, Earthquake, Alarm, Bob
calls, Claire calls), all I have to do is multiply P(Burglary), P(Earthquake),
P(Alarm | Burglary, Earthquake), P(Bob calls | Alarm), and P(Claire calls |
Alarm). It’s the same in any Bayesian network: to obtain the probability of a
complete state, just multiply the probabilities from the corresponding lines
in the individual variables’ tables. So, provided the conditional
independencies hold, no information is lost by switching to the more
compact representation. And in this way we can easily compute the



probabilities of extremely unusual states, including states that were never
observed before. Bayesian networks give the lie to the common
misconception that machine learning can’t predict very rare events, or
“black swans,” as Nassim Taleb calls them.

In retrospect, we can see that Naïve Bayes, Markov chains, and HMMs
are all special cases of Bayesian networks. The structure of Naïve Bayes is:

Markov chains encode the assumption that the future is conditionally
independent of the past given the present. HMMs assume in addition that
each observation depends only on the corresponding state. Bayesian
networks are for Bayesians what logic is for symbolists: a lingua franca that
allows us to elegantly encode a dizzying variety of situations and devise
algorithms that work uniformly in all of them.

We can think of a Bayesian network as a “generative model,” a recipe
for probabilistically generating a state of the world: first decide
independently whether there’s a burglary and/or an earthquake, then based
on that decide whether the alarm goes off, and then based on that whether
Bob and Claire call. A Bayesian network tells a story: A happened, and it
led to B; at the same time, C also happened, and B and C together caused D.
To compute the probability of a particular story, we just multiply the
probabilities of all of its different strands.

One of the most exciting applications of Bayesian networks is modeling
how genes regulate each other in living cells. Billions of dollars have been
spent trying to discover pairwise correlations between individual genes and
specific diseases, but the yield has been disappointingly low. In retrospect,
this is not so surprising: a cell’s behavior is the result of complex
interactions among genes and the environment, and a single gene has
limited predictive power. But with Bayesian networks, we can uncover



these interactions, provided we have the requisite data, and with the spread
of DNA microarrays, we increasingly do.

After pioneering the application of machine learning to spam filtering,
David Heckerman turned to using Bayesian networks in the fight against
AIDS. The AIDS virus is a tough adversary because it mutates rapidly,
making it difficult for any one vaccine or drug to pin it down for long.
Heckerman noticed that this is the same cat-and-mouse game that spam
filters play with spam and decided to apply a lesson he had learned there:
attack the weakest link. In the case of spam, weak links include the URLs
you have to use to take payment from the customer. In the case of HIV,
they’re small regions of the virus protein that can’t change without hurting
the virus. If he could train the immune system to recognize these regions
and attack the cells displaying them, he just might have an AIDS vaccine.
Heckerman and coworkers used a Bayesian network to help identify the
vulnerable regions and developed a vaccine delivery mechanism that could
teach the immune system to attack just those regions. The delivery
mechanism worked in mice, and clinical trials are now in preparation.

It often happens that, even after we take all conditional independences
into account, some nodes in a Bayesian network still have too many
parents. Some networks are so dense with arrows that when we print them,
the page turns solid black. (The physicist Mark Newman calls them
“ridiculograms.”) A doctor needs to simultaneously diagnose all the
possible diseases a patient could have, not just one, and every disease is a
parent of many different symptoms. A fever could be caused by any number
of conditions besides the flu, but it’s hopeless to try to predict its probability
given every possible combination of conditions. All is not lost. Instead of a
table specifying the node’s conditional probability for every state of its
parents, we can learn a simpler distribution. The most popular choice is a
probabilistic version of the logical OR operation: any cause alone can
provoke a fever, but each cause has a certain probability of failing to do so,
even if it’s usually sufficient. Heckerman and others have learned Bayesian
networks that diagnose hundreds of infectious diseases in this way. Google
uses a giant Bayesian network of this type in its AdSense system for
automatically choosing ads to place on web pages. The network relates a
million content variables to each other and to twelve million words and



phrases via over three hundred million arrows, all learned from a hundred
billion text snippets and search queries.

On a lighter note, Microsoft’s Xbox Live uses a Bayesian network to
rate players and match players of similar skill. The outcome of a game is a
probabilistic function of the opponents’ skill levels, and using Bayes’
theorem we can infer a player’s skill from the outcomes of his games.

The inference problem

There’s a big snag in all of this, unfortunately. Just because a Bayesian
network lets us compactly represent a probability distribution doesn’t mean
we can also reason efficiently with it. Suppose you want to compute
P(Burglary | Bob called, Claire didn’t). By Bayes’ theorem, you know this
is just P(Burglary) P(Bob called, Claire didn’t | Burglary) / P(Bob called,
Claire didn’t), or equivalently, P(Burglary, Bob called, Claire didn’t) /
P(Bob called, Claire didn’t). If you had the full table with the probabilities
of all states, you could obtain both of these probabilities by adding up the
corresponding lines in the table. For example, P(Bob called, Claire didn’t)
is the sum of the probabilities of all the lines where Bob calls and Claire
doesn’t. But the Bayesian network doesn’t give you the full table. You
could always construct it from the individual tables, but that takes
exponential time and space. What we really want is to compute P(Burglary
| Bob called, Claire didn’t) without building the full table. That, in a
nutshell, is the problem of inference in Bayesian networks.

In many cases we can do this and avoid the exponential blowup.
Suppose you’re leading a platoon in single file through enemy territory in
the dead of night, and you want to make sure that all your soldiers are still
with you. You could stop and count them yourself, but that wastes too much
time. A cleverer solution is to just ask the first soldier behind you: “How
many soldiers are behind you?” Each soldier asks the next the same
question, until the last one says “None.” The next-to-last soldier can now
say “One,” and so on all the way back to the first soldier, with each soldier
adding one to the number of soldiers behind him. Now you know how
many soldiers are still with you, and you didn’t even have to stop.



Siri uses the same idea to compute the probability that you just said,
“Call the police” from the sounds it picked up from the microphone. Think
of “Call the police” as a platoon of words marching across the page in
single file. Police wants to know its probability, but for that it needs to
know the probability of the; and the in turn needs to know the probability of
call. So call computes its probability and passes it on to the, which does the
same and passes the result to police. Now police knows its probability, duly
influenced by every word in the sentence, but we never had to construct the
full table of eight possibilities (the first word is call or isn’t, the second is
the or isn’t, and the third is police or isn’t). In reality, Siri considers all
words that could appear in each position, not just whether the first word is
call or not and so on, but the algorithm is the same. Perhaps Siri thinks,
based on the sounds, that the first word was either call or tell, the second
was the or her, and the third was police or please. Individually, perhaps the
most likely words are call, the, and please. But that forms the nonsensical
sentence “Call the please,” so taking the other words into account, Siri
concludes that the sentence is really “Call the police.” It makes the call, and
with luck the police get to your house in time to catch the burglar.

The same idea still works if the graph is a tree instead of a chain. If
instead of a platoon you’re in command of a whole army, you can ask each
of your company commanders how many soldiers are behind him and add
up their answers. Each company commander in turn asks each of his
platoon commanders, and so on. But if the graph forms loops, you’re in
trouble. If there’s a liaison officer who’s a member of two platoons, he gets
counted twice; in fact, everyone behind him gets counted twice. This is
what happens in the “aliens have landed” scenario, if you want to compute,
say, the probability of panic:



One solution is to combine The Times reports it and The Journal reports it
into a single megavariable with four values: YesYes if they both do, YesNo if
the Times reports a landing and the Journal doesn’t, and so on. This turns
the graph into a chain of three variables, and all is well. However, every
time you add a news source, the number of values of the megavariable
doubles. If instead of two news sources you have fifty, the megavariable has
250 values. So this method can only get you so far, and no other known
method does any better.

The problem is worse than it seems, because Bayesian networks in
effect have “invisible” arrows to go along with the visible ones. Burglary
and Earthquake are a priori independent, but the alarm going off entangles
them: the alarm makes you suspect a burglary, but if now you hear on the
radio that there’s been an earthquake, you assume that’s what caused the
alarm. The earthquake has explained away the alarm, making a burglary
less likely, and the two are therefore dependent. In a Bayesian network, all
parents of the same variable are interdependent in this way, and this in turn
introduces further dependencies, making the resulting graph often much
denser than the original one.

The crucial question for inference is whether you can make the filled-in
graph “look like a tree” without the trunk getting too thick. If the
megavariable in the trunk has too many possible values, the tree grows out
of control until it covers the whole planet, like the baobabs in The Little
Prince. In the tree of life, each species is a branch, but inside each branch is
a graph, with each creature having two parents, four grandparents, some
number of offspring, and so on. The “thickness” of a branch is the size of
the species’ population. When the branches are too thick, our only choice is
to resort to approximate inference.

One solution, left as an exercise by Pearl in his book on Bayesian
networks, is to pretend the graph has no loops and just keep propagating
probabilities back and forth until they converge. This is known as loopy
belief propagation, both because it works on graphs with loops and because
it’s a crazy idea. Surprisingly, it turns out to work quite well in many cases.
For instance, it’s a state-of-the art method for wireless communication, with
the random variables being the bits in the message, encoded in a clever way.
But loopy belief propagation can also converge to the wrong answers or



oscillate forever. Another solution, which originated in physics but was
imported into machine learning and greatly extended by Michael Jordan
and others, is to approximate an intractable distribution with a tractable one
and optimize the latter’s parameters to make it as close as possible to the
former.

The most popular option, however, is to drown our sorrows in alcohol,
get punch drunk, and stumble around all night. The technical term for this is
Markov chain Monte Carlo, or MCMC for short. The “Monte Carlo” part is
because the method involves chance, like a visit to the eponymous casino,
and the “Markov chain” part is because it involves taking a sequence of
steps, each of which depends only on the previous one. The idea in MCMC
is to do a random walk, like the proverbial drunkard, jumping from state to
state of the network in such a way that, in the long run, the number of times
each state is visited is proportional to its probability. We can then estimate
the probability of a burglary, say, as the fraction of times we visited a state
where there was a burglary. A “well-behaved” Markov chain converges to a
stable distribution, so after a while it always gives approximately the same
answers. For example, when you shuffle a deck of cards, after a while all
card orders are equally likely, no matter the initial order; so you know that
if there are n possible orders, the probability of each one is 1/n. The trick in
MCMC is to design a Markov chain that converges to the distribution of our
Bayesian network. One easy option is to repeatedly cycle through the
variables, sampling each one according to its conditional probability given
the state of its neighbors. People often talk about MCMC as a kind of
simulation, but it’s not: the Markov chain does not simulate any real
process; rather, we concocted it to efficiently generate samples from a
Bayesian network, which is itself not a sequential model.

The origins of MCMC go all the way back to the Manhattan Project,
when physicists needed to estimate the probability that neutrons would
collide with atoms and set off a chain reaction. But in more recent decades,
it has sparked such a revolution that it’s often considered one of the most
important algorithms of all time. MCMC is good not just for computing
probabilities but for integrating any function. Without it, scientists were
limited to functions they could integrate analytically, or to well-behaved,
low-dimensional integrals they could approximate as a series of trapezoids.
With MCMC, they’re free to build complex models, knowing the computer



will do the heavy lifting. Bayesians, for one, probably have MCMC to
thank for the rising popularity of their methods more than anything else.

On the downside, MCMC is often excruciatingly slow to converge, or
fools you by looking like it’s converged when it hasn’t. Real probability
distributions are usually very peaked, with vast wastelands of minuscule
probability punctuated by sudden Everests. The Markov chain then
converges to the nearest peak and stays there, leading to very biased
probability estimates. It’s as if the drunkard followed the scent of alcohol to
the nearest tavern and stayed there all night, instead of wandering all around
the city like we wanted him to. On the other hand, if instead of using a
Markov chain we just generated independent samples, like simpler Monte
Carlo methods do, we’d have no scent to follow and probably wouldn’t
even find that first tavern; it would be like throwing darts at a map of the
city, hoping they land smack dab on the pubs.

Inference in Bayesian networks is not limited to computing
probabilities. It also includes finding the most probable explanation for the
evidence, such as the disease that best explains the symptoms or the words
that best explain the sounds Siri heard. This is not the same as just picking
the most probable word at each step, because words that are individually
likely given their sounds may be unlikely to occur together, as in the “Call
the please” example. However, similar kinds of algorithms also work for
this task (and they are, in fact, what most speech recognizers use). Most
importantly, inference includes making the best decisions, guided not just
by the probabilities of different outcomes but also by the corresponding
costs (or utilities, to use the technical term). The cost of ignoring an e-mail
from your boss asking you to do something by tomorrow is much greater
than the cost of seeing a piece of spam, so often it’s better to let an e-mail
through even if it does seem fairly likely to be spam.

Driverless cars and other robots are a prime example of probabilistic
inference in action. As the car drives around, it simultaneously builds up a
map of the territory and figures out its location on it with increasing
certainty. According to a recent study, London taxi drivers grow a larger
posterior hippocampus, a brain region involved in memory and map
making, as they learn the layout of the city. Perhaps they use similar
probabilistic inference algorithms, with the notable difference that in the
case of humans, drinking doesn’t seem to help.



Learning the Bayesian way

Now that we know how to (more or less) solve the inference problem,
we’re ready to learn Bayesian networks from data, because for Bayesians
learning is just another kind of probabilistic inference. All you have to do is
apply Bayes’ theorem with the hypotheses as the possible causes and the
data as the observed effect:

P(hypothesis | data) = P(hypothesis) × P(data | hypothesis) / P(data)

The hypothesis can be as complex as a whole Bayesian network, or as
simple as the probability that a coin will come up heads. In the latter case,
the data is just the outcome of a series of coin flips. If, say, we obtain
seventy heads in a hundred flips, a frequentist would estimate the
probability of heads as 0.7. This is justified by the so-called maximum
likelihood principle: of all the possible probabilities of heads, 0.7 is the one
under which seeing seventy heads in a hundred flips is most likely. The
likelihood of a hypothesis is P(data | hypothesis), and the principle says we
should pick the hypothesis that maximizes it. Bayesians do something more
subtle, though. They point out that we never know for sure which
hypothesis is the true one, and so we shouldn’t just pick one hypothesis,
like a value of 0.7 for the probability of heads; rather, we should compute
the posterior probability of every possible hypothesis and entertain all of
them when making predictions. The sum of the probabilities of all the
hypotheses must be one, so if one becomes more likely, the others become
less. For a Bayesian, in fact, there is no such thing as the truth; you have a
prior distribution over hypotheses, after seeing the data it becomes the
posterior distribution, as given by Bayes’ theorem, and that’s all.

This is a radical departure from the way science is usually done. It’s like
saying, “Actually, neither Copernicus nor Ptolemy was right; let’s just
predict the planets’ future trajectories assuming Earth goes round the sun
and vice versa and average the results.”

Of course, it’s a weighted average, the weight of a hypothesis being its
posterior probability, so a hypothesis that explains the data better will count



for more. Still, as the joke goes, being Bayesian means never having to say
you’re certain.

Needless to say, carrying around a multitude of hypotheses instead of
just one is a huge pain. In the case of learning a Bayesian network, we’re
supposed to make predictions by averaging over all possible Bayesian
networks, including all possible graph structures and all possible parameter
values for each structure. In some cases, we can compute the average over
parameters in closed form, but with varying structures we’re out of luck.
We have to resort to, for example, doing MCMC over the space of
networks, jumping from one possible network to another as the Markov
chain progresses. Combine all this complexity and computational cost with
Bayesians’ controversial notion that there’s really no such thing as objective
reality, and it’s not hard to see why frequentism has dominated science for
the last century.

There’s a saving grace, however, and some major reasons to prefer the
Bayesian way. The saving grace is that, most of the time, almost all
hypotheses wind up with a tiny posterior probability, and we can safely
ignore them. In fact, just considering the single most probable hypothesis is
usually a very good approximation. Suppose our prior distribution for the
coin flip problem is that all probabilities of heads are equally likely. The
effect of seeing the outcomes of successive flips is to concentrate the
distribution more and more on the hypotheses that best agree with the data.
For example, if h ranges over the possible probabilities of heads and a coin
comes out heads 70 percent of the time, we’ll see something like this:

The posterior after each flip becomes the prior for the next flip, and flip by
flip, we become increasingly certain that h = 0.7. If we just take the single



most probable hypothesis (h = 0.7 in this case), the Bayesian approach
becomes quite similar to the frequentist one, but with one crucial difference:
Bayesians take the prior P(hypothesis) into account, not just the likelihood
P(data | hypothesis). (The data prior P(data) can be ignored because it’s the
same for all hypotheses and therefore doesn’t affect the choice of winner.) If
we’re willing to assume that all hypotheses are equally likely a priori, the
Bayesian approach now reduces to the maximum likelihood principle. So
Bayesians can say to frequentists: “See, what you do is a special case of
what we do, but at least we make our assumptions explicit.” And if the
hypotheses are not equally likely a priori, maximum likelihood’s implicit
assumption that they are leads to the wrong answers.

This might seem like a theoretical discussion, but it has tremendous
practical consequences. If we’ve seen only one coin flip and it came out
heads, maximum likelihood says that the probability of heads must be one.
This could be wildly inaccurate and leaves us woefully unprepared for the
coin coming up tails. Once we’ve seen a lot of flips, the estimate becomes
more reliable, but in many problems, we never see enough flips, no matter
how big the data. Suppose the word supercalifragilisticexpialidocious never
appears in a spam e-mail in our training data and appears once in an e-mail
talking about Mary Poppins. A Naïve Bayes spam filter with maximum
likelihood probability estimates will then decide that an e-mail containing it
cannot be spam, regardless of whether every other word in the e-mail
screams “Spam! Spam!” In contrast, a Bayesian would give the word a low
but nonzero probability of appearing in spam, allowing the other words to
override it.

The problem only gets worse if we try to learn the structure of a
Bayesian network as well as its parameters. We can do this by hill climbing,
starting with an empty network (no arrows), adding the arrow that most
increases likelihood, and so on until no arrow causes an improvement.
Unfortunately, this quickly leads to massive overfitting, with a network that
assigns zero probability to all states not appearing in the data. Bayesians
can do something much more interesting. They can use the prior
distribution to encode experts’ knowledge about the problem—their answer
to Hume’s question. For example, we can design an initial Bayesian
network for medical diagnosis by interviewing doctors, asking them which
symptoms they think depend on which diseases, and adding the



corresponding arrows. This is the “prior network,” and the prior distribution
can penalize alternative networks by the number of arrows that they add or
remove from it. But doctors are fallible, so we’ll let the data override them:
if the increase in likelihood from adding an arrow outweighs the penalty, we
do it.

Of course, frequentists are aware of this issue, and their answer is to, for
example, multiply the likelihood by a factor that penalizes more complex
networks. But at this point frequentism and Bayesianism have become
indistinguishable, and whether you call the scoring function “penalized
likelihood” or “posterior probability” is really just a matter of taste.

Despite the convergence of frequentist and Bayesian thinking on some
issues, there remains the philosophical difference about the meaning of
probability. Viewing it as subjective makes many scientists queasy, but it
also enables many otherwise-forbidden uses. If you’re a frequentist, you
can only estimate probabilities of events that can occur more than once. So
a question like “What is the probability that Hillary Clinton will beat Jeb
Bush in the next presidential election?” is unanswerable, because there’s
never been an election pitting them against each other. But for a Bayesian, a
probability is a subjective degree of belief, so he’s free to make an educated
guess, and the inference calculus keeps all his guesses consistent.

The Bayesian method is not just applicable to learning Bayesian
networks and their special cases. (Conversely, despite their name, Bayesian
networks aren’t necessarily Bayesian: frequentists can learn them, too, as
we just saw.) We can put a prior distribution on any class of hypotheses—
sets of rules, neural networks, programs—and then update it with the
hypotheses’ likelihood given the data. Bayesians’ view is that it’s up to you
what representation you choose, but then you have to learn it using Bayes’
theorem. In the 1990s, they mounted a spectacular takeover of the
Conference on Neural Information Processing Systems (NIPS for short), the
main venue for connectionist research. The ringleaders (so to speak) were
David MacKay, Radford Neal, and Michael Jordan. MacKay, a Brit who
was a student of John Hopfield’s at Caltech and later became chief
scientific advisor to the UK’s Department of Energy, showed how to learn
multilayer perceptrons the Bayesian way. Neal introduced the
connectionists to MCMC, and Jordan introduced them to variational
inference. Finally, they pointed out that in the limit you could “integrate



out” the neurons in a multilayer perceptron, leaving a type of Bayesian
model that made no reference to them. Before long, the word neural in the
title of a paper submitted to NIPS became a good predictor of rejection.
Some researchers joked that the conference should change its name to
BIPS, for Bayesian Information Processing Systems.

Markov weighs the evidence

But something funny happened on the way to world domination.
Researchers using Bayesian models kept noticing that you got better results
by tweaking the probabilities in illegal ways. For example, raising P(words)
to some power in speech recognizers improved accuracy, but then it wasn’t
Bayes’ theorem any more. What was going on? The culprit, it turns out,
was the false independence assumptions that generative models make. The
simplified graph structure makes the models learnable and is worth keeping,
but then we’re better off just learning the best parameters we can for the
task at hand, irrespective of whether they’re probabilities. The real strength
of, say, Naïve Bayes is that it provides a small, informative set of features
from which to predict the class and a fast, robust way to learn the
corresponding parameters. In a spam filter, each feature is the occurrence of
a particular word in spam, and the corresponding parameter is how often it
occurs; and similarly for nonspam. Viewed in this way, Naïve Bayes can be
optimal, in the sense of making the best predictions possible, even in many
cases where its independence assumptions are wildly violated. When I
realized this and published a paper about it in 1996, people’s suspicion of
Naïve Bayes melted away, helping it to take off. But it was also a step on
the way to a different kind of model, which in the last two decades has
increasingly replaced Bayesian networks in machine learning: Markov
networks.

A Markov network is a set of features and corresponding weights,
which together define a probability distribution. A feature can be as simple
as This is a ballad or as elaborate as This is a ballad by a hip-hop artist,
with a saxophone riff and a descending chord progression. Pandora uses a
large set of features, which it calls the Music Genome Project, to select
songs to play for you. Suppose we plug them into a Markov network. If you



like ballads, the weight of the corresponding feature goes up, and you’re
more likely to hear ballads when you turn on Pandora. If you also like songs
by hip-hop artists, that feature’s weight also goes up. The songs you’re most
likely to hear are now ones that have both features, namely ballads by hip-
hop artists. If you don’t like ballads or hip-hop artists per se, but only enjoy
them in combination, the more elaborate feature Ballad by a hip-hop artist
is what you need. Pandora’s features are handcrafted, but in Markov
networks we can also learn features using hill climbing, similar to rule
induction. Either way, gradient descent is a good way to learn the weights.

Like Bayesian networks, Markov networks can be represented by
graphs, but they have undirected arcs instead of arrows. Two variables are
connected, meaning they depend directly on each other, if they appear
together in some feature, like Ballad and By a hip-hop artist in Ballad by a
hip-hop artist.

Markov networks are a staple in many areas, such as computer vision.
For instance, a driverless car needs to segment each image it sees into road,
sky, and countryside. One option is to label each pixel as one of the three
according to its color, but this is not nearly good enough. Images are very
noisy and variable, and the car will hallucinate rocks strewn all over the
roadway and patches of road in the sky. We know, however, that nearby
pixels in an image are usually part of the same object, and we can introduce
a corresponding set of features: for each pair of neighboring pixels, the
feature is true if they belong to the same object, and false otherwise. Now
images with large, contiguous blocks of road and sky are much more likely
than images without, and the car goes straight instead of continually
swerving left and right to avoid imaginary rocks.

Markov networks can be trained to maximize either the likelihood of the
whole data or the conditional likelihood of what we want to predict given
what we know. For Siri, the likelihood of the whole data is P(words,
sounds), and the conditional likelihood we’re interested in is P(words |
sounds). By optimizing the latter, we can ignore P(sounds), which is only a
distraction from our goal. And since we ignore it, it can be arbitrarily
complex. This is much better than HMMs’ unrealistic assumption that
sounds depend solely on the corresponding words, without any influence
from the surroundings. In fact, if all Siri cares about is figuring out which
words you just spoke, perhaps it doesn’t even need to worry about



probabilities; it just needs to make sure the correct words score higher than
incorrect ones when it tots up the weights of their features—ideally a lot
higher, just to be safe.

Analogizers took this line of reasoning to its logical conclusion, as we’ll
see in the next chapter. In the first decade of the new millennium, they in
turn took over NIPS. Now the connectionists dominate once more, under
the banner of deep learning. Some say that research goes in cycles, but it’s
more like a spiral, with loops winding around the direction of progress. In
machine learning, the spiral converges to the Master Algorithm.

Logic and probability: The star-crossed couple

You’d think that Bayesians and symbolists would get along great, given that
they both believe in a first-principles approach to learning, rather than a
nature-inspired one. Far from it. Symbolists don’t like probabilities and tell
jokes like “How many Bayesians does it take to change a lightbulb?
They’re not sure. Come to think of it, they’re not sure the lightbulb is
burned out.” More seriously, symbolists point to the high price we pay for
probability. Inference suddenly becomes a lot more expensive, all those
numbers are hard to understand, we have to deal with priors, and hordes of
zombie hypotheses chase us around forever. The ability to compose pieces
of knowledge on the fly, so dear to symbolists, is gone. Worst of all, we
don’t know how to put probability distributions on many of the things we
need to learn. A Bayesian network is a distribution over a vector of
variables, but what about distributions over networks, databases, knowledge
bases, languages, plans, and computer programs, to name a few? All of
these are easily handled in logic, and an algorithm that can’t learn them is
clearly not the Master Algorithm.

Bayesians, in turn, point to the brittleness of logic. If I have a rule like
Birds fly, a world with even one flightless bird is impossible. If I try to
patch things by adding exceptions, such as Birds fly, unless they’re
penguins, I’ll never be done. (What about ostriches? Birds in cages? Dead
birds? Birds with broken wings? Soaked wings?) A doctor diagnoses you
with cancer, and you decide to get a second opinion. If the second doctor
disagrees, you’re stuck. You can’t weigh the two opinions; you just have to



believe them both. And then a catastrophe happens: pigs fly, perpetual
motion is possible, and Earth doesn’t exist—because in logic everything
can be inferred from a contradiction. Furthermore, if knowledge is learned
from data, I can never be sure it’s true. Why do symbolists pretend
otherwise? Surely Hume would frown on such insouciance.

Bayesians and symbolists agree that prior assumptions are inevitable,
but they differ in the kinds of prior knowledge they allow. For Bayesians,
knowledge goes in the prior distribution over the structure and parameters
of the model. In principle, the parameter prior could be anything we please,
but ironically, Bayesians tend to choose uninformative priors (like assigning
the same probability to all hypotheses) because they’re easier to compute
with. In any case, humans are not very good at estimating probabilities. For
structure, Bayesian networks provide an intuitive way to incorporate
knowledge: draw an arrow from A to B if you think that A directly causes
B. But symbolists are much more flexible: you can provide as prior
knowledge to your learner anything you can encode in logic, and practically
anything can be encoded in logic—provided it’s black and white.

Clearly, we need both logic and probability. Curing cancer is a good
example. A Bayesian network can model a single aspect of how cells
function, like gene regulation or protein folding, but only logic can put all
the pieces together into a coherent picture. On the other hand, logic can’t
deal with incomplete or noisy information, which is pervasive in
experimental biology, but Bayesian networks can handle it with aplomb.

Bayesian learning works on a single table of data, where each column
represents a variable (for example, the expression level of one gene) and
each row represents an instance (for example, a single microarray
experiment, with each gene’s observed expression level). It’s OK if the
table has “holes” and measurement errors because we can use probabilistic
inference to fill in the holes and average over the errors. But if we have
more than one table, Bayesian learning is stuck. It doesn’t know how to, for
example, combine gene expression data with data about which DNA
segments get translated into proteins, and how in turn the three-dimensional
shapes of those proteins cause them to lock on to different parts of the DNA
molecule, affecting the expression of other genes. In logic, we can easily
write rules relating all of these aspects, and learn them from the relevant



combinations of tables—but only provided the tables have no holes or
errors.

Combining connectionism and evolutionism was fairly easy: just evolve
the network structure and learn the parameters by backpropagation. But
unifying logic and probability is a much harder problem. Attempts to do it
go all the way back to Leibniz, who was a pioneer of both. Some of the best
philosophers and mathematicians of the nineteenth and twentieth centuries,
like George Boole and Rudolf Carnap, worked hard on it but ultimately
didn’t get very far. More recently, computer scientists and AI researchers
have joined the fray. But as the millennium turned around, the best we had
were partial successes, like adding some logical constructs to Bayesian
networks. Most experts believed that unifying logic and probability was
impossible. The prospects for a Master Algorithm did not look good,
particularly since the existing evolutionary and connectionist algorithms
couldn’t deal with incomplete information or multiple data sets, either.

Luckily, we have since cracked the problem, and the Master Algorithm
now looks that much closer. We’ll see how we did it in Chapter 9 and take it
from there. But first we need to gather a very important, still-missing piece
of the puzzle: how to learn from very little data. That might seem
unnecessary in these days of data deluge, but the truth is that we often find
ourselves with reams of data about some parts of the problem we want to
solve and almost none about others. This is where one of the most
important ideas in machine learning comes in: analogy. All of the tribes
we’ve met so far have one thing in common: they learn an explicit model of
the phenomenon under consideration, whether it’s a set of rules, a
multilayer perceptron, a genetic program, or a Bayesian network. When
they don’t have enough data to do that, they’re stumped. But analogizers
can learn from as little as one example because they never form a model.
Let’s see what they do instead.



CHAPTER SEVEN

You Are What You Resemble

Frank Abagnale Jr. is one of the most notorious con men in history.
Abagnale, portrayed by Leonardo DiCaprio in Spielberg’s movie Catch Me
If You Can, forged millions of dollars’ worth of checks, impersonated an
attorney and a college instructor, and traveled the world as a fake Pan Am
pilot—all before his twenty-first birthday. But perhaps his most jaw-
dropping exploit was to successfully pose as a doctor for nearly a year in
late-1960s Atlanta. Practicing medicine supposedly requires many years in
med school, a license, a residency, and whatnot, but Abagnale managed to
bypass all these niceties and never got called on it.

Imagine for a moment trying to pull off such a stunt. You sneak into an
absent doctor’s office, and before long a patient comes in and tells you all
his symptoms. Now you have to diagnose him, except you know nothing
about medicine. All you have is a cabinet full of patient files: their
symptoms, diagnoses, treatments undergone, and so on. What do you do?
The easiest way out is to look in the files for the patient whose symptoms
most closely resemble your current one’s and make the same diagnosis. If
your bedside manner is as convincing as Abagnale’s, that might just do the
trick. The same idea applies well beyond medicine. If you’re a young
president faced with a world crisis, as Kennedy was when a US spy plane
revealed Soviet nuclear missiles being deployed in Cuba, chances are
there’s no script ready to follow. Instead, you look for historical analogs of



the current situation and try to learn from them. The Joint Chiefs of Staff
urged an attack on Cuba, but Kennedy, having just read The Guns of
August, a best-selling account of the outbreak of World War I, was keenly
aware of how easily that could escalate into all-out war. So he opted for a
naval blockade instead, perhaps saving the world from nuclear war.

Analogy was the spark that ignited many of history’s greatest scientific
advances. The theory of natural selection was born when Darwin, on
reading Malthus’s Essay on Population, was struck by the parallels between
the struggle for survival in the economy and in nature. Bohr’s model of the
atom arose from seeing it as a miniature solar system, with electrons as the
planets and the nucleus as the sun. Kekulé discovered the ring shape of the
benzene molecule after daydreaming of a snake eating its own tail.

Analogical reasoning has a distinguished intellectual pedigree. Aristotle
expressed it in his law of similarity: if two things are similar, the thought of
one will tend to trigger the thought of the other. Empiricists like Locke and
Hume followed suit. Truth, said Nietzche, is a mobile army of metaphors.
Kant was also a fan. William James believed that “this sense of sameness is
the very keel and backbone of our thinking.” Some contemporary
psychologists even argue that human cognition in its entirety is a fabric of
analogies. We rely on it to find our way around a new town and to
understand expressions like “see the light” and “stand tall.” Teenagers who
insert “like” into every sentence they say would probably, like, agree that
analogy is important, dude.

Given all this, it’s not surprising that analogy plays a prominent role in
machine learning. It got off to a slow start, though, and was initially
overshadowed by neural networks. Its first algorithmic incarnation appeared
in an obscure technical report written in 1951 by two Berkeley statisticians,
Evelyn Fix and Joe Hodges, and was not published in a mainstream journal
until decades later. But in the meantime, other papers on Fix and Hodges’s
algorithm started to appear and then to multiply until it was one of the most
researched in all of computer science. The nearest-neighbor algorithm, as
it’s called, is the first stop on our tour of analogy-based learning. The
second is support vector machines, an idea that took machine learning by
storm around the turn of the millennium and was only recently
overshadowed by deep learning. The third and last is full-blown analogical



reasoning, which has been a staple of psychology and AI for several
decades, and a background theme in machine learning for nearly as long.

The analogizers are the least cohesive of the five tribes. Unlike the
others, which have a strong identity and common ideals, the analogizers are
more of a loose collection of researchers, united only by their reliance on
similarity judgments as the basis for learning. Some, like the support vector
machine folks, might even object to being brought under such an umbrella.
But it’s raining deep models outside, and I think they would benefit greatly
from making common cause. Similarity is one of the central ideas in
machine learning, and the analogizers in all their guises are its keepers.
Perhaps in a future decade, machine learning will be dominated by deep
analogy, combining in one algorithm the efficiency of nearest-neighbor, the
mathematical sophistication of support vector machines, and the power and
flexibility of analogical reasoning. (There, I just gave away one of my
secret research projects.)

Match me if you can

Nearest-neighbor is the simplest and fastest learning algorithm ever
invented. In fact, you could even say it’s the fastest algorithm of any kind
that could ever be invented. It consists of doing exactly nothing, and
therefore takes zero time to run. Can’t beat that. If you want to learn to
recognize faces and have a vast database of images labeled face/not face,
just let it sit there. Don’t worry, be happy. Without knowing it, those images
already implicitly form a model of what a face is. Suppose you’re Facebook
and you want to automatically identify faces in photos people upload as a
prelude to tagging them with their friends’ names. It’s nice to not have to do
anything, given that Facebook users upload upward of three hundred
million photos per day. Applying any of the learners we’ve seen so far to
them, with the possible exception of Naïve Bayes, would take a truckload
of computers. And Naïve Bayes is not smart enough to recognize faces.

Of course, there’s a price to pay, and the price comes at test time. Jane
User has just uploaded a new picture. Is it a face? Nearest-neighbor’s
answer is: find the picture most similar to it in Facebook’s entire database
of labeled photos—its “nearest neighbor”—and if that picture contains a



face, so does this one. Simple enough, but now you have to scan through
potentially billions of photos in (ideally) a fraction of a second. Like a lazy
student who doesn’t bother to study for the test, nearest-neighbor is caught
unprepared and has to scramble. But unlike real life, where your mother
taught you to never leave until tomorrow what you can do today, in
machine learning procrastination can really pay off. In fact, the entire genre
of learning that nearest-neighbor is part of is sometimes called “lazy
learning,” and in this context there’s nothing pejorative about the term.

The reason lazy learners are a lot smarter than they seem is that their
models, although implicit, can in fact be extremely sophisticated. Consider
the extreme case where we have only one example of each class. For
instance, we’d like to guess where the border between two countries is, but
all we know is their capitals’ locations. Most learners would be stumped,
but nearest-neighbor happily guesses that the border is a straight line lying
halfway between the two cities:

The points on the line are at the same distance from the two capitals; points
to the left of the line are closer to Positiville, so nearest-neighbor assumes
they’re part of Posistan and vice versa. Of course, it would be a lucky day if
that was the exact border, but as an approximation it’s probably a lot better
than nothing. It’s when we know a lot of towns on both sides of the border,
though, that things get really interesting:



Nearest-neighbor is able to implicitly form a very intricate border, even
though all it’s doing is remembering where the towns are and assigning
points to countries accordingly! We can think of the “metro area” of a town
as all the points that are closer to it than to any other town; the boundaries
between metro areas are shown as dashed lines in the diagram. Now
Posistan is just the union of the metro areas of all its cities, as is Negaland.
In contrast, a decision tree (for example) would only be able to form
borders running alternately north–south and east–west, probably a much
worse approximation to the real border. Thus, even though decision tree
learners are “eager,” trying hard at learning time to figure out where the
border lies, “lazy” nearest-neighbor actually wins out.

The reason lazy learning wins is that forming a global model, such as a
decision tree, is much harder than just figuring out where specific query
points lie, one at a time. Imagine trying to define what a face is with a
decision tree. You could say it has two eyes, a nose, and a mouth, but what
is an eye and how do you find it in an image? What if the person’s eyes are
closed? Reliably defining a face all the way down to individual pixels is
extremely difficult, particularly given all the different expressions, poses,
contexts, and lighting conditions a face could appear in. Instead, nearest-
neighbor takes a shortcut: if the image in its database most similar to the
one Jane just uploaded is of a face, then so is Jane’s. For this to work, the
database needs to contain an image that’s similar enough to the new one—
for example, a face with similar pose, lighting, and so on—so the bigger the



database, the better. For a simple two-dimensional problem like guessing
the border between two countries, a tiny database suffices. For a very hard
problem like identifying faces, where the color of each pixel is a dimension
of variation, we need a huge database. But these days we have them.
Learning from them may be too costly for an eager learner, which explicitly
draws the border between faces and nonfaces. For nearest-neighbor,
however, the border is implicit in the locations of the data points and the
distance measure, and the only cost is at query time.

The same idea of forming a local model rather than a global one applies
beyond classification. Scientists routinely use linear regression to predict
continuous variables, but most phenomena are not linear. Luckily, they’re
locally linear because smooth curves are locally well approximated by
straight lines. So if instead of trying to fit a straight line to all the data, you
just fit it to the points near the query point, you now have a very powerful
nonlinear regression algorithm. Laziness pays. If Kennedy had needed a
complete theory of international relations to decide what to do about the
Soviet missiles in Cuba, he would have been in trouble. Instead, he saw an
analogy between that crisis and the outbreak of World War I, and that
analogy guided him to the right decisions.

Nearest-neighbor can save lives, as Steven Johnson recounted in The
Ghost Map. In 1854, London was struck by a cholera outbreak, which killed
as many as one in eight people in parts of the city. The then-prevailing
theory that cholera was caused by “bad air” did nothing to prevent its
spread. But John Snow, a physician who was skeptical of the theory, had a
better idea. He marked on a map of London the locations of all the known
cases of cholera and divided the map into the regions closest to each public
water pump. Eureka: nearly all deaths were in the “metro area” of one
particular pump, located on Broad Street in the Soho district. Inferring that
the water in that well was contaminated, Snow convinced the locals to
disable the pump, and the epidemic died out. This episode gave birth to the
science of epidemiology, but it’s also the first success of the nearest-
neighbor algorithm—almost a century before its official invention.

With nearest-neighbor, each data point is its own little classifier,
predicting the class for all the query examples it wins. Nearest-neighbor is
like an army of ants, in which each soldier by itself does little, but together
they can move mountains. If an ant’s load is too heavy, it can share it with



its neighbors. In the same spirit, in the k-nearest-neighbor algorithm, a test
example is classified by finding its k nearest neighbors and letting them
vote. If the nearest image to the new upload is a face but the next two
nearest ones aren’t, three-nearest-neighbor decides that the new upload is
not a face after all. Nearest-neighbor is prone to overfitting: if we have the
wrong class for a data point, it spreads to its entire metro area. K-nearest-
neighbor is more robust because it only goes wrong if a majority of the k
nearest neighbors is noisy. The price, of course, is that its vision is blurrier:
fine details of the frontier get washed away by the voting. When k goes up,
variance decreases, but bias increases.

Using the k nearest neighbors instead of one is not the end of the story.
Intuitively, the examples closest to the test example should count for more.
This leads us to the weighted k-nearest-neighbor algorithm. In 1994, a team
of researchers from the University of Minnesota and MIT built a
recommendation system based on what they called “a deceptively simple
idea”: people who agreed in the past are likely to agree again in the future.
That notion led directly to the collaborative filtering systems that all self-
respecting e-commerce sites have. Suppose that, like Netflix, you’ve
gathered a database of movie ratings, with each user giving a rating of one
to five stars to the movies he or she has seen. You want to decide whether
your user Ken will like Gravity, so you find the users whose past ratings
correlate most highly with his. If they all gave Gravity high ratings, then
probably so will Ken, and you can recommend it to him. If they disagree on
Gravity, however, you need a fallback point, which in this case is ranking
users by how highly they correlate with Ken. So if Lee’s correlation with
Ken is higher than Meg’s, his ratings should count for correspondingly
more. Ken’s predicted rating is then the weighted average of his neighbors’,
with each neighbor’s weight being his coefficient of correlation with Ken.

There’s an interesting twist, though. Suppose Lee and Ken have very
similar tastes, but Lee is grumpier than Ken. Whenever Ken gives a movie
five stars, Lee gives three; when Ken gives three, Lee gives one, and so on.
We’d like to use Lee’s ratings to predict Ken’s, but if we just do it directly,
we’ll always be off by two stars. Instead, what we need to do is predict how
much Ken’s ratings will be above or below his average, based on how much
Lee’s are. And now, since Ken is always two stars above his average when
Lee is two stars above his, and so on, our predictions will be spot on.



You don’t need explicit ratings to do collaborative filtering, by the way.
If Ken ordered a movie on Netflix, that means he expects to like it. So the
“ratings” can just be ordered/not ordered, and two users are similar if
they’ve ordered a lot of the same movies. Even just clicking on something
implicitly shows interest in it. Nearest-neighbor works with all of the above.
These days all kinds of algorithms are used to recommend items to users,
but weighted k-nearest-neighbor was the first widely used one, and it’s still
hard to beat.

Recommender systems, as they’re also called, are big business: a third
of Amazon’s business comes from its recommendations, as does three-
quarters of Netflix’s. It’s a far cry from the early days of nearest-neighbor,
when it was considered impractical because of its memory requirements.
Back then, computer memories were made of small iron rings, one per bit,
and storing even a few thousand examples was taxing. How times have
changed. Nevertheless, it’s not necessarily smart to remember all the
examples you’ve seen and then have to search through them, particularly
since most are probably irrelevant. If you look back at the map of Posistan
and Negaland, you may notice that if Positiville disappeared, nothing would
change. The metro areas of nearby cities would expand into the land
formerly occupied by Positiville, but since they’re all Posistan cities, the
border with Negaland would stay the same. The only cities that really
matter are the ones across the border from a city in the other country; all
others we can omit. So a simple way to make nearest-neighbor more
efficient is to delete all the examples that are correctly classified by their
neighbors. This and other tricks enable nearest-neighbor methods to be used
in some surprising areas, like controlling robot arms in real time. But
needless to say, they’re still not the first choice for things like high-
frequency trading, where computers buy and sell stocks in fractions of a
second. In a race between a neural network, which can be applied to an
example with only a fixed number of additions, multiplications, and
sigmoids and an algorithm that needs to search a large database for the
example’s nearest neighbors, the neural network is sure to win.

Another reason researchers were initially skeptical of nearest-neighbor
was that it wasn’t clear if it could learn the true borders between concepts.
But in 1967 Tom Cover and Peter Hart proved that, given enough data,
nearest-neighbor is at worst only twice as error-prone as the best imaginable



classifier. If, say, at least 1 percent of test examples will inevitably be
misclassified because of noise in the data, then nearest-neighbor is
guaranteed to get at most 2 percent wrong. This was a momentous
revelation. Up until then, all known classifiers assumed that the frontier had
a very specific form, typically a straight line. This was a double-edged
sword: on the one hand, it made proofs of correctness possible, as in the
case of the perceptron, but it also meant that the classifier was strictly
limited in what it could learn. Nearest-neighbor was the first algorithm in
history that could take advantage of unlimited amounts of data to learn
arbitrarily complex concepts. No human being could hope to trace the
frontiers it forms in hyperspace from millions of examples, but because of
Cover and Hart’s proof, we know that they’re probably not far off the mark.
According to Ray Kurzweil, the Singularity begins when we can no longer
understand what computers do. By that standard, it’s not entirely fanciful to
say that it’s already under way—it began all the way back in 1951, when
Fix and Hodges invented nearest-neighbor, the little algorithm that could.

The curse of dimensionality

There’s a serpent in this Eden, of course. It’s called the curse of
dimensionality, and while it affects all learners to a greater or lesser degree,
it’s particularly bad for nearest-neighbor. In low dimensions (like two or
three), nearest-neighbor usually works quite well. But as the number of
dimensions goes up, things fall apart pretty quickly. It’s not uncommon
today to have thousands or even millions of attributes to learn from. For an
e-commerce site trying to learn your preferences, every click you make is
an attribute. So is every word on a web page, and every pixel on an image.
But even with just tens or hundreds of attributes, chances are nearest-
neighbor is already in trouble. The first problem is that most attributes are
irrelevant: you may know a million factoids about Ken, but chances are
only a few of them have anything to say about (for example) his risk of
getting lung cancer. And while knowing whether he smokes is crucial for
making that particular prediction, it’s probably not much help in deciding
whether he’ll enjoy seeing Gravity. Symbolist methods, for one, are fairly
good at disposing of irrelevant attributes. If an attribute has no information



about the class, it’s just never included in the decision tree or rule set. But
nearest-neighbor is hopelessly confused by irrelevant attributes because
they all contribute to the similarity between examples. With enough
irrelevant attributes, accidental similarity in the irrelevant dimensions
swamps out meaningful similarity in the important ones, and nearest-
neighbor becomes no better than random guessing.

A bigger problem is that, surprisingly, having more attributes can be
harmful even when they’re all relevant. You’d think that more information
is always better—isn’t that the motto of our age? But as the number of
dimensions goes up, the number of training examples you need to locate the
concept’s frontiers goes up exponentially. With twenty Boolean attributes,
there are roughly a million different possible examples. With twenty-one,
there are two million, and a corresponding number of ways the frontier
could wind between them. Every extra attribute makes the learning problem
twice as hard, and that’s just with Boolean attributes. If the attribute is
highly informative, the benefit of adding it may exceed the cost. But if you
have only weakly informative attributes, like the words in an e-mail or the
pixels in an image, you’re probably in trouble, even though collectively
they may have enough information to predict what you want.

It gets even worse. Nearest-neighbor is based on finding similar objects,
and in high dimensions, the notion of similarity itself breaks down.
Hyperspace is like the Twilight Zone. The intuitions we have from living in
three dimensions no longer apply, and weird and weirder things start to
happen. Consider an orange: a tasty ball of pulp surrounded by a thin shell
of skin. Let’s say 90 percent of the radius of an orange is occupied by pulp,
and the remaining 10 percent by skin. That means 73 percent of the volume
of the orange is pulp (0.93). Now consider a hyperorange: still with 90
percent of the radius occupied by pulp, but in a hundred dimensions, say.
The pulp has shrunk to only about three thousandths of a percent of the
hyperorange’s volume (0.9100). The hyperorange is all skin, and you’ll
never be done peeling it!

Another disturbing example is what happens with our good old friend,
the normal distribution, aka a bell curve. What a normal distribution says is
that data is essentially located at a point (the mean of the distribution), but
with some fuzz around it (given by the standard deviation). Right? Not in



hyperspace. With a high-dimensional normal distribution, you’re more
likely to get a sample far from the mean than close to it. A bell curve in
hyperspace looks more like a doughnut than a bell. And when nearest-
neighbor walks into this topsy-turvy world, it gets hopelessly confused. All
examples look equally alike, and at the same time they’re too far from each
other to make useful predictions. If you sprinkle examples uniformly at
random inside a high-dimensional hypercube, most are closer to a face of
the cube than to their nearest neighbor. In medieval maps, uncharted areas
were marked with dragons, sea serpents, and other fantastical creatures, or
just with the phrase here be dragons. In hyperspace, the dragons are
everywhere, including at your front door. Try to walk to your next-door
neighbor’s house, and you’ll never get there; you’ll be forever lost in
strange lands, wondering where all the familiar things went.

Decision trees are not immune to the curse of dimensionality either.
Let’s say the concept you’re trying to learn is a sphere: points inside it are
positive, and points outside it are negative. A decision tree can approximate
a sphere by the smallest cube it fits inside. Not perfect, but not too bad
either: only the corners of the cube get misclassified. But in high
dimensions, almost the entire volume of the hypercube lies outside the
hypersphere. For every example you correctly classify as positive, you
incorrectly classify many negative ones as positive, causing your accuracy
to plummet.

In fact, no learner is immune to the curse of dimensionality. It’s the
second worst problem in machine learning, after overfitting. The term curse
of dimensionality was coined by Richard Bellman, a control theorist, in the
fifties. He observed that control algorithms that worked fine in three
dimensions became hopelessly inefficient in higher-dimensional spaces,
such as when you want to control every joint in a robot arm or every knob
in a chemical plant. But in machine learning the problem is more than just
computational cost—it’s that learning itself becomes harder and harder as
the dimensionality goes up.

All is not lost, however. The first thing we can do is get rid of the
irrelevant dimensions. Decision trees do this automatically by computing
the information gain of each attribute and using only the most informative
ones. For nearest-neighbor, we can accomplish something similar by first
discarding all attributes whose information gain is below some threshold



and then measuring similarity only in the reduced space. This is quick and
good enough for some applications, but unfortunately it precludes learning
many concepts, like exclusive-OR: if an attribute only says something about
the class when combined with others, but not on its own, it will be
discarded. A more expensive but smarter option is to “wrap” the attribute
selection around the learner itself, with a hill-climbing search that keeps
deleting attributes as long as that doesn’t hurt nearest-neighbor’s accuracy
on held-out data. Newton did a lot of attribute selection when he decided
that all that matters for predicting an object’s trajectory is its mass—not its
color, smell, age, or myriad other properties. In fact, the most important
thing about an equation is all the quantities that don’t appear in it: once we
know what the essentials are, figuring out how they depend on each other is
often the easier part.

To handle weakly relevant attributes, one option is to learn attribute
weights. Instead of letting the similarity along all dimensions count equally,
we “shrink” the less-relevant ones. Suppose the training examples are
points in a room, and the height dimension is not that important for our
purposes. Discarding it would project all examples onto the floor.
Downweighting it is more like giving the room a lower ceiling. The height
of a point still counts when computing its distance to other points, but less
than its horizontal position. And like many other things in machine
learning, we can learn attribute weights by gradient descent.

It may happen that the room has a high ceiling, but the data points are
all near the floor, like a thin layer of dust settling on the carpet. In that case,
we’re in luck: the problem looks three dimensional, but in effect it’s closer
to two dimensional. We don’t have to shrink height because nature has
already shrunk it for us. This “blessing of nonuniformity,” whereby data is
not spread uniformly in (hyper) space, is often what saves the day. The
examples may have a thousand attributes, but in reality they all “live” in a
much lower-dimensional space. That’s why nearest-neighbor can be good
for handwritten digit recognition, for example: each pixel is a dimension, so
there are many, but only a tiny fraction of all possible images are digits, and
they all live together in a cozy little corner of hyperspace. The shape of the
lower-dimensional space the data lives in may be quite capricious, however.
For example, if a room has furniture in it, the dust doesn’t just settle on the
floor; it settles on the tabletops, chair seats, bed covers, and whatnot. If we



can figure out the approximate shape of the blanket of dust covering the
room, then all we need is each point’s coordinates on it. As we’ll see in the
next chapter, there’s a whole subfield of machine learning dedicated to, so
to speak, discovering blanket shapes by groping around in the darkness of
hyperspace.

Snakes on a plane

Up until the mid-1990s, the most widely used analogical learner was
nearest-neigbhor, but it was overshadowed by its more glamorous cousins
from the other tribes. But then a new similarity-based algorithm burst onto
the scene, sweeping all before it. In fact, you could say it was another
“peace dividend” from the end of the Cold War. Support vector machines,
or SVMs for short, were the brainchild of Vladimir Vapnik, a Soviet
frequentist. Vapnik spent most of his career at the Institute of Control
Sciences in Moscow, but in 1990, as the Soviet Union unraveled, he
emigrated to the United States, where he joined the legendary Bell Labs.
While in Russia, Vapnik had been mostly content to do theoretical, pencil-
and-paper work, but the atmosphere at Bell Labs was different. Researchers
were looking for practical results, and Vapnik finally decided to turn his
ideas into an algorithm. Within a few years, he and his colleagues at Bell
Labs had developed SVMs, and before long they were everywhere, setting
new accuracy records left and right.

Superficially, an SVM looks a lot like weighted k-nearest-neighbor: the
frontier between the positive and negative classes is defined by a set of
examples and their weights, together with a similarity measure. A test
example belongs to the positive class if, on average, it looks more like the
positive examples than the negative ones. The average is weighted, and the
SVM remembers only the key examples required to pin down the frontier. If
you look back at the Posistan/Negaland example, once we throw away all
the towns that aren’t on the border, all that’s left is this map:



These examples are called support vectors because they’re the vectors that
“hold up” the frontier: remove one, and a section of the frontier slides to a
different place. You may also notice that the frontier is a jagged line, with
sudden corners that depend on the exact location of the examples. Real
concepts tend to have smoother borders, which means nearest-neighbor’s
approximation is probably not ideal. But with SVMs, we can learn smooth
frontiers, more like this:

To learn an SVM, we need to choose the support vectors and their
weights. The similarity measure, which in SVM-land is called the kernel, is
usually chosen a priori. One of Vapnik’s key insights was that not all
borders that separate the positive training examples from the negative ones
are created equal. Suppose Posistan and Negaland are at war, and they’re



separated by a no-man’s-land with minefields on either side. Your mission
is to survey the no-man’s-land, walking from one end of it to the other
without stepping on any mines. Luckily, you have a map of where the mines
are buried. Obviously, you don’t just take any old path: you give the mines
the widest possible berth. That’s what SVMs do, with the examples as
mines and the learned border as the chosen path. The closest the border ever
comes to an example is its margin of safety, and the SVM chooses the
support vectors and weights that yield the maximum possible margin. For
example, the solid straight-line border in this figure is better than the dotted
one:

The dotted border separates the positive and negative examples just fine,
but it comes dangerously close to stepping on the landmines at A and B.
These examples are support vectors: delete one of them, and the maximum-
margin border moves to a different place. In general, the border can be
curved, of course, making the margin harder to visualize, but we can think
of the border as a snake slithering down the no-man’s-land, and the margin
is how fat the snake can be. If a very fat snake can slither all the way down
without blowing itself to smithereens, then the SVM can separate the
positive and negative examples very well, and Vapnik showed that in this
case we can be confident that the SVM didn’t overfit. Intuitively, compared
to a thin snake, there are fewer ways a fat snake can slither down while
avoiding the landmines; and likewise, compared to a low-margin SVM, a



high-margin one has fewer chances of overfitting by drawing an overly
intricate border.

The second part of the story is how the SVM finds the fattest snake that
fits between the positive and negative landmines. At first sight, it might
seem like learning a weight for each training example by gradient descent
would do the trick. All we have to do is find the weights that maximize the
margin, and any examples that end up with zero weight can be discarded.
Unfortunately, this would just make the weights grow without limit,
because mathematically, the larger the weights, the larger the margin. If
you’re one foot from a landmine and you double the size of everything
including yourself, you are now two feet from the landmine, but that
doesn’t make you any less likely to step on it. Instead, we have to maximize
the margin under the constraint that the weights can only increase up to
some fixed value. Or, equivalently, we can minimize the weights under the
constraint that all examples have a given margin, which could be one—the
precise value is arbitrary. This is what SVMs usually do.

Constrained optimization is the problem of maximizing or minimizing a
function subject to constraints. The universe maximizes entropy subject to
keeping energy constant. Problems of this type are widespread in business
and technology. For example, we may want to maximize the number of
widgets a factory produces, subject to the number of machine tools
available, the widgets’ specs, and so on. With SVMs, constrained
optimization became crucial for machine learning as well. Unconstrained
optimization is getting to the top of the mountain, and that’s what gradient
descent (or, in this case, ascent) does. Constrained optimization is going as
high as you can while staying on the road. If the road goes up to the very
top, the constrained and unconstrained problems have the same solution.
More often, though, the road zigzags up the mountain and then back down
without ever reaching the top. You know you’ve reached the highest point
on the road when you can’t go any higher without driving off the road; in
other words, when the path to the top is at right angles to the road. If the
road and the path to the top form an oblique angle, you can always get
higher by driving farther along the road, even if that doesn’t get you higher
as quickly as aiming straight for the top of the mountain. So the way to
solve a constrained optimization problem is to follow not the gradient but



the part of it that’s parallel to the constraint surface—in this case the road—
and stop when that part is zero.

In general, we have to deal with many constraints at once (one per
example, in the case of SVMs). Suppose you wanted to get as close as
possible to the North Pole but couldn’t leave your room. Each of the room’s
four walls is a constraint, and the solution is to follow the compass until you
bump into the corner where the northeast and northwest walls meet. We say
that these two walls are the active constraints because they’re what prevents
you from reaching the optimum, namely the North Pole. If your room has a
wall facing exactly north, that’s the sole active constraint, and the solution
is a point in the middle of it. And if you’re Santa and your room is already
over the North Pole, all constraints are inactive, and you can just sit there
pondering the optimal toy distribution problem instead. (Traveling salesmen
have it easy compared to Santa.) In an SVM, the active constraints are the
support vectors since their margin is already the smallest it’s allowed to be;
moving the frontier would violate one or more constraints. All other
examples are irrelevant, and their weight is zero.

In reality, we usually let SVMs violate some constraints, meaning
classify some examples incorrectly or by less than the margin, because
otherwise they would overfit. If there’s a noisy negative example
somewhere in the middle of the positive region, we don’t want the frontier
to wind around inside the positive region just to get that example right. But
the SVM pays a penalty for each example it gets wrong, which encourages
it to keep those to a minimum. SVMs are like the sandworms in Dune: big,
tough, and able to survive a few explosions from slithering over landmines
but not too many.

Looking around for applications, Vapnik and his coworkers soon
alighted on handwritten digit recognition, which their connectionist
colleagues at Bell Labs were the world experts on. To everyone’s surprise,
SVMs did as well out of the box as multilayer perceptrons that had been
carefully crafted for digit recognition over the years. This set the stage for a
long-running, wide-ranging competition between the two. SVMs can be
seen as a generalization of the perceptron, because a hyperplane boundary
between classes is what you get when you use a particular similarity
measure (the dot product between vectors). But SVMs have a major
advantage compared to multilayer perceptrons: the weights have a single



optimum instead of many local ones and so learning them reliably is much
easier. Despite this, SVMs are no less expressive than multilayer
perceptrons; the support vectors effectively act as a hidden layer and their
weighted average as the output layer. For example, an SVM can easily
represent the exclusive-OR function by having one support vector for each
of the four possible configurations. But the connectionists didn’t give up
without a fight. In 1995, Larry Jackel, the head of Vapnik’s department at
Bell Labs, bet him a fancy dinner that by 2000 neural networks would be as
well understood as SVMs. He lost. But in return, Vapnik bet that by 2005
no one would use neural networks any more, and he also lost. (The only one
to get a free dinner was Yann LeCun, their witness.) Moreover, with the
advent of deep learning, connectionists have regained the upper hand.
Provided you can learn them, networks with many layers can express many
functions more compactly than SVMs, which always have just one layer,
and this can make all the difference.

Another notable early success of SVMs was in text classification, which
proved a major boon because the web was then just taking off. At the time,
Naïve Bayes was the state-of-the-art text classifier, but when every word in
the language is a dimension, even it can start to overfit. All it takes is a
word that, by chance, occurs in, say, all sports pages in the training data and
no others, and Naïve Bayes starts to hallucinate that every page containing
that word is a sports page. But, thanks to margin maximization, SVMs can
resist overfitting even in very high dimensions.

Generally, the fewer support vectors an SVM selects, the better it
generalizes. Any training example that is not a support vector would be
correctly classified if it showed up as a test example instead because the
frontier between positive and negative examples would still be in the same
place. So the expected error rate of an SVM is at most the fraction of
examples that are support vectors. As the number of dimensions goes up,
this fraction tends to go up as well, so SVMs are not immune to the curse of
dimensionality. But they’re more resistant to it than most.

Practical successes aside, SVMs also turned a lot of machine-learning
conventional wisdom on its head. For example, they gave the lie to the
notion, sometimes misidentified with Occam’s razor, that simpler models
are more accurate. On the contrary, an SVM can have an infinite number of
parameters and still not overfit, provided it has a large enough margin.



The single most surprising property of SVMs, however, is that no
matter how curvy the frontiers they form, those frontiers are always just
straight lines (or hyperplanes, in general). The reason that’s not a
contradiction is that the straight lines are in a different space. Suppose the
examples live on the (x,y) plane, and the boundary between the positive and
negative regions is the parabola y = x2. There’s no way to represent it with a
straight line, but if we add a third coordinate z, meaning the data now lives
in (x,y,z) space, and we set each example’s z coordinate to the square of its x
coordinate, the frontier is now just the diagonal plane defined by y = z. In
effect, the data points rise up into the third dimension, some rise more than
others by just the right amount, and presto—in this new dimension the
positive and negative examples can be separated by a plane. It turns out that
we can view what SVMs do with kernels, support vectors, and weights as
mapping the data to a higher-dimensional space and finding a maximum-
margin hyperplane in that space. For some kernels, the derived space has
infinite dimensions, but SVMs are completely unfazed by that. Hyperspace
may be the Twilight Zone, but SVMs have figured out how to navigate it.

Climbing the ladder

Two things are similar if they agree with one another in some respects. If
they agree in some respects, they will probably also agree in others. This is
the essence of analogy. It also points to the two main subproblems in
analogical reasoning: figuring out how similar two things are and deciding
what else to infer from their similarities. So far we’ve explored the “low
power” end of analogy, with algorithms like nearest-neighbor and SVMs,
where the answers to both these questions are very simple. They’re the most
widely used, but a chapter on analogical learning would not be complete
without at least a whirlwind tour of the more powerful parts of the
spectrum.

The most important question in any analogical learner is how to
measure similarity. It could be as simple as Euclidean distance between data
points, or as complex as a whole program with multiple levels of
subroutines whose final output is a similarity value. Either way, the



similarity function controls how the learner generalizes from known
examples to new ones. It’s where we insert our knowledge of the problem
domain into the learner, making it the analogizers’ answer to Hume’s
question. We can apply analogical learning to all kinds of objects, not just
vectors of attributes, provided we have a way of measuring the similarity
between them. For example, we can measure the similarity between two
molecules by the number of identical substructures they contain. Methane
and methanol are similar because they have three carbon-hydrogen bonds in
common and differ only in the replacement of a hydrogen atom by a
hydroxyl group:

However, that doesn’t mean their chemical behavior is similar. Methane
is a gas, while methanol is an alcohol. The second part of analogical
reasoning is figuring out what we can infer about the new object based on
similar ones we’ve found. This can be very simple or very complex. In
nearest-neighbor or SVMs, it just consists of predicting the new object’s
class based on the classes of the nearest neighbors or support vectors. But in
case-based reasoning, another type of analogical learning, the output can be
a complex structure formed by composing parts of the retrieved objects.
Suppose your HP printer is spewing out gibberish, and you call up their
help desk. Chances are they’ve seen your problem many times before, so a
good strategy is to find those records and piece together a potential solution
for your problem from them. This is not just a matter of finding complaints
with many similar attributes to yours: for example, whether you’re using
your printer with Windows or Mac OS X may cause very different settings
of the system and the printer to become relevant. And once you’ve found
the most relevant cases, the sequence of steps needed to solve your problem
may be a combination of steps from different cases, with some further
tweaks specific to yours.



Help desks are currently the most popular application of case-based
reasoning. Most still employ a human intermediary, but IPsoft’s Eliza talks
directly to the customer. Eliza, who comes complete with a 3-D interactive
video persona, has solved over twenty million customer problems to date,
mostly for blue-chip US companies. “Greetings from Robotistan,
outsourcing’s cheapest new destination,” is how an outsourcing blog
recently put it. And, just as outsourcing keeps climbing the skills ladder, so
does analogical learning. The first robo-lawyers that argue for a particular
verdict based on precedents have already been built. One such system
correctly predicted the outcomes of over 90 percent of the trade secret cases
it examined. Perhaps in a future cyber-court, in session somewhere on
Amazon’s cloud, a robo-lawyer will beat the speeding ticket that RoboCop
issued to your driverless car, all while you go to the beach, and Leibniz’s
dream of reducing all argument to calculation will finally have come true.

Arguably even higher up in the skills ladder is music composition.
David Cope, an emeritus professor of music at the University of California,
Santa Cruz, designed an algorithm that creates new music in the style of
famous composers by selecting and recombining short passages from their
work. At a conference I attended some years ago, he played three “Mozart”
pieces: one by the real Mozart, one by a human composer imitating Mozart,
and one by his system. He then asked the audience to vote for the authentic
Amadeus. Wolfgang won, but the computer beat the human imitator. This
being an AI conference, the audience was delighted. Audiences at other
events were less happy. One listener angrily accused Cope of ruining music
for him. If Cope is right, creativity—the ultimate unfathomable—boils
down to analogy and recombination. Judge for yourself by googling “david
cope mp3.”

Analogizers’ neatest trick, however, is learning across problem
domains. Humans do it all the time: an executive can move from, say, a
media company to a consumer-products one without starting from scratch
because many of the same management skills still apply. Wall Street hires
lots of physicists because physical and financial problems, although
superficially very different, often have a similar mathematical structure. Yet
all the learners we’ve seen so far would fall flat if we, say, trained them to
predict Brownian motion and then asked them to predict the stock market.
Stock prices and the velocities of particles suspended in a fluid are just



different variables, so the learner wouldn’t even know where to start. But
analogizers can do this using structure mapping, an algorithm invented by
Dedre Gentner, a psychologist at Northwestern University. Structure
mapping takes two descriptions, finds a coherent correspondence between
some of their parts and relations, and then, based on that correspondence,
transfers further properties from one structure to the other. For example, if
the structures are the solar system and the atom, we can map planets to
electrons and the sun to the nucleus and conclude, as Bohr did, that
electrons revolve around the nucleus. The truth is more subtle, of course,
and we often need to refine analogies after we make them. But being able to
learn from a single example like this is surely a key attribute of a universal
learner. When we’re confronted with a new type of cancer—and that
happens all the time because cancers keep mutating—the models we’ve
learned for previous ones don’t apply. Neither do we have time to gather
data on the new cancer from a lot of patients; there may be only one, and
she urgently needs a cure. Our best hope is then to compare the new cancer
with known ones and try to find one whose behavior is similar enough that
some of the same lines of attack will work.

Is there anything analogy can’t do? Not according to Douglas
Hofstadter, cognitive scientist and author of Gödel, Escher, Bach: An
Eternal Golden Braid. Hofstadter, who looks a bit like the Grinch’s good
twin, is probably the world’s best-known analogizer. In their book Surfaces
and Essences: Analogy as the Fuel and Fire of Thinking, Hofstadter and his
collaborator Emmanuel Sander argue passionately that all intelligent
behavior reduces to analogy. Everything we learn or discover, from the
meaning of everyday words like mother and play to the brilliant insights of
geniuses like Albert Einstein and Évariste Galois, is the result of analogy in
action. When little Tim sees women looking after other children like his
mother looks after him, he generalizes the concept “mommy” to mean
anyone’s mommy, not just his. That in turn is a springboard for
understanding things like “mother ship” and “Mother Nature.” Einstein’s
“happiest thought,” out of which grew the general theory of relativity, was
an analogy between gravity and acceleration: if you’re in an elevator, you
can’t tell whether your weight is due to one or the other because their
effects are the same. We swim in a vast ocean of analogies, which we both
manipulate for our ends and are unwittingly manipulated by. Books have



analogies on every page (like the title of this section, or the previous one’s).
Gödel, Escher, Bach is an extended analogy between Gödel’s theorem,
Escher’s art, and Bach’s music. If the Master Algorithm is not analogy, it
must surely be something like it.

Rise and shine

Cognitive science has seen a long-running debate between symbolists and
analogizers. Symbolists point to something they can model that analogizers
can’t; then analogizers figure out how to do it, come up with something
they can model that symbolists can’t, and the cycle repeats. Instance-based
learning, as it’s sometimes called, is supposedly better for modeling how we
remember specific episodes in our lives; rules are the putative choice for
reasoning with abstract concepts like “work” and “love.” But when I was a
graduate student, it struck me that these two are really just points on a
continuum, and we should be able to learn across all of it. Rules are in
effect generalized instances where we’ve “forgotten” some attributes
because they didn’t matter. Conversely, instances are very specific rules,
with a condition on every attribute. As we go through life, similar episodes
gradually become abstracted into rule-based structures, like “eating at a
restaurant.” You know that going to a restaurant involves ordering from a
menu and leaving a tip, and you follow those “rules of conduct” every time
you eat out, but you probably don’t remember the specific restaurants where
you first became aware of them.

In my PhD thesis, I designed an algorithm that unifies instance-based
and rule-based learning in this way. A rule doesn’t just match entities that
satisfy all its preconditions; it matches any entity that’s more similar to it
than to any other rule, in the sense that it comes closer to satisfying its
conditions. For instance, someone with a cholesterol level of 220 mg/dL
comes closer than someone with 200 mg/dL to matching the rule If your
cholesterol is above 240 mg/dL, you’re at risk of a heart attack. RISE, as I
called the algorithm, learns by starting with each training example as a rule
and then gradually generalizing each rule to absorb the nearest examples.
The end result is usually a combination of very general rules, which
between them match most examples, with more specific rules that match



exceptions to those, and so on all the way to a “long tail” of specific
memories. RISE made better predictions than the best rule-based and
instance-based learners of the time, and my experiments showed that this
was precisely because it combined the best features of both. Rules can be
matched analogically, and so they’re no longer brittle. Instances can select
different features in different regions of space and so combat the curse of
dimensionality much better than nearest-neighbor, which can only select the
same features everywhere.

RISE was a step toward the Master Algorithm because it combined
symbolic and analogical learning. It was only a small step, however,
because it doesn’t have the full power of either of those paradigms, and it’s
still missing the other three. RISE’s rules can’t be chained together in
different ways; each rule just predicts the class of an example directly from
its attributes. Also, the rules can’t talk about more than one entity at a time;
for example, RISE can’t express a rule like If A has the flu and B was in
contact with A, B may have the flu as well. On the analogical side, RISE
just generalizes the simple nearest-neighbor algorithm; it can’t learn across
domains using structure mapping or some such strategy. At the time I
finished my PhD, I didn’t see a way to bring together in one algorithm the
full power of all the five paradigms, and I set the problem aside for a while.
But as I applied machine learning to problems like word-of-mouth
marketing, data integration, programming by example, and website
personalization, I kept seeing how each of the paradigms provided only part
of the solution. There had to be a better way.

And so we have traveled through the territories of the five tribes,
gathering their insights, negotiating the border crossings, wondering how
the pieces might fit together. We know immensely more now than when we
started out. But something is still missing. There’s a gaping hole in the
center of the puzzle, making it hard to see the pattern. The problem is that
all the learners we’ve seen so far need a teacher to tell them the right
answer. They can’t learn to distinguish tumor cells from healthy ones unless
someone labels them “tumor” or “healthy.” But humans can learn without a
teacher; they do it from the day they’re born. Like Frodo at the gates of
Mordor, our long journey will have been in vain if we don’t find a way
around this barrier. But there is a path past the ramparts and the guards, and
the prize is near. Follow me . . .



CHAPTER EIGHT

Learning Without a Teacher

If you’re a parent, the entire mystery of learning unfolds before your eyes in
the first three years of your child’s life. A newborn baby can’t talk, walk,
recognize objects, or even understand that a object continues to exist when
the baby isn’t looking at it. But month after month, in steps large and small,
by trial and error and great conceptual leaps, the child figures out how the
world works, how people behave, and how to communicate. By a child’s
third birthday, all this learning has coalesced into a stable self, a stream of
consciousness that will continue throughout life. Older children and adults
can time-travel, aka remember things past, but only so far back. If we could
revisit ourselves as infants and toddlers and see the world again through
those newborn eyes, much of what puzzles us about learning—even about
existence itself—would suddenly seem obvious. But as it is, the greatest
mystery in the universe is not how it begins or ends, or what infinitesimal
threads it’s woven from, it’s what goes on in a small child’s mind: how a
pound of gray jelly can grow into the seat of consciousness.

The scientific study of children’s learning is still young, having begun
in earnest only a few decades ago, but it has already come remarkably far.
Infants can’t answer questionnaires or follow experimental protocols, but
we can infer a surprising amount about what goes on in their minds by
videotaping and studying their reactions during experiments. A coherent
picture emerges: an infant’s mind isn’t just the unfolding of a predefined



genetic program or a biological device for recording correlations in sense
data; rather, the infant’s mind actively synthesizes his or her reality, and this
reality changes quite radically over time.

Increasingly, and most relevant to us, cognitive scientists express their
theories of children’s learning in the form of algorithms. Many machine-
learning researchers take inspiration from this. Everything we need is right
there in a child’s mind, if only we can somehow capture its essence in
computer code. Some researchers even argue that the way to create
intelligent machines is to build a robot baby and let him experience the
world as a human baby does. We, the researchers, would be his parents
(perhaps even with an assist from crowdsourcing, giving a whole new
meaning to the term global village). Little Robby—let’s call him that, in
honor of the chubby but much taller robot in Forbidden Planet—is the only
robot baby we’ll ever have to build. Once he has learned everything a three-
year-old knows, the AI problem is solved. We can copy the contents of his
mind into as many other robots as we like, and they’ll take it from there, the
hardest part already accomplished.

The question, of course, is what algorithm should be running in Robby’s
brain at birth. Researchers influenced by child psychology look askance at
neural networks because the microscopic workings of a neuron seem a
million miles from the sophistication of even a child’s most basic behaviors,
like reaching for an object, grasping it, and inspecting it with wide, curious
eyes. We need to model the child’s learning at a higher level of abstraction,
lest we miss the planet for the trees. Above all, even though children
certainly get plenty of help from their parents, they learn mostly on their
own, without supervision, and that’s what seems most miraculous. None of
the algorithms we’ve seen so far can do it, but we’re about to see several
that can—bringing us one step closer to the Master Algorithm.

Putting together birds of a feather

We flip the “on” switch, and Robby’s video eyes open for the very first
time. At once he’s flooded with what William James memorably called the
“blooming, buzzing confusion” of the world. With new images streaming in
at a rate of dozens per second, one of the first things he must do is learn to



organize them into larger chunks. The real world is made up of objects that
persist over time, not random pixels changing arbitrarily from one moment
to the next. Mommy isn’t replaced by a smaller Mommy when she walks
away. Putting a dish on the table doesn’t make a white hole in it. A young
baby is not surprised if a teddy bear passes behind a screen and reemerges
as an airplane, but a one-year-old is. Somehow, he’s figured out that teddy
bears are different from airplanes and don’t spontaneously transmute. Soon
afterward, he’ll figure out that some objects are more alike than others and
start forming categories. Given a pile of toy horses and pencils to play with,
a nine-month-old doesn’t think to sort them into separate piles of horses and
pencils, but an eighteen-month-old does.

Organizing the world into objects and categories is second nature to an
adult but not to an infant, and even less to Robby the robot. We could
endow him with a visual cortex in the form of a multilayer perceptron and
show him labeled examples of all the objects and categories in the world—
here’s Mommy close up, here’s Mommy far away—but we’d never be
done. What we need is an algorithm that will spontaneously group together
similar objects, or different images of the same object. This is the problem
of clustering, and it’s one of the most intensively studied in machine
learning.

A cluster is a set of similar entities, or at a minimum, a set of entities
that are more similar to each other than to members of other clusters. It’s
human nature to cluster things, and it’s often the first step on the road to
knowledge. When we look up at the night sky, we can’t help seeing clusters
of stars, and then we fancifully name them after shapes they resemble.
Noticing that certain sets of elements had very similar chemical properties
was the first step in discovering the periodic table. Each of those sets is now
a column in it. Everything we perceive is a cluster, from friends’ faces to
speech sounds. Without them, we’d be lost: children can’t learn a language
before they learn to identify the characteristic sounds it’s made of, which
they do in their first year of life, and all the words they then learn mean
nothing without the clusters of real things they refer to. Confronted with big
data—a very large number of objects—our first recourse is to group them
into a more manageable number of clusters. A whole market is too coarse,
and individual customers are too fine, so marketers divide markets into
segments, which is their word for clusters. Even objects themselves are at



bottom clusters of their observations, from all the different angles light falls
on Mommy’s face to all the different sound waves baby hears as the word
mommy. And we can’t think without objects, which is perhaps why
quantum mechanics is so unintuitive: we want to visualize the subatomic
world as particles colliding, or waves interfering, but it’s not really either.

We can represent a cluster by its prototypical element: the image of your
mother that you see with your mind’s eye or the quintessential cat, sports
car, country house, or tropical beach. Peoria, Illinois, is the average
American town, according to marketing lore. Bob Burns, a fifty-three-year-
old building maintenance supervisor in Windham, Connecticut, is
America’s most ordinary citizen—at least if you believe Kevin O’Keefe’s
book The Average American. Anything described by numeric attributes—
say, people’s heights, weights, girths, shoe sizes, hair lengths, and so on—
makes it easy to compute the average member: his height is the average
height of all the cluster members, his weight the average of all the weights,
and so on. For categorical attributes, like gender, hair color, zip code, or
favorite sport, the “average” is simply the most frequent value. The average
member described by this set of attributes may or may not be a real person,
but either way it’s a useful reference to have: if you’re brainstorming how
to market a new product, picturing Peoria as the town where you’re
launching it or Bob Burns as your target customer beats thinking of abstract
entities like “the market” or “the consumer.”

As useful as such averages are, we can do even better; indeed the whole
point of big data and machine learning is to avoid thinking at such a coarse
level. Our clusters can be very specialized sets of people or even different
aspects of the same person: Alice buying books for work, for leisure, or as
Christmas presents; Alice in a good mood versus Alice with the blues.
Amazon would like to distinguish the books Alice buys for herself from the
ones she buys for her boyfriend, as this would allow it to make appropriate
recommendations at appropriate times. Unfortunately, purchases don’t
come labeled with “self-gift” or “for Bob,” and Amazon needs to figure out
how to group them.

Suppose the entities in Robby’s world fall into five clusters (people,
furniture, toys, food, and animals), but we don’t know which things belong
to which clusters. This is the type of problem that Robby faces when we
switch him on. One simple option for sorting entities into clusters is to pick



five random objects as the cluster prototypes and then compare each entity
with each prototype and assign it to the most similar prototype’s cluster. (As
in analogical learning, the choice of similarity measure is important. If the
attributes are numeric, it can be as simple as Euclidean distance, but there
are many other options.) We now need to update the prototypes. After all, a
cluster’s prototype is supposed to be the average of its members, and
although that was necessarily the case when each cluster had only one
member, it generally won’t be after we have added a bunch of new
members to each cluster. So for each cluster, we compute the average
properties of its members and make that the new prototype. At this point,
we need to update the cluster memberships again: since the prototypes have
moved, the closest prototype to a given entity may also have changed. Let’s
imagine the prototype of one category was a teddy bear and the prototype of
another was a banana. Perhaps on our first run we grouped an animal
cracker with the bear, but on the second we grouped it with the banana. An
animal cracker initially looked like a toy, but now it looks more like food.
Once I reclassify animal crackers in the banana group, perhaps the
prototypical item for that group also changes, from a banana to a cookie.
This virtuous cycle, with entities assigned to better and better clusters,
continues until the assignment of entities to clusters doesn’t change (and
therefore neither do the cluster prototypes).

This algorithm is called k-means, and its origins go back to the fifties.
It’s nice and simple and quite popular, but it has several shortcomings, some
of which are easier to solve than others. For one, we need to fix the number
of clusters in advance, but in the real world, Robby is always running into
new kinds of objects. One option is to let an object start a new cluster if it’s
too different from the existing ones. Another is to allow clusters to split and
merge as we go along. Either way, we probably want the algorithm to
include a preference for fewer clusters, lest we wind up with each object as
its own cluster (hard to beat if we want clusters to consist of similar objects,
but clearly not the goal).

A bigger issue is that k-means only works if the clusters are easy to tell
apart: each cluster is roughly a spherical blob in hyperspace, the blobs are
far from each other, and they all have similar volumes and include a similar
number of objects. If any of these fails, ugly things can happen: an
elongated cluster is split into two different ones, a smaller cluster is



absorbed into a larger one nearby, and so on. Luckily, there’s a better
option.

Suppose we decide that letting Robby roam around in the real world is
too slow and cumbersome a way to learn. Instead, like a would-be pilot
learning in a flight simulator, we’ll have him look at computer-generated
images. We know what clusters the images come from, but we’re not telling
Robby. Instead, we create each image by first choosing a cluster at random
(toys, say) and then synthesizing an example of that cluster (small, fluffy,
brown teddy bear with big black eyes, round ears, and a bow tie). We also
choose the properties of the example at random: the size comes from a
normal distribution with a mean of ten inches, the fur is brown with 80
percent probability and white otherwise, and so on. After Robby has seen
lots of images generated in this way, he should have learned to cluster them
into people, furniture, toys, and so on, because people are more like people
than furniture and so on. But the interesting question is: If we look at it
from Robby’s point of view, what’s the best algorithm to discover the
clusters? The answer is surprising: Naïve Bayes, which we first met as an
algorithm for supervised learning. The difference is that now Robby doesn’t
know the classes, so he’ll have to guess them!

Clearly, if Robby did know them, it would be smooth sailing: as in
Naïve Bayes, each cluster would be defined by its probability (17 percent of
the objects generated were toys), and by the probability distribution of each
attribute among the cluster’s members (for example, 80 percent of the toys
are brown). Robby could estimate these probabilities just by counting the
number of toys in the data, the number of brown toys, and so on. But in
order to do that, we would need to know which objects are toys. This seems
like a tough nut to crack, but it turns out we already know how to do it as
well. If Robby has a Naïve Bayes classifier and needs to figure out the class
of a new object, all he needs to do is apply the classifier and compute the
probability of each class given the object’s attributes. (Small, fluffy, brown,
bear-like, with big eyes, and a bow tie? Probably a toy but possibly an
animal.)

So Robby is faced with a chicken-and-egg problem: if he knew the
objects’ classes, he could learn the classes’ models by counting, and if he
knew the models, he could infer the objects’ classes. We seem to be stuck
again, but far from it: just start by guessing a class for each object any way



you want—even at random—and you’re off to the races. From those classes
and the data, you can learn the class models; based on these models you can
reinfer the classes and so on. At first sight this looks like a crazy scheme: it
may never finish, circling forever between inferring the classes from the
models and the models from the classes, and even if it does finish, there’s
no reason to believe it will settle on meaningful clusters. But in 1977 a trio
of Harvard statisticians (Arthur Dempster, Nan Laird, and Donald Rubin)
showed that the crazy scheme actually works: every time we go around the
loop, the cluster model gets better, and the loop ends when the model is a
local maximum of the likelihood. They called this scheme the EM
algorithm, where the E stands for expectation (inferring the expected
probabilities) and the M for maximization (estimating the maximum-
likelihood parameters). They also showed that many previous algorithms
were special cases of EM. For example, to learn hidden Markov models, we
alternate between inferring the hidden states and estimating the transition
and observation probabilities based on them. Whenever we want to learn a
statistical model but are missing some crucial information (e.g., the classes
of the examples), we can use EM. This makes it one of the most popular
algorithms in all of machine learning.

You might have noticed a certain resemblance between k-means and
EM, in that they both alternate between assigning entities to clusters and
updating the clusters’ descriptions. This is not an accident: k-means itself is
a special case of EM, which you get when all the attributes have “narrow”
normal distributions, that is, normal distributions with very small variance.
When clusters overlap a lot, an entity could belong to, say, cluster A with a
probability of 0.7 and cluster B with a probability of 0.3, and we can’t just
decide that it belongs to cluster A without losing information. EM takes this
into account by fractionally assigning the entity to the two clusters and
updating their descriptions accordingly. If the distributions are very
concentrated, however, the probability that an entity belongs to the nearest
cluster is always approximately 1, and all we have to do is assign entities to
clusters and average the entities in each cluster to obtain its mean, which is
just the k-means algorithm.

So far we’ve only seen how to learn one level of clusters, but the world
is, of course, much richer than that, with clusters within clusters all the way
down to individual objects: living things cluster into plants and animals,



animals into mammals, birds, fishes, and so on, all the way down to Fido
the family dog. No problem: once we’ve learned one set of clusters, we can
treat them as objects and cluster them in turn, and so on up to the cluster of
all things. Alternatively, we can start with a coarse clustering and then
further divide each cluster into subclusters: Robby’s toys divide into stuffed
animals, constructions toys, and so on; stuffed animals into teddy bears,
plush kittens, and so on. Children seem to start out in the middle and then
work their way up and down. For example, they learn dog before they learn
animal or beagle. This might be a good strategy for Robby, as well.

Discovering the shape of the data

Whether it’s data pouring into Robby’s brain through his senses or the click
streams of millions of Amazon customers, grouping a large number of
entities into a smaller number of clusters is only half the battle. The other
half is shortening the description of each entity. The very first picture of
Mom that Robby sees comprises perhaps a million pixels, each with its own
color, but you hardly need a million variables to describe a face. Likewise,
each thing you click on at Amazon provides an atom of information about
you, but what Amazon would really like to know is your likes and dislikes,
not your clicks. The former, which are fairly stable, are somehow immanent
in the latter, which grow without limit as you use the site. Little by little, all
those clicks should add up to a picture of your taste, in the same way that all
those pixels add up to a picture of your face. The question is how to do the
adding.

A face has only about fifty muscles, so fifty numbers should suffice to
describe all possible expressions, with plenty of room to spare. The shape
of the eyes, nose, mouth, and so on—the features that let you tell one
person from another—shouldn’t take more than a few dozen numbers,
either. After all, with only ten choices for each facial feature, a police artist
can put together a sketch of a suspect that’s good enough to recognize him.
You can add a few more numbers to specify lighting and pose, but that’s
about it. So if you give me a hundred numbers or so, that should be enough
to re-create a picture of a face. Conversely, Robby’s brain should be able to



take in a picture of a face and quickly reduce it to the hundred numbers that
really matter.

Machine learners call this process dimensionality reduction because it
reduces a large number of visible dimensions (the pixels) to a few implicit
ones (expression, facial features). Dimensionality reduction is essential for
coping with big data—like the data coming in through your senses every
second. A picture may be worth a thousand words, but it’s also a million
times more costly to process and remember. Yet somehow your visual
cortex does a pretty good job of whittling it down to a manageable amount
of information, enough to navigate the world, recognize people and things,
and remember what you saw. It’s one of the great miracles of cognition and
so natural you’re not even conscious of doing it.

When you arrange books on a shelf so that books on similar topics are
close to each other, you’re doing a kind of dimensionality reduction, from
the vast space of topics to the one-dimensional shelf. Unavoidably, some
books that are closely related will wind up far apart on the shelf, but you
can still order them in a way that minimizes such occurrences. That’s what
dimensionality reduction algorithms do.

Suppose I give you the GPS coordinates of all the shops in Palo Alto,
California, and you plot a few of them on a piece of paper:



You can probably tell just by looking at this plot that the main street in Palo
Alto runs southwest–northeast. You didn’t draw a street, but you can intuit
that it’s there from the fact that all the points fall along a straight line (or
close to it—they can be on different sides of the street). Indeed, the street is
University Avenue, and if you want to shop or eat out in Palo Alto, that’s
the place to go. As a bonus, once you know that the shops are on University
Avenue, you don’t need two numbers to locate them, just one: the street
number (or, if you wanted to be really precise, the distance from the shop to
the Caltrain station, on the southwest corner, which is where University
Avenue begins).

If you plot more shops, you’ll probably notice that some are on cross
streets, a little bit off University Avenue, and a few are elsewhere entirely:

Nevertheless, it’s still the case that most shops are pretty close to University
Avenue, and if you were allowed only one number to locate a shop, its
distance from the Caltrain station along the avenue would be a pretty good
choice: after walking that distance, looking around is probably enough to
find the shop. So you’ve just reduced the dimensionality of “shop locations
in Palo Alto” from two to one.



Robby doesn’t have the benefit of your highly evolved visual system,
though, so if you want him to go fetch your dry cleaning from Elite
Cleaners and you only allow his map of Palo Alto to have one coordinate,
he needs an algorithm to “discover” University Avenue from the GPS
coordinates of the shops. The key to this is to notice that, if you put the
origin of the x,y plane at the average of the shops’ locations and slowly
rotate the axes, the shops are closest to the x axis when you’ve turned it by
about 60 degrees, that is, when it lines up with University Avenue:

This direction—known as the first principal component of the data—is also
the direction along which the spread of the data is greatest. (Notice how, if
you project the shops onto the x axis, they’re farther apart in the right figure
than in the left one.) After you’ve found the first principal component, you
can look for the second one, which in this case is the direction of greatest
variation at right angles to University Avenue. On a map, there’s only one
possible direction left (the direction of the cross streets). But if Palo Alto
was on a hillside, one or both of the two first principal components would
be partly uphill, and the third and last one would be up into the air. We can
apply the same idea to data in thousands or millions of dimensions, like
face images, successively looking for the directions of greatest variation
until the remaining variability is small, at which point we can stop. For
example, after rotating the axes in the figure above, most shops have y = 0,
so the average y is very small, and we don’t lose too much information by
ignoring the y coordinate altogether. And if we decide to keep y, surely z
(up into the air) is insignificant. As it turns out, the whole process of finding
the principal components can all be accomplished in one shot with a bit of



linear algebra. Best of all, a few dimensions often account for the bulk of
the variation in even very high-dimensional data. Even if that’s not the case,
eyeballing the data in the top two or three dimensions often yields a lot of
insight because it takes advantage of your visual system’s amazing powers
of perception.

Principal-component analysis (PCA), as this process is known, is one of
the key tools in the scientist’s toolkit. You could say PCA is to unsupervised
learning what linear regression is to the supervised variety. The famous
hockey-stick curve of global warming, for example, is the result of finding
the principal component of various temperature-related data series (tree
rings, ice cores, etc.) and assuming it’s the temperature. Biologists use PCA
to summarize the expression levels of thousands of different genes into a
few pathways. Psychologists have found that personality boils down to five
dimensions—extroversion, agreeableness, conscientiousness, neuroticism,
and openness to experience—which they can infer from your tweets and
blog posts. (Chimps supposedly have one more dimension—reactivity—but
Twitter data for them is not available.) Applying PCA to congressional
votes and poll data shows that, contrary to popular belief, politics is not
mainly about liberals versus conservatives. Rather, people differ along two
main dimensions: one for economic issues and one for social ones.
Collapsing these into a single axis mixes together populists and libertarians,
who are polar opposites, and creates the illusion of lots of moderates in the
middle. Trying to appeal to them is an unlikely winning strategy. On the
other hand, if liberals and libertarians overcame their mutual aversion, they
could ally themselves on social issues, where both favor individual
freedom.

When he grows up, Robby can use a variant of PCA to solve the
“cocktail party” problem, which is to pick out individual voices from the
babble of the crowd. A related method can help him learn to read. If each
word is a dimension, then a text is a point in the space of words, and the
main directions of that space turn out to be elements of meaning. For
example, President Obama and the White House are far apart in word space
but close together in meaning space, because they tend to appear in similar
contexts. Believe it or not, this type of analysis is all it takes for computers
to grade SAT essays as well as humans do. Netflix uses a similar idea.
Instead of just recommending movies that users with similar tastes liked, it



first projects both users and movies into a lower-dimensional “taste space”
and recommends a movie if it’s close to you in this space. That way it can
find movies for you that you never knew you’d love.

You’d probably be disappointed if you looked at the principal
components of a face data set, though. They’re not what you’d expect, such
as facial expressions or features, but more like ghostly faces, blurred
beyond recognition. This is because PCA is a linear algorithm, and so all
that the principal components can be is weighted pixel-by-pixel averages of
real faces. (Also known as eigenfaces because they’re eigenvectors of the
centered covariance matrix of the data—but I digress.) To really understand
faces, and most shapes in the world, we need something else: nonlinear
dimensionality reduction.

Suppose we zoom out from Palo Alto, and I give you the GPS
coordinates of the main cities in the Bay Area:

Again, you can probably surmise just by looking at this plot that the cities
are on a bay, and if you draw a line running through them, you can locate
each city using just one number: how far it is from San Francisco along that
line. But PCA can’t find this curve; instead, it draws a straight line running
down the middle of the bay, where there are no cities at all. Far from
elucidating the shape of the data, PCA obscures it.

Instead, imagine for a moment that we’re going to develop the Bay Area
from scratch. We’ve decided where each city will be located, and our
budget allows us to build a single road connecting them. Naturally, we lay
down a road that goes from San Francisco to San Bruno, from there to San



Mateo, and so on all the way to Oakland. This road is a pretty good one-
dimensional representation of the Bay Area and can be found by a simple
algorithm: build a road between each pair of nearby cities. Of course, in
general this will result in a network of roads, not a single road running by
every city. But we can force the latter by building the single road that best
approximates the network, in the sense that the distances between cities
along this road are as close as possible to the distances along the network.

One of the most popular algorithms for nonlinear dimensionality
reduction, called Isomap, does just this. It connects each data point in a
high-dimensional space (a face, say) to all nearby points (very similar
faces), computes the shortest distances between all pairs of points along the
resulting network and finds the reduced coordinates that best approximate
these distances. In contrast to PCA, faces’ coordinates in this space are
often quite meaningful: one may represent which direction the face is facing
(left profile, three quarters, head on, etc.); another how the face looks (very
sad, a little sad, neutral, happy, very happy, etc.); and so on. From
understanding motion in video to detecting emotion in speech, Isomap has a
surprising ability to zero in on the most important dimensions of complex
data.

Here’s an interesting experiment. Take the video stream from Robby’s
eyes, treat each frame as a point in the space of images, and reduce that set
of images to a single dimension. What will you discover? Time. Like a
librarian arranging books on a shelf, time places each image next to its most
similar ones. Perhaps our perception of it is just a natural result of our
brains’ dimensionality reduction prowess. In the road network of memory,
time is the main thoroughfare, and we soon find it. Time, in other words, is
the principal component of memory.

The hedonistic robot

Clustering and dimensionality reduction get us closer to human learning,
but there’s still something very important missing. Children don’t just
passively observe the world; they do things. They pick up objects they see,
play with them, run around, eat, cry, and ask questions. Even the most
advanced visual system is of no use to Robby if it doesn’t help him interact



with the environment. Robby needs to know not just what’s where but what
to do at each moment. In principle we could teach him using step-by-step
instructions, pairing sensor readings with the appropriate actions to take in
response, but this is viable only for narrow tasks. The actions you take
depend on your goals, not just whatever you are currently perceiving, and
those goals can be far in the future. Step-by-step supervision shouldn’t be
needed, in any case. Parents don’t teach their children to crawl, walk, or
run; they figure it out on their own. But none of the learning algorithms
we’ve seen so far can do this.

Humans do have one constant guide: their emotions. We seek pleasure
and avoid pain. When you touch a hot stove, you instinctively recoil. That’s
the easy part. The hard part is learning not to touch the stove in the first
place. That requires moving to avoid a sharp pain that you have not yet felt.
Your brain does this by associating the pain not just with the moment you
touch the stove, but with the actions leading up to it. Edward Thorndike
called this the law of effect: actions that lead to pleasure are more likely to
be repeated in the future; actions that lead to pain, less so. Pleasure travels
back through time, so to speak, and actions can eventually become
associated with effects that are quite remote from them. Humans can do this
kind of long-range reward seeking better than any other animal, and it’s
crucial to our success. In a famous experiment, children were presented
with a marshmallow and told that if they resisted eating it for a few
minutes, they could have two. The ones who succeeded went on to do better
in school and adult life. Perhaps less obviously, companies using machine
learning to improve their websites or their business practices face a similar
problem. A company may make a change that brings in more revenue in the
short term—like selling an inferior product that costs less to make for the
same price as the original superior product—but miss seeing that doing this
will lose customers in the longer term.

The learners we saw in the previous chapters are all guided by instant
gratification: every action, whether it’s flagging a spam e-mail or buying a
stock, gets an immediate reward or punishment from the teacher. But there’s
a whole subfield of machine learning dedicated to algorithms that explore
on their own, flail, hit on rewards, and figure out how to get them again in
the future, much like babies crawling around and putting things in their
mouths.



It’s called reinforcement learning, and your first housebot will probably
use it a lot. If you ask Robby to make eggs and bacon for you right after
you’ve unpacked him and turned him on, it may take a while. But then,
while you’re at work, he will explore the kitchen, noting where various
things are and what kind of stove you have. By the time you get back,
dinner will be ready.

An important precursor of reinforcement learning was a checkers-
playing program created by Arthur Samuel, an IBM researcher, in the
1950s. Board games are a great example of a reinforcement learning
problem: you have to make a long series of moves without any feedback,
and the whole reward or punishment comes at the very end, in the form of a
win or loss. Yet Samuel’s program was able to teach itself to play as well as
most humans. It did not directly learn which move to make in each board
position because that would have been too difficult. Rather, it learned how
to evaluate each board position—how likely am I to win starting from this
position?—and chose the move that led to the best position. Initially, the
only positions it knew how to evaluate were the final ones: a win, a tie, or a
loss. But once it knew that a certain position was a win, it also knew that
positions from which it could move to it were good, and so on. Thomas J.
Watson Sr., IBM’s president, predicted that when the program was
demonstrated IBM stock would go up by fifteen points. It did. The lesson
was not lost on IBM, which went on to build a chess champion and a
Jeopardy! one.

The notion that not all states have rewards (positive or negative) but
every state has a value is central to reinforcement learning. In board games,
only final positions have a reward (1, 0, or −1 for a win, tie, or loss, say).
Other positions give no immediate reward, but they have value in that they
can lead to rewards later. A chess position from which you can force
checkmate in some number of moves is practically as good as a win and
therefore has high value. We can propagate this kind of reasoning all the
way to good and bad opening moves, even if at that distance the connection
is far from obvious. In video games, the rewards are usually points, and the
value of a state is the number of points you can accumulate starting from
that state. In real life, a reward now is better than a reward later, so future
rewards can be discounted by some rate of return, like investments. Of
course, the rewards depend on what actions you choose, and the goal of



reinforcement learning is to always choose the action that leads to the
greatest rewards. Should you pick up the phone and ask your friend for a
date? It could be the start of a beautiful relationship or just the route to a
painful rejection. Even if your friend agrees to go on a date, that date may
turn out well or not. Somehow, you have to abstract over all the infinite
paths the future could take and make a decision now. Reinforcement
learning does that by estimating the value of each state—the sum total of
the rewards you can expect to get starting from that state—and choosing the
actions that maximize it.

Suppose you’re moving along a tunnel, Indiana Jones–like, and you
come to a fork. Your map says the left tunnel leads to a treasure and the
right one to a snake pit. The value of where you’re standing—right before
the fork—is the value of the treasure because you’ll choose to go left. If you
always choose the best possible action, then the value of a state differs from
the value of the succeeding state only by the immediate reward (if any) that
you’ll get by performing that action. If we know each state’s immediate
reward, we can use this observation to update the values of neighboring
states, and so on, until all states have consistent values. The treasure’s value
propagates backward along the tunnel until it reaches the fork and beyond.
Once you know the value of each state, you also know which action to
choose in each state (the one that maximizes the combination of immediate
reward and value of the resulting state). This much was worked out in the
1950s by the control theorist Richard Bellman. But the real problem in
reinforcement learning is when you don’t have a map of the territory. Then
your only choice is to explore and discover what rewards are where.
Sometimes you’ll discover a treasure, and other times you’ll fall into a
snake pit. Every time you take an action, you note the immediate reward
and the resulting state. That much could be done by supervised learning.
But you also update the value of the state you just came from to bring it into
line with the value you just observed, namely the reward you got plus the
value of the new state you’re in. Of course, that value may not yet be the
correct one, but if you wander around doing this for long enough, you’ll
eventually settle on the right values for all the states and the corresponding
actions. That’s reinforcement learning in a nutshell.

Notice how reinforcement learners face the same exploration-
exploitation dilemma we met in Chapter 5: to maximize your rewards,



you’ll naturally want to always pick the action leading to the highest-value
state, but that prevents you from potentially discovering even higher
rewards elsewhere. Reinforcement learners solve this by sometimes
choosing the best action and sometimes a random one. (The brain even
seems to have a “noise generator” for this purpose.) Early on, when there’s
much to learn, it makes sense to explore a lot. Once you know the territory,
it’s best to concentrate on exploiting it. That’s what humans do over their
lifetimes: children explore, and adults exploit (except for scientists, who are
eternal children). Children’s play is a lot more serious than it looks; if
evolution made a creature that is helpless and a heavy burden on its parents
for the first several years of its life, that extravagant cost must be for the
sake of an even bigger benefit. In effect, reinforcement learning is a kind of
speeded-up evolution—trying, discarding, and refining actions within a
single lifetime instead of over generations—and by that standard it’s
extremely efficient.

Research on reinforcement learning started in earnest in the early 1980s,
with the work of Rich Sutton and Andy Barto at the University of
Massachusetts. They felt that learning depends crucially on interacting with
the environment, but supervised algorithms didn’t capture this, and they
found inspiration instead in the psychology of animal learning. Sutton went
on to become the leading proponent of reinforcement learning. Another key
step happened in 1989, when Chris Watkins at Cambridge, initially
motivated by his experimental observations of children’s learning, arrived
at the modern formulation of reinforcement learning as optimal control in
an unknown environment.

Reinforcement learners as we’ve seen them so far are not very realistic,
however, because they don’t know what to do in a state unless they’ve been
there before, and in the real world no two situations are ever exactly alike.
We need to be able to generalize from previously visited states to new ones.
Luckily, we already know how to do that: all we have to do is wrap
reinforcement learning around one of the supervised learners we’ve met
before, such as a multilayer perceptron. The neural network’s job is now to
predict the value of a state, and the error signal for backpropagation is the
difference between the predicted and observed values. There’s a problem,
however. In supervised learning the target value for a state is always the
same, but in reinforcement learning, it keeps changing as a consequence of



updates to nearby states. As a result, reinforcement learning with
generalization often fails to settle on a stable solution, unless the inner
learner is something very simple, like a linear function. Nevertheless,
reinforcement learning with neural networks has had some notable
successes. An early one was a human-level backgammon player. More
recently, a reinforcement learner from DeepMind, a London-based startup,
beat an expert human player at Pong and other simple arcade games. It used
a deep network to predict actions’ values from the console screen’s raw
pixels. With its end-to-end vision, learning, and control, the system bore at
least a passing resemblance to an artificial brain. This may help explain
why Google paid half a billion dollars for DeepMind, a company with no
products, no revenues, and few employees.

Gaming aside, researchers have used reinforcement learning to balance
poles, control stick-figure gymnasts, park cars backward, fly helicopters
upside down, manage automated telephone dialogues, assign channels in
cell phone networks, dispatch elevators, schedule space-shuttle cargo
loading, and much else. Reinforcement learning has also influenced
psychology and neuroscience. The brain does it, using the neurotransmitter
dopamine to propagate differences between expected and actual rewards.
Reinforcement learning explains Pavlovian conditioning, but unlike
behaviorism, it allows animals to have internal mental states. Foraging bees
use it, as do mice finding cheese in mazes. Your daily life is a stream of
little-noticed miracles made possible in part by reinforcement learning. You
get up, get dressed, eat breakfast, and drive to work, all the while thinking
about something else. Below the surface, reinforcement learning
continually orchestrates and fine-tunes this prodigious symphony of motion.
Snippets of reinforcement learning, also known as habits, make up most of
what you do. You feel hungry, walk to the fridge, and grab a snack. As
Charles Duhigg shows in The Power of Habit, understanding and
controlling this cycle of cue, routine, and reward is key to success, not just
for individuals but for businesses and even whole societies.

Of reinforcement learning’s founders, Rich Sutton is the most gung ho.
For him, reinforcement learning is the Master Algorithm and solving it is
tantamount to solving AI. Chris Watkins, on the other hand, is dissatisfied.
He sees many things children can do that reinforcement learners can’t:
solve problems, solve them better after a few attempts, make plans, acquire



increasingly abstract knowledge. Luckily, we also have learning algorithms
for these higher-level abilities, the most important of which is chunking.

Practice makes perfect

To learn is to get better with practice. You may barely remember it now, but
learning to tie your shoelaces was really hard. At first you couldn’t do it at
all, despite your five years of age. Then your laces probably came undone
faster than you could tie them. But little by little you learned to tie them
faster and better until it became completely automatic. The same happens
with lots of other things, like crawling, walking, running, riding a bike, and
driving a car; reading, writing, and arithmetic; playing an instrument and
practicing a sport; cooking and using a computer. Ironically, you learn the
most when it’s most painful: early on, when every step is difficult, you keep
failing, and even when you succeed, the results are not very pretty. After
you’ve mastered your golf swing or tennis serve, you can spend years
perfecting it, but all those years make less difference than the first few
weeks did. You get better with practice, but not at a constant rate: at first
you improve quickly, then not so quickly, then very slowly. Whether it’s
playing games or the guitar, the curve of performance improvement over
time—how well you do something or how long it takes you to do it—has a
very specific form:



This type of curve is called a power law, because performance varies as
time raised to some negative power. For example, in the figure above, time
to completion is proportional to the number of trials raised to minus two (or
equivalently, one over the number of trials squared). Pretty much every
human skill follows a power law, with different powers for different skills.
(In contrast, Windows never gets faster with practice—something for
Microsoft to work on.)

In 1979, Allen Newell and Paul Rosenbloom started wondering what
could be the reason for this so-called power law of practice. Newell was
one of the founders of AI and a leading cognitive psychologist, and
Rosenbloom was one of his graduate students at Carnegie Mellon
University. At the time, none of the existing models of practice could
explain the power law. Newell and Rosenbloom suspected it might have
something to do with chunking, a concept from the psychology of
perception and memory. We perceive and remember things in chunks, and
we can only hold so many chunks in short-term memory at any given time
(seven plus or minus two, according to the classic paper by George Miller).
Crucially, grouping things into chunks allows us to process much more
information than we otherwise could. That’s why telephone numbers have
hyphens: 1-723-458-3897 is much easier to remember than 17234583897.



Herbert Simon, Newell’s longtime collaborator and AI cofounder, had
earlier found that the main difference between novice and expert chess
players is that novices perceive chess positions one piece at a time while
experts see larger patterns involving multiple pieces. Getting better at chess
mainly involves acquiring more and larger such chunks. Newell and
Rosenbloom hypothesized that a similar process is at work in all skill
acquisition, not just chess.

In perception and memory, a chunk is just a symbol that stands for a
pattern of other symbols, like AI stands for artificial intelligence. Newell
and Rosenbloom adapted this notion to the theory of problem solving that
Newell and Simon had developed earlier. Newell and Simon asked
experimental subjects to solve problems—for example, derive one
mathematical formula from another on the blackboard—while narrating
aloud how they were going about it. They found that humans solve
problems by decomposing them into subproblems, subsubproblems, and so
on and systematically reducing the differences between the initial state (the
first formula, say) and the goal state (the second formula). Doing so
requires searching for a sequence of actions that will work, however, and
that takes time. Newell and Rosenbloom’s hypothesis was that each time we
solve a subproblem, we form a chunk that allows us to go directly from the
state before we solve it to the state after. A chunk in this sense has two
parts: the stimulus (a pattern you recognize in the external world or in your
short-term memory) and the response (the sequence of actions you execute
as a result). Once you’ve learned a chunk, you store it in long-term
memory. Next time you have to solve the same subproblem, you can just
apply the chunk, and save the time spent searching. This happens at all
levels until you have a chunk for the whole problem and can solve it
automatically. To tie your shoelaces, you tie the starting knot, make a loop
with one end, wrap the other end around it, and pull it through the hole in
the middle. Each of these is far from trivial for a five-year-old, but once
you’ve acquired the corresponding chunks, you’re almost there.

Rosenbloom and Newell set their chunking program to work on a series
of problems, measured the time it took in each trial, and lo and behold, out
popped a series of power law curves. But that was only the beginning. Next
they incorporated chunking into Soar, a general theory of cognition that
Newell had been working on with John Laird, another one of his students.



Instead of working only within a predefined hierarchy of goals, the Soar
program could define and solve a new subproblem every time it hit a snag.
Once it formed a new chunk, Soar generalized it to apply to similar
problems, in a manner similar to inverse deduction. Chunking in Soar
turned out to be a good model of lots of learning phenomena besides the
power law of practice. It could even be applied to learning new knowledge
by chunking data and analogies. This led Newell, Rosenbloom, and Laird to
hypothesize that chunking is the only mechanism needed for learning—in
other words, the Master Algorithm.

Being classic AI types, Newell, Simon, and their students and followers
were strong believers in the primacy of problem solving. If the problem
solver is powerful, the learner can piggyback on it and be simple. Indeed,
learning is just another kind of problem solving. Newell and company made
a concerted effort to reduce all learning to chunking and all cognition to
Soar, but in the end they failed. One problem was that, as the problem
solver learned more chunks, and more complicated ones, the cost of trying
them often became so high that the program got slower instead of faster.
Somehow humans avoid this, but so far researchers in this area have not
figured out how. On top of that, trying to reduce reinforcement learning,
supervised learning, and everything else to chunking ultimately created
more problems than it solved. Eventually, the Soar researchers conceded
defeat and incorporated those other types of learning into Soar as separate
mechanisms. Nevertheless, chunking remains a preeminent example of a
learning algorithm inspired by psychology, and the true Master Algorithm,
whatever it turns out to be, must surely share its ability to improve with
practice.

Chunking and reinforcement learning are not as widely used in business
as supervised learning, clustering, or dimensionality reduction, but a
simpler type of learning by interacting with the environment is: learning the
effects of your actions (and acting accordingly). If the background color of
your e-commerce site’s home page is currently blue and you’re wondering
whether making it red would increase sales, try it out on a hundred
thousand randomly chosen customers and compare the results with those of
the regular site. This technique, called A/B testing, was at first used mainly
in drug trials but has since spread to many fields where data can be gathered
on demand, from marketing to foreign aid. It can also be generalized to try



many combinations of changes at once, without losing track of which
changes lead to which gains (or losses). Companies like Amazon and
Google swear by it; you’ve probably participated in thousands of A/B tests
without realizing it. A/B testing gives the lie to the oft-heard criticism that
big data is only good for finding correlations, not causation. Philosophical
fine points aside, learning causality is learning the effects of your actions,
and anyone with a stream of data they can affect can do it—from a one-
year-old splashing around in the bathtub to a president campaigning for
reelection.

Learning to relate

If we endow Robby the robot with all the learning abilities we’ve seen so
far in this book, he’ll be pretty smart but still a bit autistic. He’ll see the
world as a bunch of separate objects, which he can identify, manipulate, and
even make predictions about, but he won’t understand that the world is a
web of interconnections. Robby the doctor would be very good at
diagnosing someone with the flu based on his symptoms but unable to
suspect that the patient has swine flu because he has been in contact with
someone infected with it. Before Google, search engines decided whether a
web page was relevant to your query by looking at its content—what else?
Brin and Page’s insight was that the strongest sign a page is relevant is that
relevant pages link to it. Similarly, if you want to predict whether a teenager
is at risk of starting to smoke, by far the best thing you can do is check
whether her close friends smoke. An enzyme’s shape is as inseparable from
the shapes of the molecules it brings together as a lock is from its key.
Predator and prey have deeply entwined properties, each evolved to defeat
the other’s properties. In all of these cases, the best way to understand an
entity—whether it’s a person, an animal, a web page, or a molecule—is to
understand how it relates to other entities. This requires a new kind of
learning that doesn’t treat the data as a random sample of unrelated objects
but as a glimpse into a complex network. Nodes in the network interact;
what you do to one affects the others and comes back to affect you.
Relational learners, as they’re called, may not quite have social intelligence,
but they’re the next best thing. In traditional statistical learning, every man



is an island, entire of itself. In relational learning, every man is a piece of
the continent, a part of the main. Humans are relational learners, wired to
connect, and if we want Robby to grow into a perceptive, socially adept
robot, we need to wire him to connect, too.

The first difficulty we face is that, when the data is all one big network,
we no longer seem to have many examples to learn from, just one—and
that’s not enough. Naïve Bayes learns that a fever is a symptom of the flu
by counting the number of fever-stricken flu patients. If it could only see
one patient, it would either conclude that flu always causes fever or that it
never does, both of which are wrong. We would like to learn that the flu is
contagious by looking at the pattern of infections in a social network—a
clump of infected people here, a clump of uninfected ones there—but we
only have one pattern to look at, even if it’s in a network of seven billion
people, so it’s not clear how to generalize. The key is to notice that,
embedded in that big network, we have many examples of pairs of people.
If acquaintances are more likely to both have the flu than pairs of people
who have never met, then being acquainted with a flu patient makes you
more likely to be one as well. Unfortunately, however, we can’t just count
how many pairs of acquaintances in the data both have the flu and turn
those counts into probabilities. This is because a person has many
acquaintances, and all the pairwise probabilities don’t add up to a coherent
model that lets us, for example, compute how likely someone is to have the
flu given which of their acquaintances do. We didn’t have this problem
when the examples were all separate, and we wouldn’t have it in, say, a
society of childless couples, each living on their own desert island. But
that’s not the real world, and there wouldn’t be any epidemics in it, anyway.

The solution is to have a set of features and learn their weights, as in
Markov networks. For every person X, we can have the feature X has the
flu; for every pair of acquaintances X and Y, the feature X and Y both have
the flu; and so on. As in Markov networks, the maximum-likelihood
weights are the ones that make each feature occur with the frequency
observed in the data. The weight of X has the flu will be high if a lot of
people have the flu. The weight of X and Y both have the flu will be high if,
when person X has the flu, the odds that acquaintance Y also has the flu are
higher than for a randomly chosen member of the network. If 40 percent of
people have the flu and so do 16 percent of all acquaintance pairs, then the



weight of X and Y both have the flu will be zero, because we don’t need that
feature to correctly reproduce the data’s statistics (0.4 × 0.4 = 0.16). But if
the feature has a positive weight, flu is more likely to occur in clumps than
to just infect people at random, and you’re more likely to have the flu if
your acquaintances do.

Notice that the network has a separate feature for each pair of people:
Alice and Bob both have the flu, Alice and Chris both have the flu, and so
on. But we can’t learn a separate weight for each pair, because we only
have one data point per pair (whether it’s infected or not), and we wouldn’t
be able to generalize to members of the network we haven’t diagnosed yet
(do Yvette and Zach both have the flu?). What we can do instead is learn a
single weight for all features of the same form, based on all the instances of
it that we’ve seen. In effect, X and Y have the flu is a template for features
that can be instantiated with each pair of acquaintances (Alice and Bob,
Alice and Chris, etc.). The weights for all the instances of a template are
“tied together,” in the sense that they all have the same value, and that’s
how we can generalize despite having only one example (the whole
network). In nonrelational learning, the parameters of a model are tied in
only one way: across all the independent examples (e.g., all the patients
we’ve diagnosed). In relational learning, every feature template we create
ties the parameters of all its instances.

We’re not limited to pairwise or individual features. Facebook wants to
predict who your friends are so it can recommend them to you. It can use
the rule Friends of friends are likely to be friends for that, but each instance
of it involves three people: if Alice and Bob are friends, and Bob and Chris
are also friends, then Alice and Chris are potential friends. H. L. Mencken’s
quip that a man is wealthy if he makes more than his wife’s sister’s husband
involves four people. Each of these rules can be turned into a feature
template in a relational model, and a weight for it can be learned based on
how often the feature occurs in the data. As in Markov networks, the
features themselves can also be learned from the data.

Relational learners can generalize from one network to another (e.g.,
learn a model of how flu spreads in Atlanta and apply it in Boston). They
can also learn on more than one network (e.g., Atlanta and Boston,
assuming, unrealistically, that no one in Atlanta is ever in contact with
anyone in Boston). But unlike “regular” learning, where all examples must



have exactly the same number of attributes, in relational learning networks
can vary in size; a larger network will just have more instances of the same
templates than a smaller one. Of course, the generalization from a smaller
network to a larger one may or may not be accurate, but the point is that
nothing prevents it; and large networks often do behave locally like small
ones.

The neatest trick a relational learner can do is to turn a sporadic teacher
into an assiduous one. For an ordinary classifier, examples without classes
are useless. If I’m given a patient’s symptoms, but not the diagnosis, that
doesn’t help me learn to diagnose. But if I know that some of the patient’s
friends have the flu, that’s indirect evidence that he may have the flu as
well. Diagnosing a few people in a network and then propagating those
diagnoses to their friends, and their friends’ friends, is the next best thing to
diagnosing everyone. The inferred diagnoses may be noisy, but the overall
statistics of how symptoms correlate with the flu will probably be a lot
more accurate and complete than if I had only a handful of isolated
diagnoses to draw on. Children are very good at making the most of the
sporadic supervision they get (provided they don’t choose to ignore it).
Relational learners share some of that ability.

All this power comes at a cost, however. In an ordinary classifier, such
as a decision tree or a perceptron, inferring an entity’s class from its
attributes is a matter of a few lookups and a bit of arithmetic. In a network,
each node’s class depends indirectly on all the others’, and we can’t infer it
in isolation. We can resort to the same kinds of inference techniques we
used for Bayesian networks, like loopy belief propagation or MCMC, but
the scale is different. A typical Bayesian network has perhaps thousands of
variables, but a typical social network has millions of nodes or more.
Luckily, because the model of the network consists of many repetitions of
the same features with the same weights, we can often condense the
network into “supernodes,” each consisting of many nodes that we know
will have the same probabilities, and solve a much smaller problem with the
same result.

Relational learning has a long history, going back to at least the
seventies and symbolist techniques like inverse deduction. But it acquired a
new impetus with the advent of the Internet. Suddenly networks were
everywhere, and modeling them was urgent. One phenomenon I found



particularly intriguing was word of mouth. How does information propagate
in a social network? Can we measure each member’s influence and target
just enough of the most influential members to set off a wave of word of
mouth? With my student Matt Richardson, I designed an algorithm that did
just that. We applied it to Epinions, a product review site that allowed
members to say whose reviews they trusted. We found, among other things,
that marketing a product to the single most influential member—trusted by
many followers who were in turn trusted by many others, and so on—was
as good as marketing to a third of all the members in isolation. An
avalanche of other research on this problem followed. Since then, I’ve
applied relational learning to many others, including predicting who will
form links in a social network, integrating databases, and enabling robots to
build maps of their surroundings.

If you want to understand how the world works, relational learning is a
good tool to have. In Isaac Asimov’s Foundation, the scientist Hari Seldon
manages to mathematically predict the future of humanity and thereby save
it from decadence. Paul Krugman, among others, has confessed that this
seductive dream was what made him become an economist. According to
Seldon, people are like molecules in a gas, and the law of large numbers
ensures that even if individuals are unpredictable, whole societies aren’t.
Relational learning reveals why this is not the case. If people were
independent, each making decisions in isolation, societies would indeed be
predictable, because all those random decisions would add up to a fairly
constant average. But when people interact, larger assemblies can be less
predictable than smaller ones, not more. If confidence and fear are
contagious, each will dominate for a while, but every now and then an
entire society will swing from one to the other. It’s not all bad news, though.
If we can measure how strongly people influence each other, we can
estimate how long it will be before a swing occurs, even if it’s the first one
—another way in which black swans are not necessarily unpredictable.

A common complaint about big data is that the more data you have, the
easier it is to find spurious patterns in it. This may be true if the data is just
a huge set of disconnected entities, but if they’re interrelated, the picture
changes. For example, critics of using data mining to catch terrorists argue
that, ethical issues aside, it will never work because there are too many
innocents and too few terrorists and so mining for suspicious patterns will



either cause too many false alarms or never catch anyone. Is someone
videotaping the New York City Hall a tourist or a terrorist scoping out a
bombing site? And is someone buying large quantities of ammonium nitrate
a farmer or a bomb maker? Each of these looks innocent enough in
isolation, but if the “tourist” and the “farmer” have been in close phone
contact, and the latter just drove his heavily laden pickup into Manhattan,
maybe it’s time for someone to take a closer look. The NSA likes to mine
records of who called whom not just because it’s arguably legal, but
because they’re often more informative to the prediction algorithms than
the content of the calls, which it would take a human to understand.

Social networks aside, the killer app of relational learning is
understanding how living cells work. A cell is a complex metabolic
network with genes coding for proteins that regulate other genes, long
interlocking chains of chemical reactions, and products migrating from one
organelle to another. Independent entities, doing their work in isolation, are
nowhere to be seen. A cancer drug must disrupt cancer cells’ workings
without interfering with normal ones’. If we have an accurate relational
model of both, we can try many different drugs in silico, letting the model
infer their good and bad effects and keeping only the best ones to try in
vitro and finally in vivo.

Like human memory, relational learning weaves a rich web of
associations. It connects percepts, which a robot like Robby can acquire by
clustering and dimensionality reduction, with skills, which he can learn by
reinforcement and chunking, and with the higher-level knowledge that
comes from reading, going to school, and interacting with humans.
Relational learning is the last piece of the puzzle, the final ingredient we
need for our alchemy. And now it’s time to repair to the lab and transmute
all these elements into the Master Algorithm.



CHAPTER NINE

The Pieces of the Puzzle Fall into Place

Machine learning is both a science and a technology, and both
characteristics give us hints on how to unify it. On the science side,
unifying theories often begin with a deceptively simple observation. Two
seemingly unrelated phenomena turn out to be just two faces of the same
coin, and like the first domino to fall, that realization sets off a cascade of
others. An apple falling to the ground, the moon hanging in the sky: both
are caused by gravity, and—apocryphal story or not—once Newton figured
out how, gravity turned out to also account for the tides, the precession of
the equinoxes, the trajectories of comets, and much else. In everyday
experience, electricity and magnetism are never seen together: a lightning
spark here, a rock that attracts iron objects there, both quite rare. But once
Maxwell figured out how a changing electric field gives rise to magnetism
and vice versa, it became clear that light itself is an intimate marriage of the
two, and today we know that, far from rare, electromagnetism pervades all
matter. Mendeleev’s periodic table not only organized all the known
elements into just two dimensions, it also predicted where new elements
would be found. Darwin’s observations aboard the Beagle suddenly began
to make sense when Malthus’s Essay on Population suggested natural
selection as the organizing principle. When Crick and Watson hit on the
double helix structure as an explanation for the puzzling properties of DNA,
they immediately saw how it might replicate itself, and biology’s transition



from stamp collecting (in Rutherford’s pejorative words) to unified science
had begun. In each of these cases, a bewildering variety of observations
turned out to have a common cause, and once scientists identified it, they
could in turn use it to predict many new phenomena. Similarly, even though
the learners we’ve met in this book seem quite disparate—some based on
the brain, some on evolution, some on abstract mathematical principles—
they in fact have much in common, and the resulting theory of learning
yields many new insights.

Although it is less well known, many of the most important
technologies in the world are the result of inventing a unifier, a single
mechanism that does what previously required many. The Internet, as the
name implies, is a network that interconnects networks. Without it, every
type of network would need a different protocol to talk to every other, much
like we need a different dictionary for every pair of languages in the world.
The Internet’s protocols are an Esperanto that gives each computer the
illusion of talking directly to any other and that allows e-mail and the web
to ignore the details of the physical infrastructure they flow over. Relational
databases do something similar for enterprise applications, allowing
developers and users to think in terms of the abstract relational model and
ignore the different ways computers go about answering queries. A
microprocessor is an assembly of digital electronic components that can
mimic any other assembly. Virtual machines allow the same computer to
pose as a hundred different computers to a hundred different people at the
same time, and help make the cloud possible. Graphical user interfaces let
us edit documents, spreadsheets, slide decks, and much else using a
common language of windows, menus, and mouse clicks. The computer
itself is a unifier: a single device capable of solving any logical or
mathematical problem, provided we know how to program it. Even plain
old electricity is a kind of unifier: you can generate it from many different
sources—coal, gas, nuclear, hydro, wind, solar—and consume it in an
infinite variety of ways. A power station doesn’t know or care how the
electricity it produces will be consumed, and your porch light, dishwasher,
or brand-new Tesla are oblivious to where their electricity supply comes
from. Electricity is the Esperanto of energy. The Master Algorithm is the
unifier of machine learning: it lets any application use any learner, by



abstracting the learners into a common form that is all the applications need
to know.

Our first step toward the Master Algorithm will be surprisingly simple.
As it turns out, it’s not hard to combine many different learners into one,
using what is known as metalearning. Netflix, Watson, Kinect, and
countless others use it, and it’s one of the most powerful arrows in the
machine learner’s quiver. It’s also a stepping-stone to the deeper unification
that will follow.

Out of many models, one

Here’s a challenge: you have fifteen minutes to combine decision trees,
multilayer perceptrons, classifier systems, Naïve Bayes, and SVMs into a
single algorithm possessing the best properties of each. Quick—what can
you do? Clearly, it can’t involve the details of the individual algorithms;
there’s no time for that. But how about the following? Think of each learner
as an expert on a committee. Each looks carefully at the instance to be
classified—what is the diagnosis for this patient?—and confidently makes
its prediction. You’re not an expert yourself, but you’re the chair of the
committee, and your job is to combine their recommendations into a final
decision. What you have on your hands is in fact a new classification
problem, where instead of the patient’s symptoms, the input is the experts’
opinions. But you can apply machine learning to this problem in the same
way the experts applied it to the original one. We call this metalearning
because it’s learning about the learners. The metalearner can itself be any
learner, from a decision tree to a simple weighted vote. To learn the
weights, or the decision tree, we replace the attributes of each original
example by the learners’ predictions. Learners that often predict the correct
class will get high weights, and inaccurate ones will tend to be ignored.
With a decision tree, the choice of whether to use a learner can be
contingent on other learners’ predictions. Either way, to obtain a learner’s
prediction for a given training example, we must first apply it to the original
training set excluding that example and use the resulting classifier—
otherwise the committee risks being dominated by learners that overfit,
since they can predict the correct class just by remembering it. The Netflix



Prize winner used metalearning to combine hundreds of different learners.
Watson uses it to choose its final answer from the available candidates.
Nate Silver combines polls in a similar way to predict election results.

This type of metalearning is called stacking and is the brainchild of
David Wolpert, whom we met in Chapter 3 as the author of the “no free
lunch” theorem. An even simpler metalearner is bagging, invented by the
statistician Leo Breiman. Bagging generates random variations of the
training set by resampling, applies the same learner to each one, and
combines the results by voting. The reason to do this is that it reduces
variance: the combined model is much less sensitive to the vagaries of the
data than any single one, making this a remarkably easy way to improve
accuracy. If the models are decision trees and we further vary them by
withholding a random subset of the attributes from consideration at each
node, the result is a so-called random forest. Random forests are some of
the most accurate classifiers around. Microsoft’s Kinect uses them to figure
out what you’re doing, and they regularly win machine-learning
competitions.

One of the cleverest metalearners is boosting, created by two learning
theorists, Yoav Freund and Rob Schapire. Instead of combining different
learners, boosting repeatedly applies the same classifier to the data, using
each new model to correct the previous ones’ mistakes. It does this by
assigning weights to the training examples; the weight of each misclassified
example is increased after each round of learning, causing later rounds to
focus more on it. The name boosting comes from the notion that this
process can boost a classifier that’s only slightly better than random
guessing, but consistently so, into one that’s almost perfect.

Metalearning is remarkably successful, but it’s not a very deep way to
combine models. It’s also expensive, requiring as it does many runs of
learning, and the combined models can be quite opaque. (“I believe you
have prostate cancer because the decision tree, the genetic algorithm, and
Naïve Bayes say so, although the multilayer perceptron and the SVM
disagree.”) Moreover, all the combined models are really just one big,
messy model. Can’t we have a single learner that does the same job? Yes
we can.



The Master Algorithm

Our unified learner is perhaps best introduced through an extended allegory.
If machine learning is a continent divided into the territories of the five
tribes, the Master Algorithm is its capital city, standing on the unique spot
where the five territories meet. As you approach it from a distance, you can
see that the city is made up of three concentric circles, each bounded by a
wall. The outer and by far widest circle is Optimization Town. Each house
here is an algorithm, and they come in all shapes and sizes. Some are under
construction, the locals busy around them; some are gleaming new; and
some look old and abandoned. Higher up the hill lies the Citadel of
Evaluation. From its mansions and palaces orders issue continuously to the
algorithms below. Above all, silhouetted against the sky, rise the Towers of
Representation. Here live the rulers of the city. Their immutable laws set
forth what can and cannot be done not just in the city but throughout the
continent. Atop the central, tallest tower flies the flag of the Master
Algorithm, red and black, with a five-pointed star surrounding an
inscription that you cannot yet make out.

The city is divided into five sectors, each belonging to one of the five
tribes. Each sector stretches down from its Tower of Representation to the
city’s outer walls, encompassing the tower, a clutch of palaces in the Citadel
of Evaluation, and the streets and houses in Optimization Town they
overlook. The five sectors and three rings divide the city into fifteen
districts, fifteen shapes, fifteen pieces of the puzzle you need to solve:



You gaze intently at the map, trying to decipher its secret. The fifteen pieces
all match quite precisely, but you need to figure out how they combine to
form just three: the representation, evaluation, and optimization
components of the Master Algorithm. Every learner has these three
elements, but they vary from tribe to tribe.

Representation is the formal language in which the learner expresses its
models. The symbolists’ formal language is logic, of which rules and
decision trees are special cases. The connectionists’ is neural networks. The
evolutionaries’ is genetic programs, including classifier systems. The
Bayesians’ is graphical models, an umbrella term for Bayesian networks
and Markov networks. The analogizers’ is specific instances, possibly with
weights, as in an SVM.

The evaluation component is a scoring function that says how good a
model is. Symbolists use accuracy or information gain. Connectionists use a
continuous error measure, such as squared error, which is the sum of the
squares of the differences between the predicted values and the true ones.
Bayesians use the posterior probability. Analogizers (at least of the SVM



stripe) use the margin. In addition to how well the model fits the data, all
tribes take into account other desirable properties, such as the model’s
simplicity.

Optimization is the algorithm that searches for the highest-scoring
model and returns it. The symbolists’ characteristic search algorithm is
inverse deduction. The connectionists’ is gradient descent. The
evolutionaries’ is genetic search, including crossover and mutation. The
Bayesians are unusual in this regard: they don’t just look for the best model,
but average over all models, weighted by how probable they are. To do the
weighting efficiently, they use probabilistic inference algorithms like
MCMC. The analogizers (or more precisely, the SVM mavens) use
constrained optimization to find the best model.

After a long day’s journey, the sun is rapidly nearing the horizon, and
you need to hurry before it gets dark. The city’s outer wall has five massive
gates, each controlled by one of the tribes and leading to its district in
Optimization Town. Let us enter through the Gradient Descent Gate, after
whispering the watchword—“deep learning”—to the guard, and spiral in
toward the Towers of Representation. From the gate the street ascends
steeply up the hill to the citadel’s Squared Error Gate, but instead you turn
left toward the evolutionary sector. The houses in the gradient descent
district are all smooth curves and densely intertwined patterns, almost more
like a jungle than a city. But when gradient descent gives way to genetic
search, the picture changes abruptly. Here the houses rise higher, with
structure piled on structure, but the structures are spare, almost vacant, as if
waiting to be filled in by gradient descent’s curves. That’s it: the way to
combine the two is to use genetic search to find the structure of the model
and let gradient descent fill in its parameters. This is what nature does:
evolution creates brain structures, and individual experience modulates
them.

The first step accomplished, you hurry on to the Bayesian district. Even
from a distance, you can see how it clusters around the Cathedral of Bayes’
Theorem. MCMC Alley zigzags randomly along the way. This is going to
take a while. You take a shortcut onto Belief Propagation Street, but it
seems to loop around forever. Then you see it: the Most Likely Avenue,
rising majestically toward the Posterior Probability Gate. Rather than
average over all models, you can head straight for the most probable one,



confident that the resulting predictions will be almost the same. And you
can let genetic search pick the model’s structure and gradient descent its
parameters. With a sigh of relief, you realize that’s all the probabilistic
inference you’ll need, at least until it’s time to answer questions using the
model.

You keep going. The constrained optimization district is a maze of
narrow alleys and dead ends, examples of all kinds standing cheek by jowl
everywhere, with an occasional clearing around a support vector. Clearly,
all you need to do to avoid bumping into examples of the wrong class is add
constraints to the optimizer you’ve already assembled. But come to think of
it, not even that is necessary. When we learn SVMs, we usually let margins
be violated in order to avoid overfitting, provided each violation pays a
penalty. In this case the optimal example weights can again be learned by a
form of gradient descent. That was easy. You feel like you’re starting to get
the hang of it.

The dense ranks of instances end abruptly, and you find yourself in the
inverse deduction district, a place of broad avenues and ancient stone
buildings. The architecture here is geometric, austere, made of straight lines
and right angles. Even the severely pruned trees have rectangular trunks,
and their leaves are meticulously labeled with class predictions. The
denizens of this district seem to build their houses in a peculiar way: they
start with the roof, which they label “Conclusions,” and gradually fill in the
gaps between it and the ground, which they label “Premises.” One by one,
they find a stone block that’s the right shape to fill in a particular gap and
hoist it up to its place. But, you notice, many gaps have the same shape, and
it would be faster to cut and combine blocks until they form that shape, and
then repeat the process as many times as necessary. In other words, you
could use genetic search to do inverse deduction. Neat. It looks like you’ve
boiled down the five optimizers to a simple recipe: genetic search for
structure and gradient descent for parameters. And even that may be
overkill. For a lot of problems, you can whittle genetic search down to hill
climbing if you do three things: leave out crossover, try all possible point
mutations in each generation, and always select the single best hypothesis
to seed the next generation.

What’s that statue up ahead? Aristotle, looking rather disapprovingly
toward the tangled mess of the gradient descent quarter. You’ve come full



circle. You have the unified optimizer you need for the Master Algorithm,
but this is no time to congratulate yourself. Night has fallen, and you still
have much to do. You enter the Citadel of Evaluation through the imposing
but rather narrow Accuracy Gate. The inscription above it says “Abandon
all hope of overfitting, ye who enter here.” As you circle past the palaces of
the five tribes’ evaluators, you mentally snap the pieces into place. You use
accuracy to evaluate yes-or-no predictions and squared error for continuous
ones. Fitness is just the evolutionaries’ name for the scoring function; you
can make it anything you want, including accuracy and squared error.
Posterior probability reduces to squared error if you ignore the prior
probability and the errors follow a normal distribution. The margin, if you
allow it to be violated for a price, becomes a softer version of accuracy:
instead of paying no penalty for a correct prediction and a penalty of one
for an incorrect prediction, the penalty is zero until you get inside the
margin, at which point it starts to steadily go up. Whew! Combining the
evaluators was a lot easier than combining the optimizers. But the Towers
of Representation, looming above you, fill you with a sense of foreboding.

You’ve reached the final stage of your quest. You knock on the door of
the Tower of Support Vectors. A menacing-looking guard opens it, and you
suddenly realize that you don’t know the password. “Kernel,” you blurt out,
trying to keep the panic from your voice. The guard bows and steps aside.
Regaining your composure, you step in, mentally kicking yourself for your
carelessness. The entire ground floor of the tower is taken up by a lavishly
appointed circular chamber, with what seems to be a marble representation
of an SVM occupying pride of place at the center. As you walk around it,
you notice a door on the far side. It must lead to the central tower—the
Tower of the Master Algorithm. The door seems unguarded. You decide to
take a shortcut. Slipping through the doorway, you walk down a short
corridor and find yourself in an even larger pentagonal chamber, with a
door in each wall. In the center, a spiral staircase rises as high as the eye can
see. You hear voices above and duck into the doorway opposite. This one
leads to the Tower of Neural Networks. Once again you’re in a circular
chamber, this one with a sculpture of a multilayer perceptron as the
centerpiece. Its parts are different from the SVM’s, but their arrangement is
remarkably similar. Suddenly you see it: an SVM is just a multilayer



perceptron with a hidden layer composed of kernels instead of S curves and
an output that’s a linear combination instead of another S curve.

Could it be that the other representations also have a similar form? With
rising excitement, you run back through the pentagonal chamber and into
the Tower of Logic. Staring at the depiction of a set of rules in the center,
you try to discern a pattern. Yes! Each rule is just a highly stylized neuron.
For example, the rule If it’s a giant reptile and breathes fire then it’s a
dragon is just a perceptron with weights of one for it’s a giant reptile and
breathes fire and a threshold of 1.5. And a set of rules is a multilayer
perceptron with a hidden layer containing one neuron for each rule and an
output neuron to form the disjunction of the rules. There’s a nagging doubt
in the back of your mind, but you don’t have time for it right now. As you
cross the pentagonal chamber to the Tower of Genetic Programs, you can
already see how to bring them into the fold. Genetic programs are just
programs, and programs are just logic constructs. The sculpture of a genetic
program in the chamber is in the shape of a tree, subroutines branching into
more subroutines, and when you look closely at the leaves, you can see that
they’re just simple rules. So programs boil down to rules, and if rules can
be reduced to neurons, so can programs.

On to the Tower of Graphical Models. Unfortunately, the sculpture in its
circular chamber looks nothing like the others. A graphical model is a
product of factors: conditional probabilities, in the case of Bayesian
networks, and non-negative functions of the state, in the case of Markov
networks. Try as you might, you just can’t see the connection to neural
networks or sets of rules. Disappointment washes over you. But then you
put on your “loggles,” which replace every function by its logarithm.
Eureka—the product of factors is now a sum of terms, just like an SVM, a
voting set of rules, or a multilayer perceptron without the output S curve.
For example, you can translate a Naïve Bayes dragon classifier into a
perceptron whose weight for breathes fire is the log of P(breathes fire |
dragon) minus the log of P(breathes fire | not dragon). But of course,
graphical models are much more general than this because they can
represent probability distributions over many variables, not just the
distribution of one variable (the class) given the others (the attributes).

You did it! Or did you? Absorbing SVMs into neural networks and
neural networks into graphical models: that worked. So did absorbing



genetic programs into logic. But combining logic and graphical models?
Something is amiss there. Belatedly, you see the problem: logic has a
dimension that graphical models lack and vice versa. The sculptures in the
five chambers matched because they were simple allegories, but the reality
doesn’t. Graphical models don’t let us represent rules involving more than
one object, like Friends of friends are friends; all their variables have to be
properties of the same object. They also can’t represent arbitrary programs,
which pass sets of variables from one subroutine to another. Logic can
easily do both of these things, but on the other hand it can’t represent
uncertainty, ambiguity, or degrees of similarity. And without a
representation that can do all of these things, you don’t have a universal
learner.

You rack your brains for a solution, but the more you try, the harder it
gets. Perhaps unifying logic and probability is just beyond human ability.
Exhausted, you fall asleep. A deep growl jolts you awake. The hydra-
headed complexity monster pounces on you, jaws snapping, but you duck at
the last moment. Slashing desperately at the monster with the sword of
learning, the only one that can slay it, you finally succeed in cutting off all
its heads. Before it can grow new ones, you run up the stairs.

After an arduous climb, you reach the top. A wedding is in progress.
Praedicatus, First Lord of Logic, ruler of the symbolic realm and Protector
of the Programs, says to Markovia, Princess of Probability, Empress of
Networks: “Let us unite our realms. To my rules thou shalt add weights,
begetting a new representation that will spread far across the land.” The
princess says, “And we shall call our progeny Markov logic networks.”

Your head is spinning. You go outside to the balcony. The sun has risen
over the city. You gaze out over the rooftops to the countryside beyond.
Forests of servers stretch away in all directions, humming quietly, waiting
for the Master Algorithm. Convoys move along the roads, carrying gold
from the data mines. Far to the west, the land gives way to a sea of
information, dotted with ships. You look up at the flag of the Master
Algorithm. You can now clearly see the inscription inside the five-pointed
star:

P = ew•n / Z



What could this mean, you wonder?

Markov logic networks

In 2003, I started thinking about the problem of how to unify logic and
probability, together with my student Matt Richardson. At first we made
little progress because we were trying to do it with Bayesian networks, and
their rigid form—a strict order on variables, conditional distributions of
children given parents—is incompatible with the flexibility of logic. But the
day before Christmas Eve, I realized there was a much better way. If we
switched to Markov networks, we could use any logical formula as a
template for Markov network features, and that would unify logic and
graphical models. Let’s see how.

Recall that a Markov network is defined by a weighted sum of features,
much like a perceptron. Suppose we have a collection of photos of people.
We pick a random one and compute features of it like The person has gray
hair, The person is old, The person is a woman, and so on. In a perceptron,
we pass the weighted sum of these features through a threshold to decide
whether, say, the person is your grandmother or not. In a Markov network,
we do something very different (at least at first sight): we exponentiate the
weighted sum, turning it into a product of factors, and this product is the
probability of choosing that particular picture from the collection,
regardless of whether your grandmother is in it. If you have many pictures
of old people, the weight of that feature goes up. If most of them are of
men, the weight of The person is a woman goes down. The features can be
anything we want, making Markov networks a remarkably flexible way to
represent probability distributions.

Actually, I lied: the product of factors is not yet a probability because
the probabilities of all pictures must add up to one, and there’s no guarantee
that the products of factors for all pictures will do so. We need to normalize
them, meaning divide each product by the sum of all of them. The sum of
all the normalized products is then guaranteed to be one because it’s just a
number divided by itself. The probability of a picture is thus the weighted
sum of its features, exponentiated and normalized. If you look back at the
equation in the five-pointed star, you’ll probably start to get an inkling of



what it means. P is a probability, w is a vector of weights (notice it’s in
boldface), n is a vector of numbers, and their dot product • is exponentiated
and divided by Z, the sum of all products. If we let the first component of n
be one if the first feature of the image is true and zero otherwise, and so on,
w•n is just a shorthand for the weighted sum of features we’ve been talking
about all along.

So the equation gives the probability of an image (or whatever)
according to a Markov network. But it’s more general than that because it’s
not just the equation of a Markov network; rather, it’s the equation of a
Markov logic network, as we call it. In a Markov logic network, or MLN
for short, the numbers in n don’t have to be just zero or one, and they don’t
refer to features—they refer to logical formulas. At the end of Chapter 8,
we saw how we can go beyond Markov networks to relational models,
which are defined in terms of feature templates, not just features. Alice and
Bob both have the flu is a feature specific to Alice and Bob. X and Y both
have the flu is a feature template, which can be instantiated with Alice and
Bob, Alice and Chris, and any other two people. A feature template is a
powerful thing because it can summarize billions of features or more in a
single short expression. But we need a formal language to define feature
templates, and we have one readily available: logic.

An MLN is just a set of logical formulas and their weights. When
applied to a particular set of entities, it defines a Markov network over their
possible states. For example, if the entities are Alice and Bob, a possible
state is that Alice and Bob are friends, Alice has the flu, and so does Bob.
Let’s suppose the MLN has two formulas: Everyone has the flu and If
someone has the flu, so do their friends. In standard logic, this would be a
pretty useless pair of statements: the first would rule out any state with even
a single healthy person, and the second would be redundant. But in an
MLN, the first formula just means that there’s a feature X has the flu for
every person X, with the same weight as the formula. If people are likely to
have the flu, the formula will have a high weight, and so will the
corresponding features. A state with many healthy people is less probable
than one with few, but not impossible. And because of the second formula,
a state where someone has the flu and their friends don’t is less probable
than one where healthy and infected people fall into separate clusters of
friends.



At this point you can probably guess what the n in the master equation
is: its first component is the number of true instances of the first formula in
the state, the second is the number of true instances of the second formula,
and so on. If we’re looking at a group of ten friends and seven of them have
the flu, the first component of n is seven, and so on. (Shouldn’t the
probability be different if seven out of twenty instead of seven out of ten
friends have the flu? Yes, and it is, because of Z.) In the limit, if we let all
the weights go to infinity, Markov logic reduces to standard logic because
violating a single instance of a formula then causes the probability to
collapse to zero, making the state impossible. On the probabilistic side, an
MLN reduces to a Markov network when all the formulas talk about a
single object. So Markov logic includes both logic and Markov networks as
special cases, and it’s the unification we were looking for.

Learning an MLN means discovering formulas that are true in the world
more often than random chance would predict, and figuring out the weights
for those formulas that cause their predicted probabilities to match their
observed frequencies. Once we’ve learned an MLN, we can use it to answer
questions like “What is the probability that Bob has the flu, given that he’s
friends with Alice and she has the flu?” And guess what? It turns out that
the probability is given by an S curve applied to the weighted sum of
features, much as in a multilayer perceptron. And an MLN with long chains
of rules can represent a deep neural network, with one layer per link in the
chain.

Of course, don’t be deceived by the simple MLN above for predicting
the spread of flu. Picture instead an MLN for diagnosing and curing cancer.
The MLN represents a probability distribution over the states of a cell.
Every part of the cell, every organelle, every metabolic pathway, every gene
and protein is an entity in the MLN, and the MLN’s formulas encode the
dependencies between them. We can ask the MLN, “Is this cell cancerous?”
and probe it with different drugs and see what happens. We don’t have an
MLN like this yet, but later in this chapter I’ll envisage how it might come
about.

To recap: the unified learner we’ve arrived at uses MLNs as the
representation, posterior probability as the evaluation function, and genetic
search coupled with gradient descent as the optimizer. If we want, we can
easily replace the posterior by some other accuracy measure, or genetic



search by hill climbing. We’ve ascended a high peak, and now we can enjoy
the view. I wouldn’t be so rash as to call this learner the Master Algorithm,
however. For one, the proof of the pudding is in the eating, and although
over the last decade this algorithm (or variations of it) has been successfully
applied in many areas, there are many more to which it hasn’t, and so it’s
not yet clear just how general purpose it is. Second, there are some
important problems that it doesn’t solve. But before we look at them, let’s
look at what it can do.

From Hume to your housebot

You can download the learner I’ve just described from
alchemy.cs.washington.edu. We christened it Alchemy to remind ourselves
that, despite all its successes, machine learning is still in the alchemy stage
of science. If you do download it, you’ll see that it includes a lot more than
the basic algorithm I’ve described but also that it is still missing a few
things I said the universal learner ought to have, like crossover.
Nevertheless, let’s use the name Alchemy to refer to our candidate universal
learner for simplicity.

Alchemy addresses Hume’s original question by having another input
besides the data: your initial knowledge, in the form of a set of logical
formulas, with or without weights. The formulas can be inconsistent,
incomplete, or even just plain wrong; the learning and probabilistic
reasoning will take care of that. The key point is that Alchemy doesn’t have
to learn from scratch. In fact, we can even tell Alchemy to keep the
formulas unchanged and learn only the weights. In this case, giving
Alchemy the appropriate formulas can turn it into a Boltzmann machine, a
Bayesian network, an instance-based learner, and many other models. This
explains why we can have a universal learner despite the “no free lunch”
theorem. Rather, Alchemy is like an inductive Turing machine, which we
can program to behave as a very powerful or a very restricted learner; it’s
up to us. Alchemy provides a unifier for machine learning in the same way
that the Internet provides one for computer networks, the relational model
for databases, or the graphical user interface for everyday applications.

http://alchemy.cs.washington.edu/


Of course, even if you use Alchemy with no initial formulas (and you
can), that doesn’t make it knowledge-free. The choice of formal language,
score function, and optimizer implicitly encodes assumptions about the
world. So it’s natural to ask whether we can have an even more general
learner than Alchemy. What did evolution assume when it began its long
journey from the first bacteria to all the life-forms around today? I think
there’s a simple assumption from which all else follows: the learner is part
of the world. This means that the learner as a physical system obeys the
same laws as its environment, whatever they are, and therefore already
“knows” them implicitly and is primed to discover them. In the next
section, we’ll see what this can mean concretely and how to embody it in
Alchemy. But for the moment, let’s note that it’s perhaps the best answer we
can ever give to Hume’s question. On the one hand, assuming the learner is
part of the world is an assumption—in principle, the learner could obey
different laws from those the world obeys—so it satisfies Hume’s dictum
that learning is only possible with prior knowledge. On the other hand, it’s
an assumption so basic and hard to disagree with that perhaps it’s all we
need for this world.

At the other extreme, knowledge engineers—the most determined
critics of machine learning—have good reason to like Alchemy. Instead of a
basic model structure or a few rough guesses, Alchemy can input a large,
lovingly assembled knowledge base, if it’s available. Because probabilistic
rules can interact in much richer ways than deterministic ones, manually
encoded knowledge goes a longer way in Markov logic. And since
knowledge bases in Markov logic don’t have to be self-consistent, they can
be very large and accommodate many different contributors without falling
apart—a goal that has so far eluded knowledge engineers.

Most of all, though, Alchemy addresses the problems that each of the
five tribes of machine learning has worked on for so long. Let’s look at each
of them in turn.

Symbolists combine different pieces of knowledge on the fly, in the
same way that mathematicians combine axioms to prove theorems. This
contrasts sharply with neural networks and other models with a fixed
structure. Alchemy does it using logic, as symbolists do, but with a twist.
To prove a theorem in logic, you need to find only one sequence of axiom
applications that produces it. Because Alchemy reasons probabilistically, it



does more: it finds multiple sequences of formulas that lead to the theorem
or its negation and weighs them to compute the theorem’s probability of
being true. This way it can reason not just about mathematical universals,
but about whether “the president” in a news story means “Barack Obama,”
or what folder an e-mail should be filed in. The symbolists’ master
algorithm, inverse deduction, postulates new logical rules needed to serve
as steps between the data and a desired conclusion. Alchemy introduces
new rules by hill climbing, starting with the initial rules and constructing
rules that, combined with the initial ones and the data, make the conclusions
more likely.

Connectionists’ models are inspired by the brain, with networks of S
curves that correspond to neurons and weighted connections between them
corresponding to synapses. In Alchemy, two variables are connected if they
appear together in some formula, and the probability of a variable given its
neighbors is an S curve. (Although I won’t show why, it’s a direct
consequence of the master equation we saw in the previous section.) The
connectionists’ master algorithm is backpropagation, which they use to
figure out which neurons are responsible for which errors and adjust their
weights accordingly. Backpropagation is a form of gradient descent, which
Alchemy uses to optimize the weights of a Markov logic network.

Evolutionaries use genetic algorithms to simulate natural selection. A
genetic algorithm maintains a population of hypotheses and in each
generation crosses over and mutates the fittest ones to produce the next
generation. Alchemy maintains a population of hypotheses in the form of
weighted formulas, modifies them in various ways at each step, and keeps
the variations that most increase the posterior probability of the data (or
some other score function). If the population is a single hypothesis, this
reduces to hill climbing. The current open-source implementation of
Alchemy does not include crossover, but this would be a straightforward
addition. The evolutionaries’ master algorithm is genetic programming,
which applies crossover and mutation to computer programs represented as
trees of subroutines. Trees of subroutines can be represented by sets of
logical rules, and the Prolog programming language does just that. In
Prolog, each rule corresponds to a subroutine, and its antecedents are the
subroutines it calls. So we can think of Alchemy with crossover as genetic



programming using a Prolog-like programming language, with the added
advantage that the rules can be probabilistic.

Bayesians believe that modeling uncertainty is the key to learning and
use formal representations like Bayesian networks and Markov networks to
do so. As we already saw, Markov networks are a special type of MLN.
Bayesian networks are also easily represented using the MLN master
equation, with a feature for each possible state of a variable and its parents,
and the logarithm of the corresponding conditional probability as its weight.
(The normalization constant Z then conveniently reduces to 1, meaning we
can ignore it.) Bayesians’ master algorithm is Bayes’ theorem, implemented
using probabilistic inference algorithms like belief propagation and MCMC.
As you may have noticed, Bayes’ theorem is a special case of the master
equation, with P = P(A|B), Z = P(B), and features and weights
corresponding to P(A) and P(B|A). The Alchemy system includes both
belief propagation and MCMC for inference, generalized to handle
weighted logical formulas. Using probabilistic inference over the proof
paths provided by logic, Alchemy weighs the evidence for and against a
conclusion and outputs the probability of the conclusion. This contrasts
with the “plain vanilla” logic used by symbolists, which is all or none and
so falls apart when given contradictory evidence.

Analogizers learn by hypothesizing that entities with similar known
properties have similar unknown ones: patients with similar symptoms have
similar diagnoses, readers who bought the same books in the past will do so
again in the future, and so on. MLNs can represent similarity between
entities with formulas like People with the same tastes buy the same books.
Then the more of the same books Alice and Bob have bought, the more
likely they are to have the same tastes, and (applying the same formula in
the opposite direction) the more likely Alice is to buy a book if Bob also
did. Their similarity is represented by their probability of having the same
tastes. To make this really useful, we can have different weights for
different instances of the same rule: if Alice and Bob both bought a certain
rare book, this is probably more informative than if they both bought a best
seller and should therefore have a higher weight. In this case the properties
whose similarity we’re computing are discrete (bought/not bought), but we
can also represent similarity between continuous properties, like the
distance between two cities, by letting an MLN have these similarities as



features. If the evaluation function is a margin-style score function instead
of the posterior probability, the result is a generalization of SVMs, the
analogizers’ master algorithm. A greater challenge for our master learner is
reproducing structure mapping, the more powerful type of analogy that can
make inferences from one domain (e.g., the solar system) to another (the
atom). We can do this by learning formulas that don’t refer to any of the
specific relations in the source domain. For example, Friends of smokers
also smoke is about friendship and smoking, but Related entities have
similar properties applies to any relation and property. We can learn it by
generalizing from Friends of friends also smoke, Coworkers of experts are
also experts, and other such patterns in a social network and then apply it
to, say, the web, with instances like Interesting pages link to interesting
pages, or to molecular biology, with instances like Proteins that interact
with gene-regulating proteins also regulate genes. Researchers in my group
and others have done all of these things, and more.

Alchemy also enables the five types of unsupervised learning we saw in
the previous chapter. It does relational learning, obviously, and in fact that’s
where most of its applications to date have been. Alchemy uses logic to
represent relations among entities and Markov networks to let them be
uncertain. We can turn Alchemy into a reinforcement learner by wrapping
delayed rewards around it and using it to learn the value of each state in the
same way that traditional reinforcement learners use, say, a neural network.
We can do chunking in Alchemy by adding a new operation that condenses
chains of rules into single rules. (For example, If A then B and If B then C
into If A then C.) An MLN with a single unobserved variable connected to
all the observable ones does clustering. (An unobserved variable is a
variable whose values we never see in the data; it’s “hidden,” so to speak,
and can only be inferred.) MLNs with more than one unobserved variable
do a kind of discrete dimensionality reduction by inferring the values of
those (fewer) variables from the (more numerous) observable ones.
Alchemy can also handle MLNs with continuous unobserved variables,
which would be needed to do things like principal-component analysis and
Isomap. So Alchemy can in principle do all the things we want Robby the
robot to do, or at least all the things we’ve discussed in this book. Indeed,
we’ve used Alchemy to let a robot learn a map of its environment, figuring
out from its sensors where the walls and doors are, their angles and



distances, and so on, which is the first step in building a competent
housebot.

Finally, we can turn Alchemy into a metalearner like stacking by
encoding the individual classifiers as MLNs and adding or learning
formulas to combine them. This is what DARPA did in its PAL project.
PAL, the Personalized Assistant that Learns, was the largest AI project in
DARPA history and the progenitor of Siri. PAL’s goal was to build an
automated secretary. It used Markov logic as its overarching representation,
combining the outputs from different modules into the final decisions on
what to do. This also allowed PAL’s modules to learn from each other by
evolving toward a consensus.

One of Alchemy’s largest applications to date was to learn a semantic
network (or knowledge graph, as Google calls it) from the web. A semantic
network is a set of concepts (like planets and stars) and relations among
those concepts (planets orbit stars). Alchemy learned over a million such
patterns from facts extracted from the web (e.g., Earth orbits the sun). It
discovered concepts like planet all by itself. The version we used was more
advanced than the basic one I’ve described here, but the essential ideas are
the same. Various research groups have used Alchemy or their own MLN
implementations to solve problems in natural language processing,
computer vision, activity recognition, social network analysis, molecular
biology, and many other areas.

Despite its successes, Alchemy has some significant shortcomings. It
does not yet scale to truly big data, and someone without a PhD in machine
learning will find it hard to use. Because of these problems, it’s not yet
ready for prime time. But let’s see what we can do about them.

Planetary-scale machine learning

In computer science, a problem isn’t really solved until it’s solved
efficiently. Knowing how to do something isn’t much use if you can’t do it
within the available time and memory, and these can run out very quickly
when you’re dealing with an MLN. We routinely learn MLNs with millions
of variables and billions of features, but this is not as large as it seems
because the number of variables grows very quickly with the number of



entities in the MLN: if you have a social network with a thousand people,
you already have a million possible pairs of friends and a billion instances
of the formula Friends of friends are friends.

Inference in Alchemy is a combination of logical and probabilistic
inference. The former is done by proving theorems and the latter by belief
propagation, MCMC, and the other methods we saw in Chapter 6. We’ve
combined the two into probabilistic theorem proving, and the unified
inference algorithm, capable of computing the probability of any logical
formula, is a key part of the current Alchemy system. But it can be very
computationally expensive. If your brain used probabilistic theorem
proving, the proverbial tiger would eat you before you figured out to run
away. That’s a high price to pay for the generality of Markov logic. Your
brain, having evolved in the real world, must encode additional assumptions
that allow it to do inference very efficiently. In the last few years, we’ve
started to figure out what they might be and encode them into Alchemy.

The world is not a random jumble of interactions; it has a hierarchical
structure: galaxies, planets, continents, countries, cities, neighborhoods,
your house, you, your head, your nose, a cell on its tip, the organelles in it,
molecules, atoms, subatomic particles. The way to model it, then, is with an
MLN that also has a hierarchical structure. This is an example of the
assumption that the learner and its environment are alike. The MLN doesn’t
have to know a priori which parts the world is composed of; all Alchemy
has to do is assume that the world has parts and look for them, rather like a
newly made bookshelf assumes that there are books but doesn’t yet know
which ones will be placed on it. Hierarchical structure helps make inference
tractable because subparts of the world interact mostly with other subparts
of the same part: neighbors talk more to each other than to people in
another country, molecules produced in one cell react mostly with other
molecules in that cell, and so on.

Another property of the world that makes learning and inference easier
is that the entities in it don’t come in arbitrary forms. Rather, they fall into
classes and subclasses, with members of the same class being more alike
than members of different ones. Alive or inanimate, animal or plant, bird or
mammal, human or not: if we know all the distinctions relevant to the
question at hand, we can lump together all the entities that lack them and
that can save a lot of time. As before, the MLN doesn’t have to know a



priori what the classes in the world are; it can learn them from data by
hierarchical clustering.

The world has parts, and parts belong to classes: combining these two
gives us most of what we need to make inference in Alchemy tractable. We
can learn the world’s MLN by breaking it into parts and subparts, such that
most interactions are between subparts of the same part, and then grouping
the parts into classes and subclasses. If the world is a Lego toy, we can
break it up into individual bricks, remembering which attaches to which,
and group the bricks by shape and color. If the world is Wikipedia, we can
extract the entities it talks about, group them into classes, and learn how
classes relate to each other. Then if someone asks us “Is Arnold
Schwarzenegger an action star?” we can answer yes, because he’s a star and
he’s in action movies. Step-by-step, we can learn larger and larger MLNs,
until we’re doing what a friend of mine at Google calls “planetary-scale
machine learning”: modeling everyone in the world at once, with data
continually streaming in and answers streaming out.

Of course, learning on this scale requires much more than a direct
implementation of the algorithms we’ve seen. For one, beyond a certain
point a single processor is not enough; we have to distribute the learning
over many servers. Researchers in both industry and academia have
intensely investigated how to, for example, do gradient descent using many
computers in parallel. One option is to divide the data among the
processors; another is to divide the model’s parameters. After each step, we
combine the results and redistribute the work. Either way, doing this
without letting the cost of communication overwhelm you, or the quality of
the results suffer, is far from trivial. Another issue is that, if you have an
endless stream of data coming in, you can’t wait to see it all before you
commit to some decisions. One solution is to use the sampling principle: if
you want to predict who will win the next presidential election, you don’t
need to ask every voter who he or she will vote for; a sample of a few
thousand suffices, if you’re willing to accept a little bit of uncertainty. The
trick is to generalize this to complex models with millions of parameters.
But we can do this by taking at each step just as many examples from the
stream as we need to be pretty sure that we’re making the right decision and
that the total uncertainty over all the decisions stays within bounds. That



way we can effectively learn from infinite data in finite time, as I put it in
an early paper proposing this approach.

Big-data systems are the Cecil B. DeMille productions of machine
learning, with thousands of servers instead of thousands of extras. In the
largest projects, just getting all the data together, verifying it, cleaning it up,
and munging it into a form the learners can digest can make building the
pyramids seem like a walk in the park. At the pharaonic end, Europe’s
FuturICT project aims to build a model of—literally—the whole world.
Societies, governments, culture, technology, agriculture, disease, the global
economy: nothing is to be left out. This is surely premature, but it does
foreshadow the shape of things to come. In the meantime, projects like this
can help us find out where the limits of scalability are and how to overcome
them.

Computational complexity is one thing, but human complexity is
another. If computers are like idiot savants, learning algorithms can
sometimes come across like child prodigies prone to temper tantrums.
That’s one reason humans who can wrangle them into submission are so
highly paid. If you know how to expertly tweak the control knobs until
they’re just right, magic can ensue, in the form of a stream of insights
beyond the learner’s years. And, not unlike the Delphic oracle, interpreting
the learner’s pronouncements can itself require considerable skill. Turn the
knobs wrong, though, and the learner may spew out a torrent of gibberish or
clam up in defiance. Unfortunately, in this regard Alchemy is no better than
most. Writing down what you know in logic, feeding in the data, and
pushing the button is the fun part. When Alchemy returns a beautifully
accurate and efficient MLN, you go down to the pub and celebrate. When it
doesn’t—which is most of the time—the battle begins. Is the problem in the
knowledge, the learning, or the inference? On the one hand, because of the
learning and probabilistic inference, a simple MLN can do the job of a
complex program. On the other, when it doesn’t work, it’s much harder to
debug. The solution is to make it more interactive, able to introspect and
explain its reasoning. That will take us another step closer to the Master
Algorithm.

The doctor will see you now



The cure for cancer is a program that inputs the cancer’s genome and
outputs the drug to kill it with. We can now picture what such a program—
let’s call it CanceRx—will look like. Despite its outward simplicity,
CanceRx is one of the largest and most complex programs ever built—
indeed, so large and complex that it could only have been built with the
help of machine learning. It is based on a detailed model of how living cells
work, with a subclass for each type of cell in the human body and an
overarching model of how they interact. This model, in the form of an MLN
or something akin to it, combines knowledge of molecular biology with
vast amounts of data from DNA sequencers, microarrays, and many other
sources. Some of the knowledge was manually encoded, but most was
automatically extracted from the biomedical literature. The model is
continually evolving, incorporating the results of new experiments, data
sources, and patient histories. Ultimately, it will know every pathway,
regulatory mechanism, and chemical reaction in every type of human cell—
the sum total of human molecular biology.

CanceRx spends most of its time querying the model with candidate
drugs. Given a new drug, the model predicts its effect on both cancer cells
and normal ones. When Alice is diagnosed with cancer, CanceRx
instantiates its model with both her normal cells and the tumor’s and tries
all available drugs until it finds one that kills the cancer cells without
harming the healthy ones. If it can’t find a drug or combination of drugs
that works, it sets about designing one that will, perhaps evolving it from
existing ones using hill climbing or crossover. At each step in the search, it
tries the candidate drugs on the model. If a drug stops the cancer but still
has some harmful side effect, CanceRx tries to tweak it to get rid of the side
effect. When Alice’s cancer mutates, it repeats the whole process. Even
before the cancer mutates, the model predicts likely mutations, and
CanceRx prescribes drugs that will stop them dead in their tracks. In the
game of chess between humanity and cancer, CanceRx is checkmate.

Notice that machine learning isn’t going to give us CanceRx all by
itself. It’s not as if we have a vast database of molecular biology ready to
go, stream it into the Master Algorithm, and out pops the perfect model of a
living cell. CanceRx would be the end result, after many iterations, of a
worldwide collaboration between hundreds of thousands of biologists,
oncologists, and data scientists. Most important, however, CanceRx would



incorporate data from millions of cancer patients, with the help of their
doctors and hospitals. Without that data, we can’t cure cancer; with it, we
can. Contributing to this growing database would not only be in every
cancer patient’s interest; it would be her ethical duty. In the world of
CanceRx, discrete clinical trials are a thing of the past; new treatments
proposed by CanceRx are continually being rolled out, and if they work,
given to a widening circle of patients. Both successes and failures provide
valuable data for CanceRx’s learning, in a virtuous circle of improvement.
If you look at it one way, machine learning is only a small part of the
CanceRx project, well behind data gathering and human contributions. But
looked at another way, machine learning is the linchpin of the whole
enterprise. Without it, we would have only fragmentary knowledge of
cancer biology, scattered among thousands of databases and millions of
scientific articles, each doctor aware of only a small part. Assembling all
this knowledge into a coherent whole is beyond the power of unaided
humans, no matter how smart; only machine learning can do it. Because
every cancer is different, it takes machine learning to find the common
patterns. And because a single tissue can yield billions of data points, it
takes machine learning to figure out what to do for each new patient.

The effort to build what will ultimately become CanceRx is already
under way. Researchers in the new field of systems biology model whole
metabolic networks rather than individual genes and proteins. One group at
Stanford has built a model of a whole cell. The Global Alliance for
Genomics and Health promotes data sharing among researchers and
oncologists, with a view to large-scale analysis. CancerCommons.org
assembles cancer models and lets patients pool their histories and learn
from similar cases. Foundation Medicine pinpoints the mutations in a
patient’s tumor cells and suggests the most appropriate drugs. A decade
ago, it wasn’t clear if, or how, cancer would ever be cured. Now we can see
how to get there. The road is long, but we have found it.

http://cancercommons.org/


CHAPTER TEN

This Is the World on Machine Learning

Now that you’ve toured the machine learning wonderland, let’s switch gears
and see what it all means to you. Like the red pill in The Matrix, the Master
Algorithm is the gateway to a different reality: the one you already live in
but didn’t know it yet. From dating to work, from self-knowledge to the
future of society, from data sharing to war, and from the dangers of AI to
the next step in evolution, a new world is taking shape, and machine
learning is the key that unlocks it. This chapter will help you make the most
of it in your life and be ready for what comes next. Machine learning will
not single-handedly determine the future, any more than any other
technology; it’s what we decide to do with it that counts, and now you have
the tools to decide.

Chief among these tools is the Master Algorithm. Whether it arrives
sooner or later, and whether or not it looks like Alchemy, is less important
than what it encapsulates: the essential capabilities of a learning algorithm,
and where they’ll take us. We can equally well think of the Master
Algorithm as a composite picture of current and future learners, which we
can conveniently use in our thought experiments in lieu of the specific
algorithm inside product X or website Y, which the respective companies
are unlikely to share with us anyway. Seen in this light, the learners we
interact with every day are embryonic versions of the Master Algorithm,



and our task is to understand them and shape their growth to better serve
our needs.

In the coming decades, machine learning will affect such a broad swath
of human life that one chapter of one book cannot possibly do it justice.
Nevertheless, we can already see a number of recurring themes, and it’s
those we’ll focus on, starting with what psychologists call theory of mind—
the computer’s theory of your mind, that is.

Sex, lies, and machine learning

Your digital future begins with a realization: every time you interact with a
computer—whether it’s your smart phone or a server thousands of miles
away—you do so on two levels. The first one is getting what you want there
and then: an answer to a question, a product you want to buy, a new credit
card. The second level, and in the long run the most important one, is
teaching the computer about you. The more you teach it, the better it can
serve you—or manipulate you. Life is a game between you and the learners
that surround you. You can refuse to play, but then you’ll have to live a
twentieth-century life in the twenty-first. Or you can play to win. What
model of you do you want the computer to have? And what data can you
give it that will produce that model? Those two questions should always be
in the back of your mind whenever you interact with a learning algorithm—
as they are when you interact with other people. Alice knows that Bob has a
mental model of her and seeks to shape it through her behavior. If Bob is
her boss, she tries to come across as competent, loyal, and hardworking. If
instead Bob is someone she’s trying to seduce, she’ll be at her most
seductive. We could hardly function in society without this ability to intuit
and respond to what’s on other people’s minds. The novelty in the world
today is that computers, not just people, are starting to have theories of
mind. Their theories are still primitive, but they’re evolving quickly, and
they’re what we have to work with to get what we want—no less than with
other people. And so you need a theory of the computer’s mind, and that’s
what the Master Algorithm provides, after plugging in the score function
(what you think the learner’s goals are, or more precisely its owner’s) and
the data (what you think it knows).



Take online dating. When you use Match.com, eHarmony, or OkCupid
(suspend your disbelief, if necessary), your goal is simple: to find the best
possible date you can. But chances are it will take a lot of work and several
disappointing dates before you meet someone you really like. One hardy
geek extracted twenty thousand profiles from OkCupid, did his own data
mining, found the woman of his dreams on the eighty-eighth date, and told
his odyssey to Wired magazine. To succeed with fewer dates and less work,
your two main tools are your profile and your responses to suggested
matches. One popular option is to lie (about your age, for example). This
may seem unethical, not to mention liable to blow up in your face when
your date discovers the truth, but there’s a twist. Savvy online daters
already know that people lie about their age on their profiles and adjust
accordingly, so if you state your true age, you’re effectively telling them
you’re older than you really are! In turn, the learner doing the matching
thinks people prefer younger dates than they really do. The logical next step
is for people to lie about their age by even more, ultimately rendering this
attribute meaningless.

A better way for all concerned is to focus on your specific, unusual
attributes that are highly predictive of a match, in the sense that they pick
out people you like that not everyone else does, and therefore have less
competition for. Your job (and your prospective date’s) is to provide these
attributes. The matcher’s job is to learn from them, in the same way that an
old-fashioned matchmaker would. Compared to a village matchmaker,
Match.com’s algorithm has the advantage that it knows vastly more people,
but the disadvantage is that it knows them much more superficially. A naïve
learner, such as a perceptron, will be content with broad generalizations like
“gentlemen prefer blondes.” A more sophisticated one will find patterns
like “people with the same unusual musical tastes are often good matches.”
If Alice and Bob both like Beyoncé, that alone hardly singles them out for
each other. But if they both like Bishop Allen, that makes them at least a
little bit more likely to be potential soul mates. If they’re both fans of a
band the learner does not know about, that’s even better, but only a
relational algorithm like Alchemy can pick it up. The better the learner, the
more it’s worth your time to teach it about you. But as a rule of thumb, you
want to differentiate yourself enough so that it won’t confuse you with the

http://match.com/
http://match.com/


“average person” (remember Bob Burns from Chapter 8), but not be so
unusual that it can’t fathom you.

Online dating is in fact a tough example because chemistry is hard to
predict. Two people who hit it off on a date may wind up falling in love and
believing passionately that they were made for each other, but if their initial
conversation takes a different turn, they might instead find each other
annoying and never want to meet again. What a really sophisticated learner
would do is run a thousand Monte Carlo simulations of a date between each
pair of plausible matches and rank the matches by the fraction of dates that
turned out well. Short of that, dating sites can organize parties and invite
people who are each a likely match for many of the others, letting them
accomplish in a few hours what would otherwise take weeks.

For those of us who are not keen on online dating, a more immediately
useful notion is to choose which interactions to record and where. If you
don’t want your Christmas shopping to leave Amazon confused about your
tastes, do it on other sites. (Sorry, Amazon.) If you watch different kinds of
videos at home and for work, keep two accounts on YouTube, one for each,
and YouTube will learn to make the corresponding recommendations. And
if you’re about to watch some videos of a kind that you ordinarily have no
interest in, log out first. Use Chrome’s incognito mode not for guilty
browsing (which you’d never do, of course) but for when you don’t want
the current session to influence future personalization. On Netflix, adding
profiles for the different people using your account will spare you R-rated
recommendations on family movie night. If you don’t like a company, click
on their ads: this will not only waste their money now, but teach Google to
waste it again in the future by showing the ads to people who are unlikely to
buy the products. And if you have very specific queries that you want
Google to answer correctly in the future, take a moment to trawl through
the later results pages for the relevant links and click on them. More
generally, if a system keeps recommending the wrong things to you, try
teaching it by finding and clicking on a bunch of the right ones and come
back later to see if it did.

That could be a lot of work, though. What all of these illustrate,
unfortunately, is how narrow the communication channel between you and
the learner is today. You should be able to tell it as much as you want about
yourself, not just have it learn indirectly from what you do. More than that,



you should be able to inspect the learner’s model of you and correct it as
desired. The learner can still decide to ignore you, if it thinks you’re lying
or are low on self-knowledge, but at least it would be able to take your
input into account. For this, the model needs to be in a form that humans
can understand, such as a set of rules rather than a neural network, and it
needs to accept general statements as input in addition to raw data, as
Alchemy does. All of which brings us to the question of how good a model
of you a learner can have and what you’d want to do with that model.

The digital mirror

Take a moment to consider all the data about you that’s recorded on all the
world’s computers: your e-mails, Office docs, texts, tweets, and Facebook
and LinkedIn accounts; your web searches, clicks, downloads, and
purchases; your credit, tax, phone, and health records; your Fitbit statistics;
your driving as recorded by your car’s microprocessors; your wanderings as
recorded by your cell phone; all the pictures of you ever taken; brief cameos
on security cameras; your Google Glass snippets—and so on and so forth. If
a future biographer had access to nothing but this “data exhaust” of yours,
what picture of you would he form? Probably a quite accurate and detailed
one in many ways, but also one where some essential things would be
missing. Why did you, one beautiful day, decide to change careers? Could
the biographer have predicted it ahead of time? What about that person you
met one day and secretly never forgot? Could the biographer wind back
through the found footage and say “Ah, there”?

The sobering (or perhaps reassuring) thought is that no learner in the
world today has access to all this data (not even the NSA), and even if it
did, it wouldn’t know how to turn it into a real likeness of you. But suppose
you took all your data and gave it to the—real, future—Master Algorithm,
already seeded with everything we could teach it about human life. It would
learn a model of you, and you could carry that model in a thumb drive in
your pocket, inspect it at will, and use it for everything you pleased. It
would surely be a wonderful tool for introspection, like looking at yourself
in the mirror, but it would be a digital mirror that showed not just your
looks but all things observable about you—a mirror that could come alive



and converse with you. What would you ask it? Some of the answers you
might not like, but that would be all the more reason to ponder them. And
some would give you new ideas, new directions. The Master Algorithm’s
model of you might even help you become a better person.

Self-improvement aside, probably the first thing you’d want your model
to do is negotiate the world on your behalf: let it loose in cyberspace,
looking for all sorts of things for you. From all the world’s books, it would
suggest a dozen you might want to read next, with more insight than
Amazon could dream of. Likewise for movies, music, games, clothes,
electronics—you name it. It would keep your refrigerator stocked at all
times, natch. It would filter your e-mail, voice mail, Facebook posts, and
Twitter feed and, when appropriate, reply on your behalf. It would take care
of all the little annoyances of modern life for you, like checking credit-card
bills, disputing improper charges, making arrangements, renewing
subscriptions, and filling out tax returns. It would find a remedy for your
ailment, run it by your doctor, and order it from Walgreens. It would bring
interesting job opportunities to your attention, propose vacation spots,
suggest which candidates to vote for on the ballot, and screen potential
dates. And, after the match was made, it would team up with your date’s
model to pick some restaurants you might both like. Which is where things
start to get really interesting.

A society of models

In this rapidly approaching future, you’re not going to be the only one with
a “digital half” doing your bidding twenty-four hours a day. Everyone will
have a detailed model of him- or herself, and these models will talk to each
other all the time. If you’re looking for a job and company X is looking to
hire, its model will interview your model. It will be a lot like a real, flesh-
and-blood interview—your model will still be well advised to not volunteer
negative information about you, and so on—but it will take only a fraction
of a second. You’ll click on “Find Job” in your future LinkedIn account,
and you’ll immediately interview for every job in the universe that remotely
fits your parameters (profession, location, pay, etc.). LinkedIn will respond
on the spot with a ranked list of the best prospects, and out of those, you’ll



pick the first company that you want to have a chat with. Same with dating:
your model will go on millions of dates so you don’t have to, and come
Saturday, you’ll meet your top prospects at an OkCupid-organized party,
knowing that you’re also one of their top prospects—and knowing, of
course, that their other top prospects are also in the room. It’s sure to be an
interesting night.

In the world of the Master Algorithm, “my people will call your people”
becomes “my program will call your program.” Everyone has an entourage
of bots, smoothing his or her way through the world. Deals get pitched,
terms negotiated, arrangements made, all before you lift a finger. Today,
drug companies target your doctor, because he decides what drugs to
prescribe to you. Tomorrow, the purveyors of every product and service you
use, or might use, will target your model, because your model will screen
them for you. Their bots’ job is to get your bot to buy. Your bot’s job is to
see through their claims, just as you see through TV commercials, but at a
much finer level of detail, one that you’d never have the time or patience
for. Before you buy a car, the digital you will go over every one of its specs,
discuss them with the manufacturer, and study everything anyone in the
world has said about that car and its alternatives. Your digital half will be
like power steering for your life: it goes where you want to go but with less
effort from you. This does not mean that you’ll end up in a “filter bubble,”
seeing only what you reliably like, with no room for the unexpected; the
digital you knows better than that. Part of its brief is to leave some things
open to chance, to expose you to new experiences, and to look for
serendipity.

Even more interesting, the process doesn’t end when you find a car, a
house, a doctor, a date, or a job. Your digital half is continually learning
from its experiences, just as you would. It figures out what works and
doesn’t, whether it’s in job interviews, dating, or real-estate hunting. It
learns about the people and organizations it interacts with on your behalf
and then (even more important) from your real-world interactions with
them. It predicted Alice would be a great date for you, but you had an
awkward time, so it hypothesizes possible reasons, which it will test on
your next round of dating. It shares its most important findings with you.
(“You believe you like X, but in reality you tend to go for Y.”) Comparing
your experiences of various hotels with their reviews on TripAdvisor, it



figures out what the really telling tidbits are and looks for them in the
future. It learns not just which online merchants are more trustworthy but
how to decode what the less trustworthy ones say. Your digital half has a
model of the world: not just of the world in general but of the world as it
relates to you. At the same time, of course, everyone else also has a
continually evolving model of his or her world. Every party to an
interaction learns from it and applies what it’s learned to its next
interactions. You have your model of every person and organization you
interact with, and they each have their model of you. As the models
improve, their interactions become more and more like the ones you would
have in the real world—except millions of times faster and in silicon.
Tomorrow’s cyberspace will be a vast parallel world that selects only the
most promising things to try out in the real one. It will be like a new, global
subconscious, the collective id of the human race.

To share or not to share, and how and where

Of course, learning about the world all by yourself is slow, even if your
digital half does it orders of magnitude faster than the flesh-and-blood you.
If others learn about you faster than you learn about them, you’re in trouble.
The answer is to share: a million people learn about a company or product a
lot faster than a single one does, provided they pool their experiences. But
who should you share data with? That’s perhaps the most important
question of the twenty-first century.

Today your data can be of four kinds: data you share with everyone,
data you share with friends or coworkers, data you share with various
companies (wittingly or not), and data you don’t share. The first type
includes things like Yelp, Amazon, and TripAdvisor reviews, eBay
feedback scores, LinkedIn résumés, blogs, tweets, and so on. This data is
very valuable and is the least problematic of the four. You make it available
to everyone because you want to, and everyone benefits. The only problem
is that the companies hosting the data don’t necessarily allow it to be
downloaded in bulk for building models. They should. Today you can go to
TripAdvisor and see the reviews and star ratings of particular hotels you’re
considering, but what about a model of what makes a hotel good or bad in



general, which you could use to rate hotels that currently have few or no
reliable reviews? TripAdvisor could learn it, but what about a model of
what makes a hotel good or bad for you? This requires information about
you that you may not want to share with TripAdvisor. What you’d like is a
trusted party that combines the two types of data and gives you the results.

The second kind of data should also be unproblematic, but it isn’t
because it overlaps with the third. You share updates and pictures with your
friends on Facebook, and they with you. But everyone shares their updates
and pictures with Facebook. Lucky Facebook: it has a billion friends. Day
by day, it learns a lot more about the world than any one person does. It
would learn even more if it had better algorithms, and they are getting
better every day, courtesy of us data scientists. Facebook’s main use for all
this knowledge is to target ads to you. In return, it provides the
infrastructure for your sharing. That’s the bargain you make when you use
Facebook. As its learning algorithms improve, it gets more and more value
out of the data, and some of that value returns to you in the form of more
relevant ads and better service. The only problem is that Facebook is also
free to do things with the data and the models that are not in your interest,
and you have no way to stop it.

This problem pops up across the board with data you share with
companies, which these days includes pretty much everything you do online
as well as a lot of what you do offline. In case you haven’t noticed, there’s a
mad race to gather data about you. Everybody loves your data, and no
wonder: it’s the gateway to your world, your money, your vote, even your
heart. But everyone has only a sliver of it. Google sees your searches,
Amazon your online purchases, AT&T your phone calls, Apple your music
downloads, Safeway your groceries, Capital One your credit-card
transactions. Companies like Acxiom collate and sell information about
you, but if you inspect it (which in Acxiom’s case you can, at
aboutthedata.com), it’s not much, and some of it is wrong. No one has
anything even approaching a complete picture of you. That’s both good and
bad. Good because if someone did, they’d have far too much power. Bad
because as long as that’s the case there can be no 360-degree model of you.
What you really want is a digital you that you’re the sole owner of and that
others can access only on your terms.

http://aboutthedata.com/


The last type of data—data you don’t share—also has a problem, which
is that maybe you should share it. Maybe it hasn’t occurred to you to do so,
maybe there’s no easy way to, or maybe you just don’t want to. In the latter
case, you should consider whether you have an ethical responsibility to
share. One example we’ve seen is cancer patients, who can contribute to
curing cancer by sharing their tumors’ genomes and treatment histories. But
it goes well beyond that. All sorts of questions about society and policy can
potentially be answered by learning from the data we generate in our daily
lives. Social science is entering a golden age, where it finally has data
commensurate with the complexity of the phenomena it studies, and the
benefits to all of us could be enormous—provided the data is accessible to
researchers, policy makers, and citizens. This does not mean letting others
peek into your private life; it means letting them see the learned models,
which should contain only statistical information. So between you and them
there needs to be an honest data broker that guarantees your data won’t be
misused, but also that no free riders share the benefits without sharing the
data.

In sum, all four kinds of data sharing have problems. These problems all
have a common solution: a new type of company that is to your data what
your bank is to your money. Banks don’t steal your money (with rare
exceptions). They’re supposed to invest it wisely, and your deposits are
FDIC-insured. Many companies today offer to consolidate your data
somewhere in the cloud, but they’re still a far cry from your personal data
bank. If they’re cloud providers, they try to lock you in—a big no-no.
(Imagine depositing your money with Bank of America and not knowing if
you’ll be able to transfer it to Wells Fargo somewhere down the line.) Some
startups offer to hoard your data and then mete it out to advertisers in return
for discounts, but to me that misses the point. Sometimes you want to give
information to advertisers for free because it’s in your interests, sometimes
you don’t want to give it at all, and what to share when is a problem that
only a good model of you can solve.

The kind of company I’m envisaging would do several things in return
for a subscription fee. It would anonymize your online interactions, routing
them through its servers and aggregating them with its other users’. It
would store all the data from all your life in one place—down to your 24/7
Google Glass video stream, if you ever get one. It would learn a complete



model of you and your world and continually update it. And it would use
the model on your behalf, always doing exactly what you would, to the best
of the model’s ability. The company’s basic commitment to you is that your
data and your model will never be used against your interests. Such a
guarantee can never be foolproof—you yourself are not guaranteed to never
do anything against your interests, after all. But the company’s life would
depend on it as much as a bank’s depends on the guarantee that it won’t lose
your money, so you should be able to trust it as much as you trust your
bank.

A company like this could quickly become one of the most valuable in
the world. As Alexis Madrigal of the Atlantic points out, today your profile
can be bought for half a cent or less, but the value of a user to the Internet
advertising industry is more like $1,200 per year. Google’s sliver of your
data is worth about $20, Facebook’s $5, and so on. Add to that all the
slivers that no one has yet, and the fact that the whole is more than the sum
of the parts—a model of you based on all your data is much better than a
thousand models based on a thousand slivers—and we’re looking at easily
over a trillion dollars per year for an economy the size of the United States.
It doesn’t take a large cut of that to make a Fortune 500 company. If you
decide to take up the challenge and wind up becoming a billionaire,
remember where you first got the idea.

Of course, some existing companies would love to host the digital you.
Google, for example. Sergey Brin says that “we want Google to be the third
half of your brain,” and some of Google’s acquisitions are probably not
unrelated to how well their streams of user data complement its own. But,
despite their head start, companies like Google and Facebook are not well
suited to being your digital home because they have a conflict of interest.
They earn a living by targeting ads, and so they have to balance your
interests and the advertisers’. You wouldn’t let the first or second half of
your brain have divided loyalties, so why would you let the third?

One possible showstopper is that the government may subpoena your
data or even preventively jail you, Minority Report–style, if your model
looks like a criminal’s. To forestall that, your data company can keep
everything encrypted, with the key in your possession. (These days you can
even compute over encrypted data without ever decrypting it.) Or you can



keep it all in your hard disk at home, and the company just rents you the
software.

If you don’t like the idea of a profit-making entity holding the keys to
your kingdom, you can join a data union instead. (If there isn’t one in your
neck of the cyberwoods yet, consider starting it.) The twentieth century
needed labor unions to balance the power of workers and bosses. The
twenty-first needs data unions for a similar reason. Corporations have a
vastly greater ability to gather and use data than individuals. This leads to
an asymmetry in power, and the more valuable the data—the better and
more useful the models that can be learned from it—the greater the
asymmetry. A data union lets its members bargain on equal terms with
companies about the use of their data. Perhaps labor unions can get the ball
rolling, and shore up their membership, by starting data unions for their
members. But labor unions are organized by occupation and location; data
unions can be more flexible. Join up with people you have a lot in common
with; the models learned will be more useful to you that way. Notice that
being in a data union does not mean letting other members see your data; it
just means letting everyone use the models learned from the pooled data.
Data unions can also be your vehicle for telling politicians what you want.
Your data can influence the world as much as your vote—or more—because
you only go to the polls on election day. On all other days, your data is your
vote. Stand up and be counted!

So far I haven’t uttered the word privacy. That’s not by accident.
Privacy is only one aspect of the larger issue of data sharing, and if we
focus on it to the detriment of the whole, as much of the debate to date has,
we risk reaching the wrong conclusions. For example, laws that forbid
using data for any purpose other than the originally intended one are
extremely myopic. (Not a single chapter of Freakonomics could have been
written under such a law.) When people have to trade off privacy against
other benefits, as when filling out a profile on a website, the implied value
of privacy that comes out is much lower than if you ask them abstract
questions like “Do you care about your privacy?” But privacy debates are
more often framed in terms of the latter. The European Union’s Court of
Justice has decreed that people have the right to be forgotten, but they also
have the right to remember, whether it’s with their neurons or a hard disk.
So do companies, and up to a point, the interests of users, data gatherers,



and advertisers are aligned. Wasted attention benefits no one, and better
data makes better products. Privacy is not a zero-sum game, even though
it’s often treated like one.

Companies that host the digital you and data unions are what a mature
future of data in society looks like to me. Whether we’ll get there is an open
question. Today, most people are unaware of both how much data about
them is being gathered and what the potential costs and benefits are.
Companies seem content to continue doing it under the radar, terrified of a
blowup. But sooner or later a blowup will happen, and in the ensuing
fracas, draconian laws will be passed that in the end will serve no one.
Better to foster awareness now and let everyone make their individual
choices about what to share, what not, and how and where.

A neural network stole my job

How much of your brain does your job use? The more it does, the safer you
are. In the early days of AI, the common view was that computers would
replace blue-collar workers before white-collar ones, because white-collar
work requires more brains. But that’s not quite how things turned out.
Robots assemble cars, but they haven’t replaced construction workers. On
the other hand, machine-learning algorithms have replaced credit analysts
and direct marketers. As it turns out, evaluating credit applications is easier
for machines than walking around a construction site without tripping, even
though for humans it’s the other way around. The common theme is that
narrowly defined tasks are easily learned from data, but tasks that require a
broad combination of skills and knowledge aren’t. Most of your brain is
devoted to vision and motion, which is a sign that walking around is much
more complex than it seems; we just take it for granted because, having
been honed to perfection by evolution, it’s mostly done subconsciously. The
company Narrative Science has an AI system that can write pretty good
summaries of baseball games, but not novels, because—pace George F.
Will—there’s a lot more to life than to baseball games. Speech recognition
is hard for computers because it’s hard to fill in the blanks—literally, the
sounds speakers routinely elide—when you have no idea what the person is
talking about. Algorithms can predict stock fluctuations but have no clue



how they relate to politics. The more context a job requires, the less likely a
computer will be able to do it soon. Common sense is important not just
because your mom taught you so, but because computers don’t have it.

The best way to not lose your job is to automate it yourself. Then you’ll
have time for all the parts of it that you didn’t before and that a computer
won’t be able to do any time soon. (If there aren’t any, stay ahead of the
curve and get a new job now.) If a computer has learned to do your job,
don’t try to compete with it; harness it. H&R Block is still in business, but
tax preparers’ jobs are much less dreary than they used to be, now that
computers do most of the grunge work. (OK, perhaps this is not the best
example, given that the tax code’s exponential growth is one of the few that
can hold its own against computing power’s exponential growth.) Think of
big data as an extension of your senses and learning algorithms as an
extension of your brain. The best chess players these days are so-called
centaurs, half-man and half-program. The same is true in many other
occupations, from stock analyst to baseball scout. It’s not man versus
machine; it’s man with machine versus man without. Data and intuition are
like horse and rider, and you don’t try to outrun a horse; you ride it.

As technology progresses, an ever more intimate mix of human and
machine takes shape. You’re hungry; Yelp suggests some good restaurants.
You pick one; GPS gives you directions. You drive; car electronics does the
low-level control. We are all cyborgs already. The real story of automation
is not what it replaces but what it enables. Some professions disappear, but
many more are born. Most of all, automation makes all sorts of things
possible that would be way too expensive if done by humans. ATMs
replaced some bank tellers, but mainly they let us withdraw money any
time, anywhere. If pixels had to be colored one at a time by human
animators, there would be no Toy Story and no video games.

Still, we can ask whether we’ll eventually run out of jobs for humans. I
think not. Even if the day comes—and it won’t be soon—when computers
and robots can do everything better, there will still be jobs for at least some
of us. A robot may be able to do a perfect impersonation of a bartender,
down to the small talk, but patrons may still prefer a bartender they know is
human, just because he is. Restaurants with human waiters will have extra
cachet, just as handmade goods already do. People still go to the theater,
ride horses, and sail, even though we have movies, cars, and motorboats.



More importantly, some professionals will be truly irreplaceable because
their jobs require the one thing that computers and robots by definition
cannot have: the human experience. By that I don’t mean touchy-feely jobs,
because touchy-feely is not hard to fake; witness the success of robo-pets. I
mean the humanities, whose domain is precisely everything you can’t
understand without the experience of being human. We worry that the
humanities are in a death spiral, but they’ll rise from the ashes once other
professions have been automated. The more everything is done cheaply by
machines, the more valuable the humanist’s contribution will be.

Conversely, the long-term prospects of scientists are not the brightest,
sadly. In the future, the only scientists may well be computer scientists,
meaning computers doing science. The people formerly known as scientists
(like me) will devote their lives to understanding the scientific advances
made by computers. They won’t be noticeably less happy than before; after
all, science was always a hobby to them. And one very important job for the
technically minded will remain: keeping an eye on the computers. In fact,
this will require more than engineers; ultimately, it may be the full-time
occupation of all mankind to figure out what we want from the machines
and make sure we’re getting it—more on this later in this chapter.

In the meantime, as the boundary between automatable and non-
automatable jobs advances across the economic landscape, what we’ll
likely see is unemployment creeping up, downward pressure on the wages
of more and more professions, and increasing rewards for the fewer and
fewer that can’t yet be automated. This is what’s already happening, of
course, but it has much further to run. The transition will be tumultuous, but
thanks to democracy, it will have a happy ending. (Hold on to your vote—it
may be the most valuable thing you have.) When the unemployment rate
rises above 50 percent, or even before, attitudes about redistribution will
radically change. The newly unemployed majority will vote for generous
lifetime unemployment benefits and the sky-high taxes needed to fund
them. These won’t break the bank because machines will do the necessary
production. Eventually, we’ll start talking about the employment rate
instead of the unemployment one and reducing it will be seen as a sign of
progress. (“The US is falling behind. Our employment rate is still 23
percent.”) Unemployment benefits will be replaced by a basic income for
everyone. Those of us who aren’t satisfied with it will be able to earn more,



stupendously more, in the few remaining human occupations. Liberals and
conservatives will still fight about the tax rate, but the goalposts will have
permanently moved. With the total value of labor greatly reduced, the
wealthiest nations will be those with the highest ratio of natural resources to
population. (Move to Canada now.) For those of us not working, life will
not be meaningless, any more than life on a tropical island where nature’s
bounty meets all needs is meaningless. A gift economy will develop, of
which the open-source software movement is a preview. People will seek
meaning in human relationships, self-actualization, and spirituality, much as
they do now. The need to earn a living will be a distant memory, another
piece of humanity’s barbaric past that we rose above.

War is not for humans

Soldiering is harder to automate than science, but it will be as well. One of
the prime uses of robots is to do things that are too dangerous for humans,
and fighting wars is about as dangerous as it gets. Robots already defuse
bombs, and drones allow a platoon to see over the hill. Self-driving supply
trucks and robotic mules are on the way. Soon we will need to decide
whether robots are allowed to pull the trigger on their own. The argument
for doing this is that we want to get humans out of harm’s way, and remote
control is not viable in fast-moving, shoot-or-be-shot situations. The
argument against is that robots don’t understand ethics, and so can’t be
entrusted with life-or-death decisions. But we can teach them. The deeper
question is whether we’re ready to.

It’s not hard to state general principles like military necessity,
proportionality, and sparing civilians. But there’s a gulf between them and
concrete actions, which the soldier’s judgment has to bridge. Asimov’s
three laws of robotics quickly run into trouble when robots try to apply
them in practice, as his stories memorably illustrate. General principles are
usually contradictory, if not self-contradictory, and they have to be lest they
turn all shades of gray into black and white. When does military necessity
outweigh sparing civilians? There is no universal answer and no way to
program a computer with all the eventualities. Machine learning, however,
provides an alternative. First, teach the robot to recognize the relevant



concepts, for example with data sets of situations where civilians were and
were not spared, armed response was and was not proportional, and so on.
Then give it a code of conduct in the form of rules involving these concepts.
Finally, let the robot learn how to apply the code by observing humans: the
soldier opened fire in this case but not in that case. By generalizing from
these examples, the robot can learn an end-to-end model of ethical decision
making, in the form of, say, a large MLN. Once the robot’s decisions agree
with a human’s as often as one human agrees with another, the training is
complete, meaning the model is ready for download into thousands of robot
brains. Unlike humans, robots don’t lose their heads in the heat of combat.
If a robot malfunctions, the manufacturer is responsible. If it makes a wrong
call, its teachers are.

The main problem with this scenario, as you may have already guessed,
is that letting robots learn ethics by observing humans may not be such a
good idea. The robot is liable to get seriously confused when it sees that
humans’ actions often violate their ethical principles. We can clean up the
training data by including only the examples where, say, a panel of ethicists
agrees that the soldier made the right decision, and the panelists can also
inspect and tweak the model post-learning to their satisfaction. Agreement
may be hard to reach, however, particularly if the panel includes all the
different kinds of people it should. Teaching ethics to robots, with their
logical minds and lack of baggage, will force us to examine our
assumptions and sort out our contradictions. In this, as in many other areas,
the greatest benefit of machine learning may ultimately be not what the
machines learn but what we learn by teaching them.

Another objection to robot armies is that they make war too easy. But if
we unilaterally relinquish them, that could cost us the next war. The logical
response, advocated by the United Nations and Human Rights Watch, is a
treaty banning robot warfare, similar to the Geneva Protocol of 1925
banning chemical and biological warfare. This misses a crucial distinction,
however. Chemical and biological warfare can only increase human
suffering, but robot warfare can greatly decrease it. If a war is fought by
machines, with humans only in command positions, no one is killed or
wounded. Perhaps, then, what we should do, instead of outlawing robot
soldiers, is—when we’re ready—outlaw human soldiers.



Robot armies may indeed make wars more likely, but they will also
change the ethics of war. Shoot/don’t shoot dilemmas become much easier
if the targets are other robots. The modern view of war as an unspeakable
horror, to be engaged in only as a last resort, will give way to a more
nuanced view of war as an orgy of destruction that leaves all sides
impoverished and is best avoided but not at all costs. And if war is reduced
to a competition to see who can destroy the most, then why not compete
instead to create the most?

In any case, banning robot warfare may not be viable. Far from banning
drones—the precursors of tomorrow’s warbots—countries large and small
are busy developing them, presumably because in their estimation the
benefits outweigh the risks. As with any weapon, it’s safer to have robots
than to trust the other side not to. If in future wars millions of kamikaze
drones will destroy conventional armies in minutes, they’d better be our
drones. If World War III will be over in seconds, as one side takes control of
the other’s systems, we’d better have the smarter, faster, more resilient
network. (Off-grid systems are not the answer: systems that aren’t
networked can’t be hacked, but they can’t compete with networked systems,
either.) And, on balance, a robot arms race may be a good thing, if it hastens
the day when the Fifth Geneva Convention bans humans in combat. War
will always be with us, but the casualties of war need not be.

Google + Master Algorithm = Skynet?

Of course, robot armies also raise a whole different specter. According to
Hollywood, the future of humanity is to be snuffed out by a gargantuan AI
and its vast army of machine minions. (Unless, of course, a plucky hero
saves the day in the last five minutes of the movie.) Google already has the
gargantuan hardware such an AI would need, and it’s recently acquired an
army of robotics startups to go with it. If we drop the Master Algorithm into
its servers, is it game over for humanity? Why yes, of course. It’s time to
reveal my true agenda, with apologies to Tolkien:

Three Algorithms for the Scientists under the sky,
Seven for the Engineers in their halls of servers,



Nine for Mortal Businesses doomed to die,
One for the Dark AI on its dark throne,
In the Land of Learning where the Data lies.
One Algorithm to rule them all, One Algorithm to find them,
One Algorithm to bring them all and in the darkness bind them,
In the Land of Learning where the Data lies.

Hahahaha! Seriously, though, should we worry that machines will take
over? The signs seem ominous. With every passing year, computers don’t
just do more of the world’s work; they make more of the decisions. Who
gets credit, who buys what, who gets what job and what raise, which stocks
will go up and down, how much insurance costs, where police officers
patrol and therefore who gets arrested, how long their prison terms will be,
who dates whom and therefore who will be born: machine-learned models
already play a part in all of these. The point where we could turn off all our
computers without causing the collapse of modern civilization has long
passed. Machine learning is the last straw: if computers can start
programming themselves, all hope of controlling them is surely lost.
Distinguished scientists like Stephen Hawking have called for urgent
research on this issue before it’s too late.

Relax. The chances that an AI equipped with the Master Algorithm will
take over the world are zero. The reason is simple: unlike humans,
computers don’t have a will of their own. They’re products of engineering,
not evolution. Even an infinitely powerful computer would still be only an
extension of our will and nothing to fear. Recall the three components of
every learning algorithm: representation, evaluation, and optimization. The
learner’s representation circumscribes what it can learn. Let’s make it a very
powerful one, like Markov logic, so the learner can in principle learn
anything. The optimizer then does everything in its power to maximize the
evaluation function—no more and no less—and the evaluation function is
determined by us. A more powerful computer will just optimize it better.
There’s no risk of it getting out of control, even if it’s a genetic algorithm. A
learned system that didn’t do what we want would be severely unfit and
soon die out. In fact, it’s the systems that have even a slight edge in serving
us better that will, generation after generation, multiply and take over the



gene pool. Of course, if we’re so foolish as to deliberately program a
computer to put itself above us, then maybe we’ll get what we deserve.

The same reasoning applies to all AI systems because they all—
explicitly or implicitly—have the same three components. They can vary
what they do, even come up with surprising plans, but only in service of the
goals we set them. A robot whose programmed goal is “make a good
dinner” may decide to cook a steak, a bouillabaisse, or even a delicious new
dish of its own creation, but it can’t decide to murder its owner any more
than a car can decide to fly away. The purpose of AI systems is to solve NP-
complete problems, which, as you may recall from Chapter 2, may take
exponential time, but the solutions can always be checked efficiently. We
should therefore welcome with open arms computers that are vastly more
powerful than our brains, safe in the knowledge that our job is
exponentially easier than theirs. They have to solve the problems; we just
have to check that they did so to our satisfaction. AIs will think fast what
we think slow, and the world will be the better for it. I, for one, welcome
our new robot underlings.

It’s natural to worry about intelligent machines taking over because the
only intelligent entities we know are humans and other animals, and they
definitely have a will of their own. But there is no necessary connection
between intelligence and autonomous will; or rather, intelligence and will
may not inhabit the same body, provided there is a line of control between
them. In The Extended Phenotype, Richard Dawkins shows how nature is
replete with examples of an animal’s genes controlling more than its own
body, from cuckoo eggs to beaver dams. Technology is the extended
phenotype of man. This means we can continue to control it even if it
becomes far more complex than we can understand.

Picture two strands of DNA going for a swim in their private pool, aka a
bacterium’s cytoplasm, two billion years ago. They’re pondering a
momentous decision. “I’m worried, Diana,” says one. “If we start making
multicellular creatures, will they take over?” Fast-forward to the twenty-
first century, and DNA is still alive and well. Better than ever, in fact, with
an increasing fraction living safely in bipedal organisms comprising
trillions of cells. It’s been quite a ride for our tiny double-stranded friends
since they made their momentous decision. Humans are their trickiest
creation yet; we’ve invented things like contraception that let us have fun



without spreading our DNA, and we have—or seem to have—free will. But
it’s still DNA that shapes our notions of fun, and we use our free will to
pursue pleasure and avoid pain, which, for the most part, still coincides with
what’s best for our DNA’s survival. We may yet be DNA’s demise if we
choose to transmute ourselves into silicon, but even then, it’s been a great
two billion years. The decision we face today is similar: if we start making
AIs—vast, interconnected, superhuman, unfathomable AIs—will they take
over? Not any more than multicellular organisms took over from genes, vast
and unfathomable as we may be to them. AIs are our survival machines, in
the same way that we are our genes’.

This does not mean that there is nothing to worry about, however. The
first big worry, as with any technology, is that AI could fall into the wrong
hands. If a criminal or prankster programs an AI to take over the world,
we’d better have an AI police capable of catching it and erasing it before it
gets too far. The best insurance policy against vast AIs gone amok is vaster
AIs keeping the peace.

The second worry is that humans will voluntarily surrender control. It
starts with robot rights, which seem absurd to me but not to everyone. After
all, we already give rights to animals, who never asked for them. Robot
rights might seem like the logical next step in expanding the “circle of
empathy.” Feeling empathy for robots is not hard, particularly if they’re
designed to elicit it. Even Tamagotchi, Japanese “virtual pets” with all of
three buttons and an LCD screen, do it quite successfully. The first
humanoid consumer robot will set off a race to make more and more
empathy-eliciting robots, because they’ll sell much better than the plain
metal variety. Children raised by robot nannies will have a lifelong soft spot
for kindly electronic friends. The “uncanny valley”—our discomfort with
robots that are almost human but not quite—will be unknown to them
because they grew up with robot mannerisms and maybe even adopted them
as cool teenagers.

The next step in the insidious progression of AI control is letting them
make all the decisions because they’re, well, so much smarter. Beware.
They may be smarter, but they’re in the service of whoever designed their
score functions. This is the “Wizard of Oz” problem. Your job in a world of
intelligent machines is to keep making sure they do what you want, both at
the input (setting the goals) and at the output (checking that you got what



you asked for). If you don’t, somebody else will. Machines can help us
figure out collectively what we want, but if you don’t participate, you lose
out—just like democracy, only more so. Contrary to what we like to believe
today, humans quite easily fall into obeying others, and any sufficiently
advanced AI is indistinguishable from God. People won’t necessarily mind
taking their marching orders from some vast oracular computer; the
question is who oversees the overseer. Is AI the road to a more perfect
democracy or to a more insidious dictatorship? The eternal vigil has just
begun.

The third and perhaps biggest worry is that, like the proverbial genie,
the machines will give us what we ask for instead of what we want. This is
not a hypothetical scenario; learning algorithms do it all the time. We train a
neural network to recognize horses, but it learns instead to recognize brown
patches, because all the horses in its training set happened to be brown. You
just bought a watch, so Amazon recommends similar items: other watches,
which are now the last thing you want to buy. If you examine all the
decisions that computers make today—who gets credit, for example—
you’ll find that they’re often needlessly bad. Yours would be too, if your
brain was a support vector machine and all your knowledge of credit
scoring came from perusing one lousy database. People worry that
computers will get too smart and take over the world, but the real problem
is that they’re too stupid and they’ve already taken over the world.

Evolution, part 2

Even if computers today are still not terribly smart, there’s no doubt that
their intelligence is rapidly increasing. As early as 1965, I. J. Good, a
British statistician and Alan Turing’s sidekick on the World War II Enigma
code-breaking project, speculated on a coming intelligence explosion. Good
pointed out that if we can design machines that are more intelligent than us,
they should in turn be able to design machines that are more intelligent than
them, and so on ad infinitum, leaving human intelligence far behind. In a
1993 essay, Vernor Vinge christened this “the Singularity.” The concept has
been popularized most of all by Ray Kurzweil, who argues in The
Singularity Is Near that not only is the Singularity inevitable, but the point



where machine intelligence exceeds human intelligence—let’s call it the
Turing point—will arrive within the next few decades.

Clearly, without machine learning—programs that design programs—
the Singularity cannot happen. We also need sufficiently powerful
hardware, but that’s coming along nicely. We’ll reach the Turing point soon
after we invent the Master Algorithm. (I’m willing to bet Kurzweil a bottle
of Dom Pérignon that this will happen before we reverse engineer the brain,
his method of choice for bringing about human-level AI.) Pace Kurzweil,
this will not, however, lead to the Singularity. It will lead to something
much more interesting.

The term singularity comes from mathematics, where it denotes a point
at which a function becomes infinite. For example, the function 1/x has a
singularity when x is 0, because 1 divided by 0 is infinity. In physics, the
quintessential example of a singularity is a black hole: a point of infinite
density, where a finite amount of matter is crammed into infinitesimal
space. The only problem with singularities is that they don’t really exist.
(When did you last divide a cake among zero people, and each one got an
infinite slice?) In physics, if a theory predicts something is infinite,
something’s wrong with the theory. Case in point, general relativity
presumably predicts that black holes have infinite density because it ignores
quantum effects. Likewise, intelligence cannot continue to increase forever.
Kurzweil acknowledges this, but points to a series of exponential curves in
technology improvement (processor speed, memory capacity, etc.) and
argues that the limits to this growth are so far away that we need not
concern ourselves with them.

Kurzweil is overfitting. He correctly faults other people for always
extrapolating linearly—seeing straight lines instead of curves—but then
falls prey to a more exotic malady: seeing exponentials everywhere. In
curves that are flat—nothing happening—he sees exponentials that have not
taken off yet. But technology improvement curves are not exponentials;
they are S curves, our good friends from Chapter 4. The early part of an S
curve is easy to mistake for an exponential, but then they quickly diverge.
Most of Kurzweil’s curves are consequences of Moore’s law, which is on its
last legs. Kurzweil argues that other technologies will take the place of
semiconductors and S curve will pile on S curve, each steeper than the
previous one, but this is speculation. He goes even further to claim that the



entire history of life on Earth, not just human technology, shows
exponentially accelerating progress, but this perception is at least partly due
to a parallax effect: things that are closer seem to move faster. Trilobites in
the heat of the Cambrian explosion could be forgiven for believing in
exponentially accelerating progress, but then there was a big slowdown. A
Tyrannosaurus Ray would probably have proposed a law of accelerating
body size. Eukaryotes (us) evolve more slowly than prokaryotes (bacteria).
Far from accelerating smoothly, evolution proceeds in fits and starts.

To sidestep the problem that infinitely dense points don’t exist,
Kurzweil proposes to instead equate the Singularity with a black hole’s
event horizon, the region within which gravity is so strong that not even
light can escape. Similarly, he says, the Singularity is the point beyond
which technological evolution is so fast that humans cannot predict or
understand what will happen. If that’s what the Singularity is, then we’re
already inside it. We can’t predict in advance what a learner will come up
with, and often we can’t even understand it in retrospect. As a matter of
fact, we’ve always lived in a world that we only partly understood. The
main difference is that our world is now partly created by us, which is
surely an improvement. The world beyond the Turing point will not be
incomprehensible to us, any more than the Pleistocene was. We’ll focus on
what we can understand, as we always have, and call the rest random (or
divine).

The trajectory we’re on is not a singularity but a phase transition. Its
critical point—the Turing point—will come when machine learning
overtakes the natural variety. Natural learning itself has gone through three
phases: evolution, the brain, and culture. Each is a product of the previous
one, and each learns faster. Machine learning is the logical next stage of this
progression. Computer programs are the fastest replicators on Earth:
copying them takes only a fraction of a second. But creating them is slow, if
it has to be done by humans. Machine learning removes that bottleneck,
leaving a final one: the speed at which humans can absorb change. This too
will eventually be removed, but not because we’ll decide to hand things off
to our “mind children,” as Hans Moravec calls them, and go gently into the
good night. Humans are not a dying twig on the tree of life. On the contrary,
we’re about to start branching.



In the same way that culture coevolved with larger brains, we will
coevolve with our creations. We always have: humans would be physically
different if we had not invented fire or spears. We are Homo technicus as
much as Homo sapiens. But a model of the cell of the kind I envisaged in
the last chapter will allow something entirely new: computers that design
cells based on the parameters we give them, in the same way that silicon
compilers design microchips based on their functional specifications. The
corresponding DNA can then be synthesized and inserted into a “generic”
cell, transforming it into the desired one. Craig Venter, the genome pioneer,
has already taken the first steps in this direction. At first we will use this
power to fight disease: a new pathogen is identified, the cure is immediately
found, and your immune system downloads it from the Internet. Health
problems becomes an oxymoron. Then DNA design will let people at last
have the body they want, ushering in an age of affordable beauty, in
William Gibson’s memorable words. And then Homo technicus will evolve
into a myriad different intelligent species, each with its own niche, a whole
new biosphere as different from today’s as today’s is from the primordial
ocean.

Many people worry that human-directed evolution will permanently
split the human race into a class of genetic haves and one of have-nots. This
strikes me as a singular failure of imagination. Natural evolution did not
result in just two species, one subservient to the other, but in an infinite
variety of creatures and intricate ecosystems. Why would artificial
evolution, building on it but less constrained, do so?

Like all phase transitions, this one will eventually taper off too.
Overcoming a bottleneck does not mean the sky is the limit; it means the
next bottleneck is the limit, even if we don’t see it yet. Other transitions will
follow, some large, some small, some soon, some not for a long time. But
the next thousand years could well be the most amazing in the life of planet
Earth.



Epilogue

So now you know the secrets of machine learning. The engine that turns
data into knowledge is no longer a black box: you know how the magic
happens and what it can and can’t do. You’ve met the complexity monster,
the overfitting problem, the curse of dimensionality, and the exploration-
exploitation dilemma. You know in broad outline what Google, Facebook,
Amazon, and all the rest do with the data you generously give them every
day and why they can find stuff for you, filter out spam, and keep
improving their offerings. You’ve seen what’s brewing in the world’s
machine-learning research labs, and you have a ringside seat to the future
they’re helping to bring about. You’ve met the five tribes of machine
learning and their master algorithms: symbolists and inverse deduction;
connectionists and backpropagation; evolutionaries and genetic algorithms;
Bayesians and probabilistic inference; analogizers and support vector
machines. And because you’ve traveled over a vast territory, negotiated the
border crossings, and climbed the high peaks, you have a better view of the
landscape than even many machine learners, who toil daily in the fields.
You can see the common themes running through the land like an
underground river, and you know how the five master algorithms,
superficially so different, are really just five facets of a single universal
learner.

But the journey is far from over. We don’t have the Master Algorithm
yet, just a glimpse of what it might look like. What if something



fundamental is still missing, something all of us in the field, steeped in its
history, can’t see? We need new ideas, and ideas that are not just variations
on the ones we already have. That’s why I wrote this book: to start you
thinking. I teach an evening class on machine learning at the University of
Washington. In 2007, soon after the Netflix Prize was announced, I
proposed it as one of the class projects. Jeff Howbert, a student in the class,
got hooked and continued to work on it after the class was over. He wound
up being a member of one of the two winning teams, two years after
learning about machine learning for the first time. Now it’s your turn. To
learn more about machine learning, check out the section on further
readings at the end of the book. Download some data sets from the UCI
repository (archive.ics.uci.edu/ml/) and start playing. When you’re ready,
check out Kaggle.com, a whole website dedicated to running machine-
learning competitions, and pick one or two to enter. Of course, it’ll be more
fun if you recruit a friend or two to work with you. If you’re hooked, like
Jeff was, and wind up becoming a professional data scientist, welcome to
the most fascinating job in the world. If you find yourself dissatisfied with
today’s learners, invent new ones—or just do it for fun. My fondest wish is
that your reaction to this book will be like my reaction to the first AI book I
read, over twenty years ago: there’s so much to do here, I don’t know where
to start. If one day you invent the Master Algorithm, please don’t run to the
patent office with it. Open-source it. The Master Algorithm is too important
to be owned by any one person or organization. Its applications will
multiply faster than you can license it. But if you decide instead to do a
startup, remember to give a share in it to every man, woman, and child on
Earth.

Whether you read this book out of curiosity or professional interest, I
hope you will share what you’ve learned with your friends and colleagues.
Machine learning touches the lives of every one of us, and it’s up to all of
us to decide what we want to do with it. Armed with your new
understanding of machine learning, you’re in a much better position to
think about issues like privacy and data sharing, the future of work, robot
warfare, and the promise and peril of AI; and the more of us have this
understanding, the more likely we’ll avoid the pitfalls and find the right
paths. That’s the other big reason I wrote this book. The statistician knows
that prediction is hard, especially about the future, and the computer
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scientist knows that the best way to predict the future is to invent it, but the
unexamined future is not worth inventing.

Thanks for letting me be your guide. I’d like to give you a parting gift.
Newton said that he felt like a boy playing on the seashore, picking up a
pebble here and a shell there while the great ocean of truth lay undiscovered
before him. Three hundred years later, we’ve gathered an amazing
collection of pebbles and shells, but the great undiscovered ocean still
stretches into the distance, sparkling with promise. The gift is a boat—
machine learning—and it’s time to set sail.



Acknowledgments

First of all, I thank my companions in scientific adventure: students, collaborators, colleagues, and
everyone in the machine-learning community. This is your book as much as mine. I hope you will
forgive my many oversimplifications and omissions, and the somewhat fanciful way in which parts
of the book are written.

I’m grateful to everyone who read and commented on drafts of the book at various stages,
including Mike Belfiore, Thomas Dietterich, Tiago Domingos, Oren Etzioni, Abe Friesen, Rob Gens,
Alon Halevy, David Israel, Henry Kautz, Chloé Kiddon, Gary Marcus, Ray Mooney, Kevin Murphy,
Franzi Roesner, and Ben Taskar. Thanks also to everyone who gave me pointers, information, or help
of various kinds, including Tom Griffiths, David Heckerman, Hannah Hickey, Albert-László
Barabási, Yann LeCun, Barbara Mones, Mike Morgan, Peter Norvig, Judea Pearl, Gregory Piatetsky-
Shapiro, and Sebastian Seung.

I’m lucky to work in a very special place, the University of Washington’s Department of
Computer Science and Engineering. I’m also grateful to Josh Tenenbaum, and to everyone in his
group, for hosting the sabbatical at MIT during which I started this book. Thanks to Jim Levine, my
indefatigable agent, for drinking the Kool-Aid (as he put it) and spreading the word; and to everyone
at Levine Greenberg Rostan. Thanks to TJ Kelleher, my amazing editor, for helping make this a
better book, chapter by chapter, line by line; and to everyone at Basic Books.

I’m indebted to the organizations that have funded my research over the years, including ARO,
DARPA, FCT, NSF, ONR, Ford, Google, IBM, Kodak, Yahoo, and the Sloan Foundation.

Last and most, I thank my family for their love and support.



Further Readings

If this book whetted your appetite for machine learning and the issues surrounding it, you’ll find
many suggestions in this section. Its aim is not to be comprehensive but to provide an entrance to
machine learning’s garden of forking paths (as Borges put it). Wherever possible, I chose books and
articles appropriate for the general reader. Technical publications, which require at least some
computational, statistical, or mathematical background, are marked with an asterisk (*). Even these,
however, often have large sections accessible to the general reader. I didn’t list volume, issue, or page
numbers, since the web renders them superfluous; likewise for publishers’ locations.

If you’d like to learn more about machine learning in general, one good place to start is online
courses. Of these, the closest in content to this book is, not coincidentally, the one I teach
(www.coursera.org/course/machlearning). Two other options are Andrew Ng’s course
(www.coursera.org/course/ml) and Yaser Abu-Mostafa’s (http://work.caltech.edu/telecourse.html).
The next step is to read a textbook. The closest to this book, and one of the most accessible, is Tom
Mitchell’s Machine Learning* (McGraw-Hill, 1997). More up-to-date, but also more mathematical,
are Kevin Murphy’s Machine Learning: A Probabilistic Perspective* (MIT Press, 2012), Chris
Bishop’s Pattern Recognition and Machine Learning* (Springer, 2006), and An Introduction to
Statistical Learning with Applications in R,* by Gareth James, Daniela Witten, Trevor Hastie, and
Rob Tibshirani (Springer, 2013). My article “A few useful things to know about machine learning”
(Communications of the ACM, 2012) summarizes some of the “folk knowledge” of machine learning
that textbooks often leave implicit and was one of the starting points for this book. If you know how
to program and are itching to give machine learning a try, you can start from a number of open-
source packages, such as Weka (www.cs.waikato.ac.nz/ml/weka). The two main machine-learning
journals are Machine Learning and the Journal of Machine Learning Research. Leading machine-
learning conferences, with yearly proceedings, include the International Conference on Machine
Learning, the Conference on Neural Information Processing Systems, and the International
Conference on Knowledge Discovery and Data Mining. A large number of machine-learning talks
are available on http://videolectures.net. The www.KDnuggets.com website is a one-stop shop for
machine-learning resources, and you can sign up for its newsletter to keep up-to-date with the latest
developments.

Prologue
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An early list of examples of machine learning’s impact on daily life can be found in “Behind-the-
scenes data mining,” by George John (SIGKDD Explorations, 1999), which was also the inspiration
for the “day-in-the-life” paragraphs of the prologue. Eric Siegel’s book Predictive Analytics (Wiley,
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by the McKinsey Global Institute’s 2011 report Big Data: The Next Frontier for Innovation,
Competition, and Productivity. Many of the issues raised by big data are discussed in Big Data: A
Revolution That Will Change How We Live, Work, and Think, by Viktor Mayer-Schönberger and
Kenneth Cukier (Houghton Mifflin Harcourt, 2013). The textbook I learned AI from is Artificial
Intelligence,* by Elaine Rich (McGraw-Hill, 1983). A current one is Artificial Intelligence: A
Modern Approach, by Stuart Russell and Peter Norvig (3rd ed., Prentice Hall, 2010). Nils Nilsson’s
The Quest for Artificial Intelligence (Cambridge University Press, 2010) tells the story of AI from its
earliest days.
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Hillis (Basic Books, 1998), explains how computers work. Walter Isaacson recounts the lively history
of computer science in The Innovators (Simon & Schuster, 2014).
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automation of science,” by Ross King et al. (Science, 2009).

Sasha Issenberg’s The Victory Lab (Broadway Books, 2012) dissects the use of data analysis in
politics. “How President Obama’s campaign used big data to rally individual votes,” by the same
author (MIT Technology Review, 2013), tells the story of its greatest success to date. Nate Silver’s
The Signal and the Noise (Penguin Press, 2012) has a chapter on his poll aggregation method.

Robot warfare is the theme of P. W. Singer’s Wired for War (Penguin, 2009). Cyber War, by
Richard Clarke and Robert Knake (Ecco, 2012), sounds the alarm on cyberwar. My work on
combining machine learning with game theory to defeat adversaries, which started as a class project,
is described in “Adversarial classification,”* by Nilesh Dalvi et al. (Proceedings of the Tenth



International Conference on Knowledge Discovery and Data Mining, 2004). Predictive Policing, by
Walter Perry et al. (Rand, 2013), is a guide to the use of analytics in police work.
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2012), who calls it “the most important scientific problem you’ve never heard of.” “Why most
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“The methodology of positive economics,” which appears in Essays in Positive Economics
(University of Chicago Press, 1966). The use of Naïve Bayes in spam filtering is described in
“Stopping spam,” by Joshua Goodman, David Heckerman, and Robert Rounthwaite (Scientific
American, 2005). “Relevance weighting of search terms,”* by Stephen Robertson and Karen Sparck
Jones (Journal of the American Society for Information Science, 1976), explains the use of Naïve
Bayes–like methods in information retrieval.

“First links in the Markov chain,” by Brian Hayes (American Scientist, 2013), recounts Markov’s
invention of the eponymous chains. “Large language models in machine translation,”* by Thorsten
Brants et al. (Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language
Processing and Computational Natural Language Learning, 2007), explains how Google Translate
works. “The PageRank citation ranking: Bringing order to the Web,”* by Larry Page, Sergey Brin,
Rajeev Motwani, and Terry Winograd (Stanford University technical report, 1998), describes the
PageRank algorithm and its interpretation as a random walk over the web. Statistical Language
Learning,* by Eugene Charniak (MIT Press, 1996), explains how hidden Markov models work.
Statistical Methods for Speech Recognition,* by Fred Jelinek (MIT Press, 1997), describes their
application to speech recognition. The story of HMM-style inference in communication is told in
“The Viterbi algorithm: A personal history,” by David Forney (unpublished; online at
arxiv.org/pdf/cs/0504020v2.pdf). Bioinformatics: The Machine Learning Approach,* by Pierre Baldi
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and Søren Brunak (2nd ed., MIT Press, 2001), is an introduction to the use of machine learning in
biology, including HMMs. “Engineers look to Kalman filtering for guidance,” by Barry Cipra (SIAM
News, 1993), is a brief introduction to Kalman filters, their history, and their applications.

Judea Pearl’s pioneering work on Bayesian networks appears in his book Probabilistic Reasoning
in Intelligent Systems* (Morgan Kaufmann, 1988). “Bayesian networks without tears,”* by Eugene
Charniak (AI Magazine, 1991), is a largely nonmathematical introduction to them. “Probabilistic
interpretation for MYCIN’s certainty factors,”* by David Heckerman (Proceedings of the Second
Conference on Uncertainty in Artificial Intelligence, 1986), explains when sets of rules with
confidence estimates are and aren’t a reasonable approximation to Bayesian networks. “Module
networks: Identifying regulatory modules and their condition-specific regulators from gene
expression data,” by Eran Segal et al. (Nature Genetics, 2003), is an example of using Bayesian
networks to model gene regulation. “Microsoft virus fighter: Spam may be more difficult to stop than
HIV,” by Ben Paynter (Fast Company, 2012), tells how David Heckerman took inspiration from
spam filters and used Bayesian networks to design a potential AIDS vaccine. The probabilistic or
“noisy” OR is explained in Pearl’s book.* “Probabilistic diagnosis using a reformulation of the
INTERNIST-1/QMR knowledge base,” by M. A. Shwe et al. (Parts I and II, Methods of Information
in Medicine, 1991), describes a noisy-OR Bayesian network for medical diagnosis. Google’s
Bayesian network for ad placement is described in Section 26.5.4 of Kevin Murphy’s Machine
Learning* (MIT Press, 2012). Microsoft’s player rating system is described in “TrueSkillTM: A
Bayesian skill rating system,”* by Ralf Herbrich, Tom Minka, and Thore Graepel (Advances in
Neural Information Processing Systems 19, 2007).

Modeling and Reasoning with Bayesian Networks,* by Adnan Darwiche (Cambridge University
Press, 2009), explains the main algorithms for inference in Bayesian networks. The January/February
2000 issue* of Computing in Science and Engineering, edited by Jack Dongarra and Francis
Sullivan, has articles on the top ten algorithms of the twentieth century, including MCMC. “Stanley:
The robot that won the DARPA Grand Challenge,” by Sebastian Thrun et al. (Journal of Field
Robotics, 2006), explains how the eponymous self-driving car works. “Bayesian networks for data
mining,”* by David Heckerman (Data Mining and Knowledge Discovery, 1997), summarizes the
Bayesian approach to learning and explains how to learn Bayesian networks from data. “Gaussian
processes: A replacement for supervised neural networks?,”* by David MacKay (NIPS tutorial notes,
1997; online at www.inference.eng.cam.ac.uk/mackay/gp.pdf), gives a flavor of how the Bayesians
co-opted NIPS.

The need for weighting the word probabilities in speech recognition is discussed in Section 9.6 of
Speech and Language Processing,* by Dan Jurafsky and James Martin (2nd ed., Prentice Hall,
2009). My paper on Naïve Bayes, with Mike Pazzani, is “On the optimality of the simple Bayesian
classifier under zero-one loss”* (Machine Learning, 1997; expanded journal version of the 1996
conference paper). Judea Pearl’s book,* mentioned above, discusses Markov networks along with
Bayesian networks. Markov networks in computer vision are the subject of Markov Random Fields
for Vision and Image Processing,* edited by Andrew Blake, Pushmeet Kohli, and Carsten Rother
(MIT Press, 2011). Markov networks that maximize conditional likelihood were introduced in
“Conditional random fields: Probabilistic models for segmenting and labeling sequence data,”* by
John Lafferty, Andrew McCallum, and Fernando Pereira (International Conference on Machine
Learning, 2001).

The history of attempts to combine probability and logic is surveyed in a 2003 special issue* of
the Journal of Applied Logic devoted to the subject, edited by Jon Williamson and Dov Gabbay.
“From knowledge bases to decision models,”* by Michael Wellman, John Breese, and Robert
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Goldman (Knowledge Engineering Review, 1992), discusses some of the early AI approaches to the
problem.

Chapter Seven

Frank Abagnale details his exploits in his autobiography, Catch Me If You Can, cowritten with Stan
Redding (Grosset & Dunlap, 1980). The original technical report on the nearest-neighbor algorithm
by Evelyn Fix and Joe Hodges is “Discriminatory analysis: Nonparametric discrimination:
Consistency properties”* (USAF School of Aviation Medicine, 1951). Nearest Neighbor (NN)
Norms,* edited by Belur Dasarathy (IEEE Computer Society Press, 1991), collects many of the key
papers in this area. Locally linear regression is surveyed in “Locally weighted learning,”* by Chris
Atkeson, Andrew Moore, and Stefan Schaal (Artificial Intelligence Review, 1997). The first
collaborative filtering system based on nearest neighbors is described in “GroupLens: An open
architecture for collaborative filtering of netnews,”* by Paul Resnick et al. (Proceedings of the 1994
ACM Conference on Computer-Supported Cooperative Work, 1994). Amazon’s collaborative filtering
algorithm is described in “Amazon.com recommendations: Item-to-item collaborative filtering,”* by
Greg Linden, Brent Smith, and Jeremy York (IEEE Internet Computing, 2003). (See Chapter 8’s
further readings for Netflix’s.) Recommender systems’ contribution to Amazon and Netflix sales is
referenced in, among others, Mayer-Schönberger and Cukier’s Big Data and Siegel’s Predictive
Analytics (cited earlier). The 1967 paper by Tom Cover and Peter Hart on nearest-neighbor’s error
rate is “Nearest neighbor pattern classification”* (IEEE Transactions on Information Theory).

The curse of dimensionality is discussed in Section 2.5 of The Elements of Statistical Learning,*
by Trevor Hastie, Rob Tibshirani, and Jerry Friedman (2nd ed., Springer, 2009). “Wrappers for
feature subset selection,”* by Ron Kohavi and George John (Artificial Intelligence, 1997), compares
attribute selection methods. “Similarity metric learning for a variable-kernel classifier,”* by David
Lowe (Neural Computation, 1995), is an example of a feature weighting algorithm.

“Support vector machines and kernel methods: The new generation of learning machines,”* by
Nello Cristianini and Bernhard Schölkopf (AI Magazine, 2002), is a mostly nonmathematical
introduction to SVMs. The paper that started the SVM revolution was “A training algorithm for
optimal margin classifiers,”* by Bernhard Boser, Isabel Guyon, and Vladimir Vapnik (Proceedings of
the Fifth Annual Workshop on Computational Learning Theory, 1992). The first paper applying
SVMs to text classification was “Text categorization with support vector machines,”* by Thorsten
Joachims (Proceedings of the Tenth European Conference on Machine Learning, 1998). Chapter 5 of
An Introduction to Support Vector Machines,* by Nello Cristianini and John Shawe-Taylor
(Cambridge University Press, 2000), is a brief introduction to constrained optimization in the context
of SVMs.

Case-Based Reasoning,* by Janet Kolodner (Morgan Kaufmann, 1993), is a textbook on the
subject. “Using case-based retrieval for customer technical support,”* by Evangelos Simoudis (IEEE
Expert, 1992), explains its application to help desks. IPsoft’s Eliza is described in “Rise of the
software machines” (Economist, 2013) and on the company’s website. Kevin Ashley explores case-
based legal reasoning in Modeling Legal Arguments* (MIT Press, 1991). David Cope summarizes his
approach to automated music composition in “Recombinant music: Using the computer to explore
musical style” (IEEE Computer, 1991). Dedre Gentner proposed structure mapping in “Structure
mapping: A theoretical framework for analogy”* (Cognitive Science, 1983). “The man who would
teach machines to think,” by James Somers (Atlantic, 2013), discusses Douglas Hofstadter’s views
on AI.
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The RISE algorithm is described in my paper “Unifying instance-based and rule-based
induction”* (Machine Learning, 1996).

Chapter Eight

The Scientist in the Crib, by Alison Gopnik, Andy Meltzoff, and Pat Kuhl (Harper, 1999),
summarizes psychologists’ discoveries about how babies and young children learn.

The k-means algorithm was originally proposed by Stuart Lloyd at Bell Labs in 1957, in a
technical report entitled “Least squares quantization in PCM”* (which later appeared as a paper in
the IEEE Transactions on Information Theory in 1982). The original paper on the EM algorithm is
“Maximum likelihood from incomplete data via the EM algorithm,”* by Arthur Dempster, Nan
Laird, and Donald Rubin (Journal of the Royal Statistical Society B, 1977). Hierarchical clustering
and other methods are described in Finding Groups in Data: An Introduction to Cluster Analysis,* by
Leonard Kaufman and Peter Rousseeuw (Wiley, 1990).

Principal-component analysis is one of the oldest techniques in machine learning and statistics,
having been first proposed by Karl Pearson in 1901 in the paper “On lines and planes of closest fit to
systems of points in space”* (Philosophical Magazine). The type of dimensionality reduction used to
grade SAT essays was introduced by Scott Deerwester et al. in the paper “Indexing by latent semantic
analysis”* (Journal of the American Society for Information Science, 1990). Yehuda Koren, Robert
Bell, and Chris Volinsky explain how Netflix-style collaborative filtering works in “Matrix
factorization techniques for recommender systems”* (IEEE Computer, 2009). The Isomap algorithm
was introduced in “A global geometric framework for nonlinear dimensionality reduction,”* by Josh
Tenenbaum, Vin de Silva, and John Langford (Science, 2000).

Reinforcement Learning: An Introduction,* by Rich Sutton and Andy Barto (MIT Press, 1998), is
the standard textbook on the subject. Universal Artificial Intelligence,* by Marcus Hutter (Springer,
2005), is an attempt at a general theory of reinforcement learning. Arthur Samuel’s pioneering
research on learning to play checkers is described in his paper “Some studies in machine learning
using the game of checkers”* (IBM Journal of Research and Development, 1959). This paper also
marks one of the earliest appearances in print of the term machine learning. Chris Watkins’s
formulation of the reinforcement learning problem appeared in his PhD thesis Learning from Delayed
Rewards* (Cambridge University, 1989). DeepMind’s reinforcement learner for video games is
described in “Human-level control through deep reinforcement learning,”* by Volodymyr Mnih et al.
(Nature, 2015).

Paul Rosenbloom retells the development of chunking in “A cognitive odyssey: From the power
law of practice to a general learning mechanism and beyond” (Tutorials in Quantitative Methods for
Psychology, 2006). A/B testing and other online experimentation techniques are explained in
“Practical guide to controlled experiments on the Web: Listen to your customers not to the HiPPO,”*
by Ron Kohavi, Randal Henne, and Dan Sommerfield (Proceedings of the Thirteenth International
Conference on Knowledge Discovery and Data Mining, 2007). Uplift modeling, a multidimensional
generalization of A/B testing, is the subject of Chapter 7 of Eric Siegel’s Predictive Analytics (Wiley,
2013).

Introduction to Statistical Relational Learning,* edited by Lise Getoor and Ben Taskar (MIT
Press, 2007), surveys the main approaches in this area. My work with Matt Richardson on modeling
word of mouth is summarized in “Mining social networks for viral marketing” (IEEE Intelligent
Systems, 2005).



Chapter Nine

Model Ensembles: Foundations and Algorithms,* by Zhi-Hua Zhou (Chapman and Hall, 2012), is an
introduction to metalearning. The original paper on stacking is “Stacked generalization,”* by David
Wolpert (Neural Networks, 1992). Leo Breiman introduced bagging in “Bagging predictors”*
(Machine Learning, 1996) and random forests in “Random forests”* (Machine Learning, 2001).
Boosting is described in “Experiments with a new boosting algorithm,” by Yoav Freund and Rob
Schapire (Proceedings of the Thirteenth International Conference on Machine Learning, 1996).

“I, Algorithm,” by Anil Ananthaswamy (New Scientist, 2011), chronicles the road to combining
logic and probability in AI. Markov Logic: An Interface Layer for Artificial Intelligence,* which I
cowrote with Daniel Lowd (Morgan & Claypool, 2009), is an introduction to Markov logic networks.
The Alchemy website, http://alchemy.cs.washington.edu, also includes tutorials, videos, MLNs, data
sets, publications, pointers to other systems, and so on. An MLN for robot mapping is described in
“Hybrid Markov logic networks,”* by Jue Wang and Pedro Domingos (Proceedings of the Twenty-
Third AAAI Conference on Artificial Intelligence, 2008). Thomas Dietterich and Xinlong Bao
describe the use of MLNs in DARPA’s PAL project in “Integrating multiple learning components
through Markov logic”* (Proceedings of the Twenty-Third AAAI Conference on Artificial
Intelligence, 2008). “Extracting semantic networks from text via relational clustering,”* by Stanley
Kok and Pedro Domingos (Proceedings of the Nineteenth European Conference on Machine
Learning, 2008), describes how we used MLNs to learn a semantic network from the Web.

Efficient MLNs with hierarchical class and part structure are described in “Learning and
inference in tractable probabilistic knowledge bases,”* by Mathias Niepert and Pedro Domingos
(Proceedings of the Thirty-First Conference on Uncertainty in Artificial Intelligence, 2015). Google’s
approach to parallel gradient descent is described in “Large-scale distributed deep networks,”* by
Jeff Dean et al. (Advances in Neural Information Processing Systems 25, 2012). “A general
framework for mining massive data streams,”* by Pedro Domingos and Geoff Hulten (Journal of
Computational and Graphical Statistics, 2003), summarizes our sampling-based method for learning
from open-ended data streams. The FuturICT project is the subject of “The machine that would
predict the future,” by David Weinberger (Scientific American, 2011).

“Cancer: The march on malignancy” (Nature supplement, 2014) surveys the current state of the
war on cancer. “Using patient data for personalized cancer treatments,” by Chris Edwards
(Communications of the ACM, 2014), describes the early stages of what could grow into CanceRx.
“Simulating a living cell,” by Markus Covert (Scientific American, 2014), explains how his group
built a computer model of a whole infectious bacterium. “Breakthrough Technologies 2015: Internet
of DNA,” by Antonio Regalado (MIT Technology Review, 2015), reports on the work of the Global
Alliance for Genomics and Health. Cancer Commons is described in “Cancer: A Computational
Disease that AI Can Cure,” by Jay Tenenbaum and Jeff Shrager (AI Magazine, 2011).

Chapter Ten

“Love, actuarially,” by Kevin Poulsen (Wired, 2014), tells the story of how one man used machine
learning to find love on the OkCupid dating site. Dataclysm, by Christian Rudder (Crown, 2014),
mines OkCupid’s data for sundry insights. Total Recall, by Gordon Moore and Jim Gemmell (Dutton,
2009), explores the implications of digitally recording everything we do. The Naked Future, by
Patrick Tucker (Current, 2014), surveys the use and abuse of data for prediction in our world. Craig
Mundie argues for a balanced approach to data collection and use in “Privacy pragmatism” (Foreign
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Affairs, 2014). The Second Machine Age, by Erik Brynjolfsson and Andrew McAfee (Norton, 2014),
discusses how progress in AI will shape the future of work and the economy. “World War R,” by
Chris Baraniuk (New Scientist, 2014) reports on the debate surrounding the use of robots in battle.
“Transcending complacency on superintelligent machines,” by Stephen Hawking et al. (Huffington
Post, 2014), argues that now is the time to worry about AI’s risks. Nick Bostrom’s Superintelligence
(Oxford University Press, 2014) considers those dangers and what to do about them.

A Brief History of Life, by Richard Hawking (Random Penguin, 1982), summarizes the quantum
leaps of evolution in the eons BC. (Before Computers. Just kidding.) The Singularity Is Near, by Ray
Kurzweil (Penguin, 2005), is your guide to the transhuman future. Joel Garreau considers three
different scenarios for how human-directed evolution will unfold in Radical Evolution (Broadway
Books, 2005). In What Technology Wants (Penguin, 2010), Kevin Kelly argues that technology is the
continuation of evolution by other means. Darwin Among the Machines, by George Dyson (Basic
Books, 1997), chronicles the evolution of technology and speculates on where it will lead. Craig
Venter explains how his team synthesized a living cell in Life at the Speed of Light (Viking, 2013).
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